
 Feynman Integrals,
Polylogarithms and Symbols

Vittorio Del Duca

INFN LNF

ACAT2011 7 September 2011

based on work with Claude Duhr & Volodya Smirnov

Wednesday, September 7, 2011

let us consider l-loop n-point Feynman integrals

example: 1-loop n-point scalar Feynman integral
without internal or external masses

IDn

(
{νi}; {Q2

i }
)
∝

∫
dDk

iπD/2

n∏

i=1

1

Dνi
i

D1 = k2 + i0, Dm =



k +
m−1∑

j=1

kj




2

+ i0, m = 2, . . . , n

kj are external momenta, Qi
2 are Mandelstam invariants

Wednesday, September 7, 2011

suppose that we can compute analytically the Feynman integral,
which is given as a combination of multiple polylogarithms

G(a, !w; z) =
∫ z

0

dt

t− a
G(!w; t) , G(a; z) = ln

(
1− z

a

)
Goncharov 98

let us consider l-loop n-point Feynman integrals

example: 1-loop n-point scalar Feynman integral
without internal or external masses

IDn

(
{νi}; {Q2

i }
)
∝

∫
dDk

iπD/2

n∏

i=1

1

Dνi
i

D1 = k2 + i0, Dm =



k +
m−1∑

j=1

kj




2

+ i0, m = 2, . . . , n

kj are external momenta, Qi
2 are Mandelstam invariants

Wednesday, September 7, 2011

suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a ``simpler’’ analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved

Wednesday, September 7, 2011

suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a ``simpler’’ analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved

how feasible is it to ``simplify’’ the result, i.e. to re-write it
in terms of either simpler functions or a simpler combination
of multiple polylogarithms ?

Wednesday, September 7, 2011

suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a ``simpler’’ analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved

how feasible is it to ``simplify’’ the result, i.e. to re-write it
in terms of either simpler functions or a simpler combination
of multiple polylogarithms ?

suppose that the only tool we have is some (complicated)
functional relations which relate multiple polylogarithms

Wednesday, September 7, 2011

suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a ``simpler’’ analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved

how feasible is it to ``simplify’’ the result, i.e. to re-write it
in terms of either simpler functions or a simpler combination
of multiple polylogarithms ?

using those functional relations, it may become a frustating and
unyielding exercise to simplify the result

suppose that the only tool we have is some (complicated)
functional relations which relate multiple polylogarithms

Wednesday, September 7, 2011

an example:

we computed analytically the finite part of the
2-loop 6-point amplitude in N=4 Super Yang-Mills

Duhr Smirnov VDD 09

Wednesday, September 7, 2011

an example:

we computed analytically the finite part of the
2-loop 6-point amplitude in N=4 Super Yang-Mills

Duhr Smirnov VDD 09

the result is relevant to understand the weak-coupling structure
of scattering amplitudes in N=4 SYM

Wednesday, September 7, 2011

an example:

we computed analytically the finite part of the
2-loop 6-point amplitude in N=4 Super Yang-Mills

the result was given in terms of O(103) multiple polylogarithms G(u1, u2, u3)

Duhr Smirnov VDD 09

the result is relevant to understand the weak-coupling structure
of scattering amplitudes in N=4 SYM

Wednesday, September 7, 2011

an example:

we computed analytically the finite part of the
2-loop 6-point amplitude in N=4 Super Yang-Mills

the result was given in terms of O(103) multiple polylogarithms G(u1, u2, u3)

Duhr Smirnov VDD 09

the result is relevant to understand the weak-coupling structure
of scattering amplitudes in N=4 SYM

it turned out to be unfeasible to ``simplify’’ the result through
functional relations which related the multiple polylogarithms

Wednesday, September 7, 2011

N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

Wednesday, September 7, 2011

N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit: Nc →∞ with λ = g2Nc fixed

only planar diagrams

Wednesday, September 7, 2011

N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit: Nc →∞ with λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)

