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Q@ let us consider |-loop n-point Feynman integrals

example: |-loop n-point scalar Feynman integral
without internal or external masses

S

2 (k@) x [ Lo 11 o

1=1

2

m—1
Dy =k +i0, Dp=|k+ > kj| +i0, m=2..,n
j=1

kjare external momenta, Qi are Mandelstam invariants
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Q@ let us consider |-loop n-point Feynman integrals

example: |-loop n-point scalar Feynman integral
without internal or external masses

S

2 (k@) x [ Lo 11 o

1=1

2
m—1
Dy = k% + 140, Dm(k+2kj) +i0, m=2,....n
j=1

kjare external momenta, Qi are Mandelstam invariants

Q@ suppose that we can compute analytically the Feynman integral,
which is given as a combination of multiple polylogarithms

G(a,w; z) = / dt G(w;t), G(a;z) =In (1 — E) Goncharov 98
0

t—a a
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@ suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a simpler” analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved
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@ suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a simpler” analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved

@ how feasible is it to ~simplify” the result, i.e. to re-write it
in terms of either simpler functions or a simpler combination
of multiple polylogarithms ?
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functional relations which relate multiple polylogarithms
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@ suppose that the result is quite involved, which is the analytic
outcome of the Feynman integral, but that we are interested in
a simpler” analytic result, e.g. because either we want to
study the underlying theory, or we just need a numeric result,
but we hope to use simpler numeric routines of the functions
involved

@ how feasible is it to ~simplify” the result, i.e. to re-write it
in terms of either simpler functions or a simpler combination
of multiple polylogarithms ?

Q@ suppose that the only tool we have is some (complicated)
functional relations which relate multiple polylogarithms

@ using those functional relations, it may become a frustating and
unyielding exercise to simplify the result
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an example:

@ we computed analytically the finite part of the Duhr Smirnov VDD 09
2-loop 6-point amplitude in N=4 Super Yang-Mills
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an example:

@ we computed analytically the finite part of the Duhr Smirnov VDD 09

2-loop 6-point amplitude in N=4 Super Yang-Mills

@ the result is relevant to understand the weak-coupling structure
of scattering amplitudes in N=4 SYM
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an example:

@ we computed analytically the finite part of the Duhr Smirnov VDD 09
2-loop 6-point amplitude in N=4 Super Yang-Mills

@ the result is relevant to understand the weak-coupling structure
of scattering amplitudes in N=4 SYM

@ the result was given in terms of O(103) multiple polylogarithms G(u, uy, u3)
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an example:

Q@

we computed analytically the finite part of the Duhr SmirnovVDD 09
2-loop 6-point amplitude in N=4 Super Yang-Mills

the result is relevant to understand the weak-coupling structure
of scattering amplitudes in N=4 SYM

the result was given in terms of O(103%) multiple polylogarithms G(ui, uz, u3)

it turned out to be unfeasible to " simplify” the result through
functional relations which related the multiple polylogarithms

Wednesday, September 7, 2011



N=4 Super Yang-Mills

@ maximal supersymmetric theory (without gravity)
conformally invariant, § fn.= 0

5 spin | gluon
- Sp g

4 spin 1/2 gluinos
6 spin O real scalars
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N=4 Super Yang-Mills

@ maximal supersymmetric theory (without gravity)
conformally invariant, § fn.= 0
. spin | gluon

4 spin 1/2 gluinos
6 spin O real scalars

LFT, o
-

Q@ ‘t Hooft limit: Nc =00 with A = g’N. fixed

¢ only planar diagrams
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N=4 Super Yang-Mills

@ maximal supersymmetric theory (without gravity)
conformally invariant, § fn.= 0
. spin | gluon

4 spin 1/2 gluinos
6 spin O real scalars

b
-

Q@ ‘t Hooft limit: Nc =00 with A = g’N. fixed

¢ only planar diagrams

Q@ AdS/CFT duality Maldacena 97

¢ large-A limit of 4dim CFT < weakly-coupled string theory

(aka weak-strong duality)
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MHYV amplitudes in planar N=4 SYM

@ atany order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient ML) — pp0),,(L)
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MHYV amplitudes in planar N=4 SYM

@ atany order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient ML) — pp0),,(L)

