Top physics a LHC

Vittorio Del Duca INFN LNF

Roma 2 Aprile 2007

Top ID card

tⁱ_R

$$\left(\begin{array}{c} t_{2/3} \\ b_{-1/3} \end{array} \right)_{L}^{i=1,2,3}$$

mass set by the EWSB: $m_t = y_t v / \sqrt{2}$

 $m_t \sim 170 \,\mathrm{GeV} \longrightarrow y_t \sim 1$

strong interaction with the Higgs

- very short lifetime: it decays before hadronising $\tau_t \sim 10^{-24} s$, $\Gamma^{-1} \sim (1.5 \,\text{GeV})^{-1} \ll \Lambda_{\text{QCD}}^{-1} \sim (200 \,\text{MeV})^{-1}$
 - no spectroscopy
 - spin transferred to decay products: Wb

Top & unitarity

top, Higgs and EWSB are intertwined

Top & unitarity

top, Higgs and EWSB are intertwined

Top & unitarity

top, Higgs and EWSB are intertwined

t tbar x-section at Tevatron

assume $m_t = 175 \text{ GeV}$

updated on 23/03/06

compare with theory (NLO + NLL) $\sigma_{t\bar{t}} = 6.5 \,\mathrm{pb} \,\left(1 \pm 5\%_{\mathrm{scale}} \pm 7\%_{\mathrm{PDF}}\right)$

> Cacciari, Frixione, Mangano, Nason, Ridolfi 2003

TH & EXP have comparable errors

t tbar production

t tbar x-section: TH vs. EXP

TH: $\delta m/m = 0.2 \ \delta \sigma/\sigma$ $\Delta \sigma = \pm 6 \% \rightarrow \Delta m = \pm 2 \,\text{GeV}$

Top mass

updated on 15/03/07

error is now at % level

Effects on global EW fits

Effects on Higgs mass

- 0
- use m_t to estimate m_H from EW corrections
- as m_t changes, large shifts in m_H

Hierarchy problem in the SM

the top affects sizeably the stability of m_H

Fine tuning and unnaturalness

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

Fine tuning and unnaturalness

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathrm{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathrm{v}^2)$

Fine tuning and unnaturalness

Higgs self-energy

$$m_H^2(Q^2) - m_H^2(Q_0^2) = \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2)(Q^2 - Q_0^2)$$

implies that

$$m_H^2(Q_0^2) - \frac{3G_F}{4\sqrt{2}\pi^2} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) Q_0^2 = const. = \mathcal{O}(\mathbf{v}^2)$$

because for $Q_0^2 = \mathcal{O}(\mathrm{v}^2)$ the Higgs mass is in the range of the EW data $m_H^2(Q_0^2) = \mathcal{O}(\mathrm{v}^2)$

but for $Q_0^2 = \mathcal{O}(M_{Pl}^2)$ one must fine tune $m_H^2(M_{Pl}^2)$ to the level of $v^2/M_{Pl}^2 \sim 10^{-33}$ for the cancellation to yield a figure of $\mathcal{O}(v^2)$ \longrightarrow unnatural

Weakly coupled models at the TeV scale

Symmetry principles protect against power-like divergences

photon self-energy $\delta m_{\gamma}^2 \propto \chi^2 + m_{\gamma}^2 \ln \Lambda$ gauge symmetry protects against quadratic divergence

A natural solution to hierarchy: supersymmetry

postulate a new symmetry principle, which yields new particles that cancel the quadratic divergences of the Higgs self-energy, such that

 $\delta m_H^2 \sim \mathcal{O}(m_H^2) \ln \Lambda$

 $\delta m_H^2 \propto G_F \, m_t^4 \ln(m_t/m_{\tilde{t}})$

Weakly coupled models at the TeV scale Another solution to hierarchy: little Higgs models

- embed SM in a larger group
 - Higgs field is a Goldstone boson from a global symmetry breaking cancel top loop with a heavy top-like quark,T

EW precision measurements imply that m_T is large LHC can explore m_T up to 2 TeV, but huge statistics are required