Wednesday, September 7, 2011

MHV amplitudes in planar N=4 SYM

at any order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

Wednesday, September 7, 2011

MHV amplitudes in planar N=4 SYM

at any order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6

Wednesday, September 7, 2011

MHV amplitudes in planar N=4 SYM

at any order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R

Wednesday, September 7, 2011

MHV amplitudes in planar N=4 SYM

at any order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R

at all loops, ansatz for a resummed exponent

Bern Dixon Smirnov 05

m(L)
n = exp

[∞∑

l=1

al
(
f (l)(ε) m(1)

n (lε) + Const(l) + E(l)
n (ε)

)]
+ R

Wednesday, September 7, 2011

MHV amplitudes in planar N=4 SYM

at any order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R

at all loops, ansatz for a resummed exponent

Bern Dixon Smirnov 05

m(L)
n = exp

[∞∑

l=1

al
(
f (l)(ε) m(1)

n (lε) + Const(l) + E(l)
n (ε)

)]
+ R

remainder
function

Wednesday, September 7, 2011

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

Wednesday, September 7, 2011

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

the ansatz fails on 2-loop 6-pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Wednesday, September 7, 2011

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

the ansatz fails on 2-loop 6-pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

R(2)
n = m(2)

n (ε)− 1
2

[
m(1)

n (ε)
]2
− f (2)(ε) m(1)

n (2ε)− Const(2)

at 2 loops, the remainder function characterises the deviation from the ansatz

R(2)
6 known analytically Duhr Smirnov VDD 09

Wednesday, September 7, 2011

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

for n = 4, 5, R is a constant
for n ≥ 6, R is an unknown function of conformally invariant cross ratios

the ansatz fails on 2-loop 6-pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

R(2)
n = m(2)

n (ε)− 1
2

[
m(1)

n (ε)
]2
− f (2)(ε) m(1)

n (2ε)− Const(2)

at 2 loops, the remainder function characterises the deviation from the ansatz

R(2)
6 known analytically Duhr Smirnov VDD 09

Wednesday, September 7, 2011

the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

for n = 4, 5, R is a constant
for n ≥ 6, R is an unknown function of conformally invariant cross ratios

for n = 6, the conformally invariant cross ratios are

thus x2
k,k+r = (pk + . . . + pk+r−1)2

u1 =
x2

13x
2
46

x2
14x

2
36

u2 =
x2

24x
2
15

x2
25x

2
14

u3 =
x2

35x
2
26

x2
36x

2
25

1

2

6

3

4

5

pi = xi − xi+1xi are variables in a dual space s.t.

the ansatz fails on 2-loop 6-pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

R(2)
n = m(2)

n (ε)− 1
2

[
m(1)

n (ε)
]2
− f (2)(ε) m(1)

n (2ε)− Const(2)

at 2 loops, the remainder function characterises the deviation from the ansatz

R(2)
6 known analytically Duhr Smirnov VDD 09

Wednesday, September 7, 2011

2-loop 6-point remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent

on the cross ratios u1, u2, u3

Duhr Smirnov VDD 09

Wednesday, September 7, 2011

2-loop 6-point remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent

on the cross ratios u1, u2, u3

Duhr Smirnov VDD 09

it is of uniform transcendental weight 4

transcendental weights: w(ln x) = w(π) = 1 w(Li2(x)) = w(π2) = 2

Wednesday, September 7, 2011

2-loop 6-point remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent

on the cross ratios u1, u2, u3

Duhr Smirnov VDD 09

it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

it is of uniform transcendental weight 4

transcendental weights: w(ln x) = w(π) = 1 w(Li2(x)) = w(π2) = 2

Wednesday, September 7, 2011

2-loop 6-point remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent

on the cross ratios u1, u2, u3

Duhr Smirnov VDD 09

it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

straightforward computation

it is of uniform transcendental weight 4

transcendental weights: w(ln x) = w(π) = 1 w(Li2(x)) = w(π2) = 2

Wednesday, September 7, 2011

2-loop 6-point remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent

on the cross ratios u1, u2, u3

Duhr Smirnov VDD 09

it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

straightforward computation

finite answer, but in intermediate steps many divergences
output is punishingly long: O(103) multiple polylogarithms G(u1, u2, u3)

it is of uniform transcendental weight 4

transcendental weights: w(ln x) = w(π) = 1 w(Li2(x)) = w(π2) = 2

Wednesday, September 7, 2011

Goncharov Spradlin Vergu Volovich 10

R(2)
6,WL(u1, u2, u3) =

3∑

i=1

(
L4(x+

i , x−i)− 1
2
Li4(1− 1/ui)