@ atl loop

mng):ZF2me(p7QJP7Q) 'HZG
pq
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MHYV amplitudes in planar N=4 SYM

@ atany order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient ML) — pp0),,(L)

@ atl loop
mng):ZF2me(p7Q7P7Q) n >06
bq

@ at 2 loops, iteration formula for the n-pt amplitude

1 2
mP(e) = 3 [mg)(e)} + @ (e)mD (2€) + Const® + R

Anastasiou Bern Dixon Kosower 03
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MHYV amplitudes in planar N=4 SYM

@ atany order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient ML) — pp0),,(L)

@ atl loop

mng):ZF2me(p7QJP7Q) 'HZG

@ at 2 loops, iteration formula for the n-pt amplitude

1 2
mP(e) = 3 [mg)(e)} + @ (e)mD (2€) + Const® + R

Anastasiou Bern Dixon Kosower 03

Q@ atall loops, ansatz for a resummed exponent

m{P) = exp Z (f(l) ym\P (le) + ConstV) + E,r(Ll)(G)) + R

Bern Dixon Smirnov 05
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MHYV amplitudes in planar N=4 SYM

@ atany order in the coupling, a colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
helicity-free loop coefficient ML) — pp0),,(L)

@ atl loop

m{) =" F*™(p,q, P,Q)

pPq

n>06

@ at 2 loops, iteration formula for the n-pt amplitude

1

mv(zz) (€) = 9

remainder

/ function

[m%ﬂ(e)} 2 € f(2)(€) mq(ll)(Qe) 1 Const? @

Anastasiou Bern Dixolf Kosower 03

Q@ atall loops, ansatz for a resummed exponent

m) — exp

Z ((l)

ym (le) + Const® + BV (e))

@

Bern Dixon Smirnov 05
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@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'IOOP 5'Pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
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@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'IOOP 5'Pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q@ the ansatz fails on 2-|OOP 6-Pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08
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@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'IOOP 5'Pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q@ the ansatz fails on 2-|OOP 6-Pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q@ at 2 loops, the remainder function characterises the deviation from the ansatz
1

R® — m®(e) —
n n 2

{7717(11)(6)}2 B f(2)(€) mg)(%) ~ Const®

Ré2) known analytically Duhr Smirnov VDD 09
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@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'IOOP 5'Pt amPIitUCIe Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q@ the ansatz fails on 2-|OOP 6-Pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Q@ at 2 loops, the remaind

R — ;@ (e) — =
n n 2

Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

er function characterises the deviation from the ansatz

- 2
mgﬂ(e)} — @ () mD (2¢) — Const®

Ré2) known analytically Duhr Smirnov VDD 09

¢ forn=4,5 Risa constant
forn = 6, R is an unknown function of conformally invariant cross ratios
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@ the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude

Bern Dixon Smirnov 05

Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q@ the ansatz fails on 2-|OOP 6-Pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q@ at 2 loops, the remainder function characterises the deviation from the ansatz

1

- 2
R® = m®(e) — = mgﬂ(e)} — @ () mM (2¢) — Const®

2 L

RéQ) known analytically

Y forn=4,5 Risaconstant

Duhr SmirnovVDD 09

forn = 6, R is an unknown function of conformally invariant cross ratios

¢ for n = 6, the conformally invariant cross ratios are

2 9 2 9 2 9

_ L13T%4¢ Loy dys _ d35T9¢
U1 = Uo = Us

x2 12 x2. 12 x2 12

14X 36 254714 36425

x; are variables in a dual space s.t. p; = z; — 211

thus xZJ{;—'—T — (pk + ... +pk—|—7“—1)2
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2-loop 6-point remainder function R
Duhr Smirnov VDD 09

@ the remainder function R¢? is explicitly dependent
on the cross ratios uj, uz, U3z
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2-loop 6-point remainder function R
Duhr Smirnov VDD 09

@ the remainder function R¢? is explicitly dependent
on the cross ratios uj, uz, U3z

@ it is of uniform transcendental weight 4

transcendental weights: w(ln x) = w(TT) = | w(Li2(x)) = w(TT?) = 2
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2-loop 6-point remainder function R
Duhr Smirnov VDD 09

@ the remainder function R¢? is explicitly dependent
on the cross ratios uj, uz, U3z