 $T \Rightarrow tH$ and tZ decays allowed

littlest Higgs

larger group: $SU(2) \otimes SU(2) \otimes U(1)$

new TeV-scale states for littlest Higgs: vector-like weak-singlet quark T gauge bosons $W_{H^{\pm}} W_{H^{3}}$ weak-triplet scalar field ϕ

shifts in *ttZ* axial & vector couplings

 ψ : SU(2) weak mixing angle

t tbar as a background

- **tt** in $gg \Rightarrow H \& qq \Rightarrow qqH$, with $H \Rightarrow WW$
- tt in single top
 - tt jets in ttbb & ttH
- tt jets & ttW in SUSY searches

theory tools

- NLO + shower for *tt* production with spin correlations: MC@NLO
- NLO single-top production with spin correlations
 - tt + 1 jet at NLO (almost done)
- *tt jets, ttQQ jets*: ME + shower in ALPGEN, MADEVENT, SHERPA

Top & flavour physics

$$\begin{split} |V_{\mathsf{CKM}}| &= \begin{pmatrix} 0.9738 \pm 0.0005 & 0.2200 \pm 0.0026 & (3.67 \pm 0.47) \times 10^{-3} \\ 0.224 \pm 0.012 & 0.996 \pm 0.013 & (41.3 \pm 1.5) \times 10^{-3} \\ ? & ? & ? \end{pmatrix} \\ & \text{(assuming 3 generations) unitarity implies} \\ |V_{td}| &\simeq 0.0048 - 0.014, \quad |V_{ts}| &\simeq 0.037 - 0.043, \quad |V_{tb}| &\simeq 0.9990 - 0.9992 \\ & \mathcal{O}(\lambda^3) & \mathcal{O}(\lambda^2) & \mathcal{O}(1) \\ & \text{with } \lambda \cong 0.22 \end{split}$$

CDF measurements on B_s mixing $\Delta M_s = 17.33^{+0.42}_{-0.21}$ (stat.) ± 0.07 (syst.)ps⁻¹ implies (in good agreement with SM predictions)

implies (in good agreement with SM predictions)

 $0.20 < |V_{td}/V_{ts}| < 0.22$

Top & flavour physics at Tevatron

top can decay into a real W $\Gamma_t \sim G_F m_t^3 (|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2)$ but only ratio of widths is measured W^+ , \overline{q} $R = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$

 $1.12^{+0.21}_{-0.19}(\text{stat})^{+0.17}_{-0.13}(\text{syst}), \text{ CDF}, 1.03^{+0.19}_{-0.17}(\text{stat} + \text{syst}), \text{ DØ}$

but this only entails that $|V_{ts}|/|V_{tb}|$ and $|V_{td}|/|V_{tb}|$ are small it has no bearing on size of V_{tb}

Single Top & flavour physics at Tevatron

t channel $\sigma(pp \to tX) = |V_{tb}|^2 \sigma_b + |V_{ts}|^2 \sigma_s + |V_{td}|^2 \sigma_d$ s channel $\sigma(pp \to tX) = (|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2) \sigma^{s-\text{channel}}$

NLO: 1.85 pb 0.82 pb

from CDF talk at Moriond07

3 CDF analyses give different results:

matrix elements neural networks 2.3 σ excess no evidence σ (s+t) = 2.7^{+1.5}_{-1.3} pb σ (s+t) < 2.6 pb σ (t) < 2.6 pb σ (s) < 3.7 pb

likelihood ratio no evidence σ (s+t) < 2.7 pb

from D0 talk at Moriond07

 $\sigma(pp \rightarrow tbX, tqbX) = 4.8 \pm 1.3 \text{ pb}$ $0.68 \leq |V_{tb}| \leq 1$ at 95 % C.L. first direct measurement of V_{tb}

with 3.5 σ significance

Single Top & flavour physics at LHC

NLO prediction for *t*+s channel $\sigma(pp \rightarrow tX) \simeq 250 \text{ pb}$

measurement of V_{tb} at LHC at 10 fb⁻¹ inverse luminosity is claimed to be feasible with 5% error

Conclusions

top is one of best probes of EWSB and fermion masses

- common feature of BSM models is to have top partners
- EXP: Tevatron is doing a wonderful job, and lumi keeps growing LHC will be blessed by huge statistics
- TH: is steadily improving plethora of BSM models with top partners sophisticated MC models already available more NLO calculations are in progress