)

− 1
8

(
3∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+

π2

12
J2 +

π4

72

yet, our result was given in terms of polylogarithms

Wednesday, September 7, 2011

Goncharov Spradlin Vergu Volovich 10

x±i = uix
±

where

x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3

∆ =(u1 + u2 + u3 − 1)2 − 4u1u2u3

L4(x+, x−) =
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(!4−m(x+) + !4−m(x−)) +

1
8!!

log(x+x−)4

!n(x) =
1
2

(Lin(x)− (−1)nLin(1/x)) J =
3∑

i=1

(!1(x+
i)− !1(x−i))

R(2)
6,WL(u1, u2, u3) =

3∑

i=1

(
L4(x+

i , x−i)− 1
2
Li4(1− 1/ui)

)

− 1
8

(
3∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+

π2

12
J2 +

π4

72

yet, our result was given in terms of polylogarithms

Wednesday, September 7, 2011

Goncharov Spradlin Vergu Volovich 10

x±i = uix
±

where

x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3

∆ =(u1 + u2 + u3 − 1)2 − 4u1u2u3

L4(x+, x−) =
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(!4−m(x+) + !4−m(x−)) +

1
8!!

log(x+x−)4

!n(x) =
1
2

(Lin(x)− (−1)nLin(1/x)) J =
3∑

i=1

(!1(x+
i)− !1(x−i))

R(2)
6,WL(u1, u2, u3) =

3∑

i=1

(
L4(x+

i , x−i)− 1
2
Li4(1− 1/ui)

)

− 1
8

(
3∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+

π2

12
J2 +

π4

72

yet, our result was given in terms of polylogarithms

not a new, independent, computation
just a manipulation of our result

Wednesday, September 7, 2011

Goncharov Spradlin Vergu Volovich 10

x±i = uix
±

where

x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3

∆ =(u1 + u2 + u3 − 1)2 − 4u1u2u3

L4(x+, x−) =
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(!4−m(x+) + !4−m(x−)) +

1
8!!

log(x+x−)4

!n(x) =
1
2

(Lin(x)− (−1)nLin(1/x)) J =
3∑

i=1

(!1(x+
i)− !1(x−i))

R(2)
6,WL(u1, u2, u3) =

3∑

i=1

(
L4(x+

i , x−i)− 1
2
Li4(1− 1/ui)

)

− 1
8

(
3∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+

π2

12
J2 +

π4

72

yet, our result was given in terms of polylogarithms

not a new, independent, computation
just a manipulation of our result

answer is short and simple
introduces symbols in TH physics

Wednesday, September 7, 2011

Symbols
Fn. F of deg(F) = n : fn. with log cuts, s.t. Disc = 2πi × f, with deg(f) = n-1

Wednesday, September 7, 2011

Symbols
Fn. F of deg(F) = n : fn. with log cuts, s.t. Disc = 2πi × f, with deg(f) = n-1

deg(const) = 0 ➙ deg(π) = 0
ln x : cut along [-∞, 0] with Disc = 2πi ➙ deg(ln x) = 1
Li2(x) : cut along [1,∞] with Disc = -2πi ln x ➙ deg(Li2(x)) = 2

Wednesday, September 7, 2011

Symbols
Fn. F of deg(F) = n : fn. with log cuts, s.t. Disc = 2πi × f, with deg(f) = n-1

deg(const) = 0 ➙ deg(π) = 0
ln x : cut along [-∞, 0] with Disc = 2πi ➙ deg(ln x) = 1
Li2(x) : cut along [1,∞] with Disc = -2πi ln x ➙ deg(Li2(x)) = 2

take a fn. defined as an iterated integral of logs of rational functions Ri

Tk =

∫ b

a
d lnR1 ◦ · · · ◦ d lnRk =

∫ b

a

(∫ t

a
d lnR1 ◦ · · · ◦ d lnRk−1

)
d lnRk(t)