@ it is of uniform transcendental weight 4

transcendental weights: w(ln x) = w(TT) = | w(Li2(x)) = w(TT?) = 2

@ it is in agreement with the numeric calculation by

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
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2-loop 6-point remainder function R
Duhr Smirnov VDD 09

@ the remainder function R¢? is explicitly dependent
on the cross ratios uj, uz, U3z

@ it is of uniform transcendental weight 4
transcendental weights: w(ln x) = w(TT) = | w(Li2(x)) = w(TT?) = 2

@ it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

T straightforward computation
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2-loop 6-point remainder function R
Duhr Smirnov VDD 09

@ the remainder function R¢? is explicitly dependent
on the cross ratios uj, uz, U3z

@ it is of uniform transcendental weight 4
transcendental weights: w(ln x) = w(TT) = | w(Li2(x)) = w(TT?) = 2

@ it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

T straightforward computation

l finite answer, but in intermediate steps many divergences
output is punishingly long: O(10%) multiple polylogarithms G(uy, uz, u3)
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Q@ yet, our result was given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10

3
1_.
Bhu(uuaun) = Y- (LaGofo7) = GLia(1 = 1)

4 2 4

=1

1 5 ’ J T T
Lis(1 — 1/uy) 4 JP 4 —

8(2 io( /u>+24+ J+72

=1

.
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Q@ yet, our result was given in terms of polylogarithms

Goncharov Spradlin Vergu Volovich 10
3

_ 1_.
Ré?‘)/[/L(uhuQ?ui%) — ; <L4( Ly 5Ly ) o §L14(1 o 1/’&@))
2 e]4 2 4
7T
Lis(1 —1/u; +—+—J2 —
where (Z Lo fui) ) + 72
x;—L:uixi xiZU1+UQ—|—U3—1:I:\/Z A:(ul—l—ug—l—u3—1)2—4u1u2u3
QU1UQU3
) 1 m 1
Z log )" (g (7)) + Lam(x7)) + Q11 log (™ )4
0
1 3
ln(x) = 5 (Lin(x) = (=1)"Lin(1/2)) J =Y (ti(xf) = ba(x)))
1=1
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Q@ yet, our result was given in terms of polylogarithms

Goncharov Spradlin Vergu Volovich 10
3

1.
Ré?Y)A/L(ulvu%uS) — Z <L4( Ly s z_) - §L14(1 — 1/“%))

1=1
2 e]4 2 4
v
Lip(1 — 1/u, +—+—J2+—
where (Z 1o [ui) ) 72
x;'::uzx:t xi:ul_l_uQ—l_uB_l:l:\/Z A:(u1+u2+u3_1)2_4u1u2u3
2u1u2U3
) 1 m ]
Z log )m(€4—m(x+) —|—€4_m(f§_)) 8” 1Og( )4
0
1 3
£u(@) = 5 (Lin(z) - (~1)"Lia(1/2)) J=> (L(z) = la(x)))

1=1

l not a new, independent, computation
just 2 manipulation of our result
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Q@ yet, our result was given in terms of polylogarithms

Goncharov Spradlin Vergu Volovich 10
3

_ 1_.
Ré?X)/VL(ulvu%uS) — ; <L4(x:_7$i ) - §L14(1 _ 1/“%))
1 2 J4 2 4
Lis(1 — 1/u; - —J2 i
where 8 (Z Ip( fu ) + + + 72
x?::uixi xi:fLL1+uz+U3—1:|:\/Z A:(u1+u2+u3—1)2—4u1u2u3
2u1UQU3
) 1 m 1
Z log )" (g (7)) + Lam(x7)) + @10?5( AF
O
1 3
ln(x) = 5 (Lin(x) = (=1)"Lin(1/2)) J =Y (ti(xf) = ba(x)))

1=1

l not a new, independent, computation
just 2 manipulation of our result

T answer is short and simple
introduces symbols in TH physics

Wednesday, September 7, 2011



Symbols

@ Fn.F of deg(F) = n: fn.with log cuts, s.t. Disc = 2TTi % f, with deg(f) = n-|
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Symbols

@ Fn.F of deg(F) = n: fn.with log cuts, s.t. Disc = 2TTi % f, with deg(f) = n-|

Q@ deg(const) =0 => deg(1T) =0
In x : cut along [-00, 0] with Disc = 211i => deg(In x) = |
Li2(x) : cut along [|,00] with Disc = -2TTi In x => deg(Li2(x)) = 2