Wednesday, September 7, 2011

Symbols
Fn. F of deg(F) = n : fn. with log cuts, s.t. Disc = 2πi × f, with deg(f) = n-1

deg(const) = 0 ➙ deg(π) = 0
ln x : cut along [-∞, 0] with Disc = 2πi ➙ deg(ln x) = 1
Li2(x) : cut along [1,∞] with Disc = -2πi ln x ➙ deg(Li2(x)) = 2

take a fn. defined as an iterated integral of logs of rational functions Ri

Tk =

∫ b

a
d lnR1 ◦ · · · ◦ d lnRk =

∫ b

a

(∫ t

a
d lnR1 ◦ · · · ◦ d lnRk−1

)
d lnRk(t)

Sym[Tk] = R1 ⊗ · · ·⊗Rk

is defined on the tensor product of the group of rational functions, modulo constants

the symbol

· · ·⊗R1R2 ⊗ · · · = · · ·⊗R1 ⊗ · · · + · · ·⊗R2 ⊗ · · ·

· · · ⊗ (cR1)⊗ · · · = · · · ⊗R1 ⊗ · · ·

Zagier, Goncharov

Wednesday, September 7, 2011

Symbols
Fn. F of deg(F) = n : fn. with log cuts, s.t. Disc = 2πi × f, with deg(f) = n-1

deg(const) = 0 ➙ deg(π) = 0
ln x : cut along [-∞, 0] with Disc = 2πi ➙ deg(ln x) = 1
Li2(x) : cut along [1,∞] with Disc = -2πi ln x ➙ deg(Li2(x)) = 2

take a fn. defined as an iterated integral of logs of rational functions Ri

Tk =

∫ b

a
d lnR1 ◦ · · · ◦ d lnRk =

∫ b

a

(∫ t

a
d lnR1 ◦ · · · ◦ d lnRk−1

)
d lnRk(t)

Li1(z) = − ln(1− z) Lik(z) =

∫ z

0
d ln t Lik−1(t)

k-1 times

Sym[Lik(z)] = −(1− z)⊗ z ⊗ · · ·⊗ z︸ ︷︷ ︸

Sym[Tk] = R1 ⊗ · · ·⊗Rk

is defined on the tensor product of the group of rational functions, modulo constants

the symbol

· · ·⊗R1R2 ⊗ · · · = · · ·⊗R1 ⊗ · · · + · · ·⊗R2 ⊗ · · ·

· · · ⊗ (cR1)⊗ · · · = · · · ⊗R1 ⊗ · · ·

Zagier, Goncharov

Wednesday, September 7, 2011

Sym[lnx ln y] = x⊗ y + y ⊗ x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

Wednesday, September 7, 2011

Sym[lnx ln y] = x⊗ y + y ⊗ x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f] = ⊗n
i=1Ri

then Sym[fg] =
∑

σ

⊗n
i=1Rσ(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = ⊗m
i=n+1Ri

Wednesday, September 7, 2011

Sym[lnx ln y] = x⊗ y + y ⊗ x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f] = ⊗n
i=1Ri

then Sym[fg] =
∑

σ

⊗n
i=1Rσ(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = ⊗m
i=n+1Ri

e.g. Sym[g] = R3 ⊗R4

Sym[fg] = R1 ⊗R2 ⊗R3 ⊗R4 +R1 ⊗R3 ⊗R2 ⊗R4 +R1 ⊗R3 ⊗R4 ⊗R2

+ R3 ⊗R1 ⊗R2 ⊗R4 +R3 ⊗R1 ⊗R4 ⊗R2 +R3 ⊗R4 ⊗R1 ⊗R2

Sym[f] = R1 ⊗R2

Wednesday, September 7, 2011

Sym[lnx ln y] = x⊗ y + y ⊗ x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

symbols form a shuffle algebra, i.e. a vector space with a shuffle product
(also iterated integrals and multiple polylogarithms form shuffle algebras)

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f] = ⊗n
i=1Ri

then Sym[fg] =
∑

σ

⊗n
i=1Rσ(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = ⊗m
i=n+1Ri

e.g. Sym[g] = R3 ⊗R4

Sym[fg] = R1 ⊗R2 ⊗R3 ⊗R4 +R1 ⊗R3 ⊗R2 ⊗R4 +R1 ⊗R3 ⊗R4 ⊗R2

+ R3 ⊗R1 ⊗R2 ⊗R4 +R3 ⊗R1 ⊗R4 ⊗R2 +R3 ⊗R4 ⊗R1 ⊗R2

Sym[f] = R1 ⊗R2

Wednesday, September 7, 2011

polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

Sym[lnx ln y] = x⊗ y + y ⊗ x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

symbols form a shuffle algebra, i.e. a vector space with a shuffle product
(also iterated integrals and multiple polylogarithms form shuffle algebras)

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f] = ⊗n
i=1Ri

then Sym[fg] =
∑

σ

⊗n
i=1Rσ(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = ⊗m
i=n+1Ri

e.g. Sym[g] = R3 ⊗R4

Sym[fg] = R1 ⊗R2 ⊗R3 ⊗R4 +R1 ⊗R3 ⊗R2 ⊗R4 +R1 ⊗R3 ⊗R4 ⊗R2

+ R3 ⊗R1 ⊗R2 ⊗R4 +R3 ⊗R1 ⊗R4 ⊗R2 +R3 ⊗R4 ⊗R1 ⊗R2

Sym[f] = R1 ⊗R2

Wednesday, September 7, 2011

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

Wednesday, September 7, 2011

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1, w(Lik(x)) = k, w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser degree

Wednesday, September 7, 2011

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1, w(Lik(x)) = k, w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

Wednesday, September 7, 2011

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1, w(Lik(x)) = k, w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

find suitable variables such that arguments of multiple polylogarithms
become rational functions

Wednesday, September 7, 2011

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1, w(Lik(x)) = k, w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

find suitable variables such that arguments of multiple polylogarithms
become rational functions

determine the symbol of the function

Wednesday, September 7, 2011

take f, g with deg(f) = deg(g) = n and Sym[f] = Sym[g]
then f-g = h with deg(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1, w(Lik(x)) = k, w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

find suitable variables such that arguments of multiple polylogarithms
become rational functions

determine the symbol of the function

through some symbol-processing procedure,
find a simpler form of the integral in terms of multiple polylogarithms

Wednesday, September 7, 2011

polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

let us prove the identity Li2(1− x) = −Li2(x)− lnx ln(1− x) +
π2

6

Wednesday, September 7, 2011

polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

let us prove the identity Li2(1− x) = −Li2(x)− lnx ln(1− x) +
π2

6

Sym[Li2(1− x)] = −x⊗ (1− x)Sym[Li2(x)] = −(1− x)⊗ xproof

Sym[lnx ln(1− x)] = x⊗ (1− x) + (1− x)⊗ x

Sym[Li2(1− x)] = Sym[−Li2(x)− lnx ln(1− x)]thus

Li2(1− x) = −Li2(x)− lnx ln(1− x) + cπ2 + iπ (c′ lnx+ c′′ ln(1− x))

which determines the function up to functions of lesser degree

Wednesday, September 7, 2011

polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

let us prove the identity Li2(1− x) = −Li2(x)− lnx ln(1− x) +
π2

6

but the equation is real for 0 < x < 1, so c’=c’’=0

at x = 1 0 = −π2

6
− 0 + cπ2 c =

1

6

Sym[Li2(1− x)] = −x⊗ (1− x)Sym[Li2(x)] = −(1− x)⊗ xproof

Sym[lnx ln(1− x)] = x⊗ (1− x) + (1− x)⊗ x

Sym[Li2(1− x)] = Sym[−Li2(x)− lnx ln(1− x)]thus

Li2(1− x) = −Li2(x)− lnx ln(1− x) + cπ2 + iπ (c′ lnx+ c′′ ln(1− x))

which determines the function up to functions of lesser degree

Wednesday, September 7, 2011

let us prove the identity Li2

(
1− 1

x

)
= −Li2(1− x)− 1

2
ln2 x

Wednesday, September 7, 2011

let us prove the identity Li2

(
1− 1

x

)
= −Li2(1− x)− 1

2
ln2 x

proof Sym[Li2(1− x)] = −x⊗ (1− x)