Wednesday, September 7, 2011



Symbols

@ Fn.F of deg(F) = n: fn.with log cuts, s.t. Disc = 2TTi % f, with deg(f) = n-|

Q@ deg(const) =0 => deg(1T) =0
In x : cut along [-00, 0] with Disc = 211i => deg(In x) = |
Li2(x) : cut along [|,00] with Disc = -2TTi In x => deg(Li2(x)) = 2

Q@ take a fn. defined as an iterated integral of logs of rational functions R;

b b /
Tk:/ dlano---Odlan:/ (/ dlano---Odlan_1>dlan(t)
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Symbols

@ Fn.F of deg(F) = n: fn.with log cuts, s.t. Disc = 2TTi % f, with deg(f) = n-|

Q@ deg(const) =0 => deg(1T) =0
In x : cut along [-00, 0] with Disc = 211i => deg(In x) = |
Li2(x) : cut along [|,00] with Disc = -2TTi In x => deg(Li2(x)) = 2

Q@ take a fn. defined as an iterated integral of logs of rational functions R;

b b /
Tk:/ dlano---Odlan:/ (/ dlano---Odlan_1>dlan(t)

Q@ the symbol Sym[T}]=R;,®---® Ry Zagier, Goncharov
is defined on the tensor product of the group of rational functions, modulo constants

e QRR® = QR+ QR ®
"'®(CR1)®“':“'®R1®‘”
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Symbols

@ Fn.F of deg(F) = n: fn.with log cuts, s.t. Disc = 2TTi % f, with deg(f) = n-|

Q@ deg(const) =0 => deg(1T) =0
In x : cut along [-00, 0] with Disc = 211i => deg(In x) = |
Li2(x) : cut along [|,00] with Disc = -2TTi In x => deg(Li2(x)) = 2

Q@ take a fn. defined as an iterated integral of logs of rational functions R;

b b /
Tk:/ dlano---Odlan:/ (/ dlano---Odlan_1>dlan(t)

Q@ the symbol Sym[T}]=R;,®---® Ry Zagier, Goncharov
is defined on the tensor product of the group of rational functions, modulo constants

e QRR® = QR+ QR ®
"'®(CR1)®“':“'®R1®‘”

Lll(Z) — —ln(l—z) le(Z) :/OzdlntLikl(t) Sym[le(z)] — —(1—2)@\2@@%

N

k-1 times
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2TTi In x  along the y cut [-00, 0]

Q Disc(In x In y) = {
2TTilny  along the x cut [-00, 0]

Sym|lnz Iny|=zy+y®x
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2TTi In x  along the y cut [-00, 0]
Q Disc(In x In y) = {
2TTilny  along the x cut [-00, 0]
Sym|lnz Iny|=zy+y®x
Q in general, if Disc(f g) = Disc(f) g + f Disc(g)
and  Sym[f] = ®]_ R Symlg] = @i, 1 R,
then Sym(fgl = @ R,

where O denotes the set of all shuffles of n+(m-n) elements
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2TTi In x  along the y cut [-00, 0]
Q Disc(In x In y) = {
2TTilny  along the x cut [-00, 0]

Sym[lnz Iny]l =z @y +y @z
Q in general, if Disc(f g) = Disc(f) g + f Disc(g)
and  Sym|[f] = @_, R; Sym[g] = ®;L,, 1 R
then Sym|[fg] =) & Ry
where O denotesathe set of all shuffles of n+(m-n) elements

€8 Sym|f] = R1 ® Ry Sym[g| = R3 ® R4

Sym[fg] = RIQRQR3sXR1+ R QR3Q Ry @Ry + R ® R3 ® Ra ® Ro
+ R3QRI QR QR+ R3QR QR4 Q@ Ro+ R3®@ Ry @ By @ Ro
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2TTi In x  along the y cut [-00, 0]
Q Disc(In x In y) = {
2TTilny  along the x cut [-00, 0]