Sym

[
Li2

(
1− 1

x

)]
= − 1

x
⊗

(
1− 1

x

)

= x⊗ x− 1

x
= x⊗ (1− x)− x⊗ x

Sym[ln2 x] = 2x⊗ x

Wednesday, September 7, 2011

let us prove the identity Li2

(
1− 1

x

)
= −Li2(1− x)− 1

2
ln2 x

proof Sym[Li2(1− x)] = −x⊗ (1− x)

Sym

[
Li2

(
1− 1

x

)]
= − 1

x
⊗

(
1− 1

x

)

= x⊗ x− 1

x
= x⊗ (1− x)− x⊗ x

Sym[ln2 x] = 2x⊗ x

Sym

[
−Li2(1− x)− 1

2
ln2 x

]
= x⊗ (1− x)− 1

2
2x⊗ x = Sym

[
Li2

(
1− 1

x

)]
thus

which determines the function up to functions of lesser degree

Li2

(
1− 1

x

)
= −Li2(1− x)− 1

2
ln2 x+ cπ2

Wednesday, September 7, 2011

let us prove the identity Li2

(
1− 1

x

)
= −Li2(1− x)− 1

2
ln2 x

proof Sym[Li2(1− x)] = −x⊗ (1− x)

Sym

[
Li2

(
1− 1

x

)]
= − 1

x
⊗

(
1− 1

x

)

= x⊗ x− 1

x
= x⊗ (1− x)− x⊗ x

Sym[ln2 x] = 2x⊗ x

Sym

[
−Li2(1− x)− 1

2
ln2 x

]
= x⊗ (1− x)− 1

2
2x⊗ x = Sym

[
Li2

(
1− 1

x

)]
thus

which determines the function up to functions of lesser degree

Li2

(
1− 1

x

)
= −Li2(1− x)− 1

2
ln2 x+ cπ2

at x = 1 0 = −0− 0 + cπ2 c = 0

Wednesday, September 7, 2011

multiple polylogarithms can also be defined through nested harmonic sums

Lim1,...,mk(u1, . . . , uk) =
∞∑

nk=1

unk
k

nmk
k

nk−1∑

nk−1=1

. . .
n2−1∑

n1=1

un1
1

nm1
1

= (−1)kGmk,...,m1

(
1

uk
, . . . ,

1

u1 · · ·uk

)

Gm1,...,mk(u1, . . . , uk) = G



0, . . . , 0︸ ︷︷ ︸
m1−1

, u1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, uk; 1





Wednesday, September 7, 2011

multiple polylogarithms can also be defined through nested harmonic sums

Lim1,...,mk(u1, . . . , uk) =
∞∑

nk=1

unk
k

nmk
k

nk−1∑

nk−1=1

. . .
n2−1∑

n1=1

un1
1

nm1
1

= (−1)kGmk,...,m1

(
1

uk
, . . . ,

1

u1 · · ·uk

)

Gm1,...,mk(u1, . . . , uk) = G



0, . . . , 0︸ ︷︷ ︸
m1−1

, u1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, uk; 1





special values as polylogarithms and Nielsen logarithms

G(!0n;x) =
1

n!
lnn x G(!an;x) =

1

n!
lnn

(
1− x

a

)

G(!0n−1, a;x) = −Lin
(x
a

)
G(!0n,!am;x) = (−1)m Sn,m

(x
a

)
Sn−1,1(x) = Lin(x)

Wednesday, September 7, 2011

multiple polylogarithms can also be defined through nested harmonic sums

Lim1,...,mk(u1, . . . , uk) =
∞∑

nk=1

unk
k

nmk
k

nk−1∑

nk−1=1

. . .
n2−1∑

n1=1

un1
1

nm1
1

= (−1)kGmk,...,m1

(
1

uk
, . . . ,

1

u1 · · ·uk

)