Sym[lnx Inyl| =2y +yRx
Q in general, if Disc(f g) = Disc(f) g + f Disc(g)
and  Sym|[f] = @], R, Sym[g| = ®;%, 1 R

then Sym|fg] = Z ®?:1Ra(i)
where O denotes the set of all shuffles of n+(m-n) elements

eg  Symlfl=R @R, Symlg = Ry @ Ry
Sym[fg] = RIQRQR3sXR1+ R QR3Q Ry @Ry + R ® R3 ® Ra ® Ro
4+ R3QRI Ry, QR4+ R3Q®RR1 Q@ Ry ® Ro + R3 ® Ry @ R1 ® Ro

symbols form a shuffle algebra, ie.a vector space with a shuffle product
Y g P P
(also iterated integrals and multiple polylogarithms form shuffle algebras)
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2TTi In x  along the y cut [-00, 0]
Q Disc(In x In y) = {
2TTilny  along the x cut [-00, 0]

Sym[lnx Inyl| =2y +yRx
Q in general, if Disc(f g) = Disc(f) g + f Disc(g)
and  Sym|[f] = @], R, Sym[g| = ®;%, 1 R

then Sym|fg] = Z ®?:1R0(7j)
where O denotes the set of all shuffles of n+(m-n) elements

eg  Symlfl=R @R, Symlg = Ry @ Ry
Sym[fg] = RIQRQR3sXR1+ R QR3Q Ry @Ry + R ® R3 ® Ra ® Ro
4+ R3QRI Ry, QR4+ R3Q®RR1 Q@ Ry ® Ro + R3 ® Ry @ R1 ® Ro

Q symbols form a shuffle algebra, i.e. a vector space with a shuffle product
(also iterated integrals and multiple polylogarithms form shuffle algebras)

Q@ polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

Wednesday, September 7, 2011



Q@ take f, g with deg(f) = deg(g) = n and Sym[f] = Sym|g]
then f-g = h with deg(h) = n -
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol
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Q@ take f, g with deg(f) = deg(g) = n and Sym[f] = Sym|g]
then f-g = h with deg(h) = n -
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

@ in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1|, w(Lik(x)) =k, w(1T) = |
=—> symbols fix polynomials up to factors of TT times functions of lesser degree
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@ in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1|, w(Lik(x)) =k, w(1T) = |
=—> symbols fix polynomials up to factors of TT times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:
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Q@ take f, g with deg(f) = deg(g) = n and Sym[f] = Sym|g]
then f-g = h with deg(h) = n -
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

@ in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1|, w(Lik(x)) =k, w(1T) = |
=—> symbols fix polynomials up to factors of TT times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

@ find suitable variables such that arguments of multiple polylogarithms
become rational functions
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Q@ take f, g with deg(f) = deg(g) = n and Sym[f] = Sym|g]
then f-g = h with deg(h) = n -
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

@ in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1|, w(Lik(x)) =k, w(1T) = |
=—> symbols fix polynomials up to factors of TT times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

@ find suitable variables such that arguments of multiple polylogarithms
become rational functions

Q@ determine the symbol of the function
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Q@ take f, g with deg(f) = deg(g) = n and Sym[f] = Sym|g]
then f-g = h with deg(h) = n -
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

Q@ in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1|, w(Lik(x)) =k, w(1T) = |
=—> symbols fix polynomials up to factors of TT times functions of lesser degree

Thus, we have a procedure to simplify a generic function of polylogarithms:

@ find suitable variables such that arguments of multiple polylogarithms
become rational functions

@ determine the symbol of the function

Q@ through some symbol-processing procedure,
find a simpler form of the integral in terms of multiple polylogarithms
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polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

2

let us prove the identity Lig(1 — 2) = —Lis(z) —lnzIn(l — x) + %
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polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

2
let us prove the identity Lig(1 — 2) = —Lis(z) —lnzIn(l — x) + %
proof Sym|[Lis(z)] = —(1—2)® Sym|[Lis(1 —z)] = -2 ® (1 — x)

Sym[lnzln(l —z)| =z (1—2)+ (1 —2) Rz
thus Sym|Liz(1 — 2)] = Sym|—Lis(x) — InzIn(1 — x)]

which determines the function up to functions of lesser degree

Lis(1 — ) = —Lis(z) —Inzln(l —2) + cn® +ir (' Inx + ¢’ In(1 — 2))
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polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