Gm1,...,mk(u1, . . . , uk) = G



0, . . . , 0︸ ︷︷ ︸
m1−1

, u1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, uk; 1





special values as polylogarithms and Nielsen logarithms

G(!0n;x) =
1

n!
lnn x G(!an;x) =

1

n!
lnn

(
1− x

a

)

G(!0n−1, a;x) = −Lin
(x
a

)
G(!0n,!am;x) = (−1)m Sn,m

(x
a

)
Sn−1,1(x) = Lin(x)

when the root equals 1, multiple polylogarithms become harmonic polylogarithms (HPLs)

H(a, !w; z) =

∫ z

0
dt f(a; t)H(!w; t)

Lin(x) = H(!0n−1, 1;x)

HPLs are defined through iterated integrals

f(−1; t) =
1

1 + t
, f(0; t) =

1

t
, f(1; t) =

1

1− t

{a, !w} ∈ {−1, 0, 1}with

Sn,m(x) = H(!0n,!1m;x)

Wednesday, September 7, 2011

... on to symbols

n times

Sym

[
1

n!
lnn x

]
= x⊗ · · ·⊗ x︸ ︷︷ ︸ ≡ x⊗n

Sym[Lin(x)] = −(1− x)⊗ x⊗(n−1)

Sym[Sn,m(x)] = (−1)m(1− x)⊗m ⊗ x⊗n

Sym[H(a1, . . . , an;x)] = (−1)k(an − x)⊗ · · ·⊗ (a1 − x) {ai} ∈{ 0, 1}

k is the number of a’s equal to 1

Sym[lnx] = x

Wednesday, September 7, 2011

using symbols, one can reduce the HPLs to a minimal set Buehler Duhr 11

B(1)
1 (x) = lnx , B(2)

1 (x) = ln(1− x) , B(3)
1 (x) = ln(1 + x)weight 1:

weight 2: B(1)
2 (x) = Li2(x) , B(2)

2 (x) = Li2(−x) , B(3)
2 (x) = Li2

(
1− x

2

)

weight 3:

weight 4:

polylogarithms of type Li3 of various arguments

polylogarithms of type Li4 of various arguments,
plus a few polylogarithms of type Li2,2, like Li2,2(-1, x) etc.
Alternatively, the polylogarithms of type Li2,2 can be replaced
by the HPLs: H(0,1,0,-1; x) and H(0,1,1,-1; x)

if needed numerically, any combination of HPLs up to weight 4
can be evaluated in terms of a minimal set of numerical routines

Wednesday, September 7, 2011

using symbols, one can reduce the HPLs to a minimal set Buehler Duhr 11

B(1)
1 (x) = lnx , B(2)

1 (x) = ln(1− x) , B(3)
1 (x) = ln(1 + x)weight 1:

weight 2: B(1)
2 (x) = Li2(x) , B(2)

2 (x) = Li2(−x) , B(3)
2 (x) = Li2

(
1− x

2

)

weight 3:

weight 4:

polylogarithms of type Li3 of various arguments

polylogarithms of type Li4 of various arguments,
plus a few polylogarithms of type Li2,2, like Li2,2(-1, x) etc.
Alternatively, the polylogarithms of type Li2,2 can be replaced
by the HPLs: H(0,1,0,-1; x) and H(0,1,1,-1; x)

if needed numerically, any combination of HPLs up to weight 4
can be evaluated in terms of a minimal set of numerical routines

These features generalise to multiple polylogarithms

weight 1: one needs functions of type ln x

weight 2:
Li3(x)

Li2(x)

weight 3:

weight 4: Li4(x), Li2,2(x,y)
weight 5: Li5(x), Li2,3(x,y)
weight 6: Li6(x), Li2,4(x,y), Li3,3(x,y), Li2,2,2(x,y)

Duhr Gangl Rhodes (in progress)

Wednesday, September 7, 2011

symbol

integral

function

simpler function

2-loop 6-edged Wilson loop

Wednesday, September 7, 2011

symbol

integral

function

simpler function

2-loop 6-edged Wilson loop

integral

symbol

(simpler) function

Drummond Henn Trnka 10

Caron-Huot 11

differential equations

discontinuities

algorithm
Duhr Gangl Rhodes (in progress)

ideally

Wednesday, September 7, 2011