2

let us prove the identity Lig(1 — 2) = —Lis(z) —lnzIn(l — x) + %

proof  Sym[Lix(z)] =—(1-2z)®ux Sym|Liz(1 — )] = —2 ® (1 — )
Symnzln(l —z)|=z2(1—-2)+(1—2)®«x

thus Sym|Liz(1 — 2)] = Sym|—Lis(x) — InzIn(1 — x)]

which determines the function up to functions of lesser degree

Lis(1 — ) = —Lis(z) —Inzln(l —2) + cn® +ir (' Inx + ¢’ In(1 — 2))

but the equation is real for 0 < x < |,so c’=c”’=0

7

2 1
a.tX=| O:—F—O—i—ch » Czé
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let us prove the identity

Lis
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X

. . 1
let us prove the identity Lis <1 — _) — —Liy(1 —2) — 5

proof  Sym|Lix(1 —z)] = -z ® (1 —-x)

i3]+ 1-2)

Sym[lnz] =2z ®

Wednesday, September 7, 2011



: : 1 1
let us prove the identity Li, <1 = —) = —Lis(1 — x) — 5 In® 2
X

proof  Sym|Lix(1 —z)] = -z ® (1 —-x)

i3]+ 1-2)

Sym[ln®z] =2z ® z

1

1 1
thus Sym [—Liz(l —z) — §ln2x] =r®(1-2) - 52z =Sym [Liz (1 _ _)]
X

which determines the function up to functions of lesser degree

1 1
Lis (1 — —) = —Liy(1 — ) — §1n2:v +cm?
x
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: : 1 1
let us prove the identity Li, <1 = —) = —Lis(1 — x) — 5 In® 2
X

proof  Sym|Lix(1 —z)] = -z ® (1 —-x)

i3]+ 1-2)

Sym[ln®z] =2z ® z

1

1 1
thus Sym [—Liz(l —z) — §ln2x] =r®(1-2) - 52z =Sym [Liz (1 _ _)]
X

which determines the function up to functions of lesser degree

1 1
Lis (1 — —) = —Liy(1 — ) — §1n2:v +cm?
x

at x = | 0=-0—0+cn? —> c=20
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Q@ multiple polylogarithms can also be defined through nested harmonic sums

ne—1 ngl

lel,...,mk (ula SR ,Uk)
nkzl ne_1=1 n1= 1

1 1
-G, oo —
( ) kyeeeylitl (uk u1 . ’Uk)
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Q@ multiple polylogarithms can also be defined through nested harmonic sums

ne—1 no—1
Liml,...,mk (ul, “e ,uk) =
nkzl nNe— 1—1 ni— 1
1 1
k
— (_1) Gmk ..... m1 (_7
Uk Ui Uk
Goyoooomy, (U1, yur) =G 10,000, 0,u1,...,0,...,0,ug; 1
~—— ——

m1—1 mk—l

Q@ special values as polylogarithms and Nielsen logarithms

~ 1 n - B 1 X
G(0,; ) = o In" x G(tp;x) = ] In" (1 — 5)

I~ . X I~ — m X .
G(0,_1,a;z) = — Li, (g) G0y, Gm;z) = (—1)" Spom (5) Sn—11(x) = Liy(x)
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Q@ multiple polylogarithms can also be defined through nested harmonic sums

ne—1 no—1
Liml,...,mk(u17°"7uk)
nkzl nNe— 1_1 ni— 1
1 1
k
= (=1)"Gmyecoms | —
Uf uy Ug
Goyoooomy, (U1, yur) =G 10,000, 0,u1,...,0,...,0,ug; 1
~—— ——

m1—1 mk—l

Q@ special values as polylogarithms and Nielsen logarithms

~ 1 n - B 1 X
G(0p;x) = ﬁ In" x G(An;x) = o In" (1 - a)

— . ZT — - _(_1\m z o .
G0 1, a:7) = — Li, (5) G (O, @i ) = (—1)™ Spm (a) Sp_11(x) = Lin(2)

Q@  when the root equals |, multiple polylogarithms become harmonic polylogarithms (HPLs)
Li,(z) = H(0p_1,1; ) Spom () = H(0p, 1pn; )
HPLs are defined through iterated integrals
Hia,@:2) = [ dtf(at) H(io L= fO =1, f(li) =

with {CL,U?} S {_17071}
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...on to symbols

1
Sym|lnz| = x Sym [—' In" x
n!

~

n times
Sym|[Li, (z)] = —(1 — z) ® &~

Sym[Sh,m(z)] = (1) (1 — 2)®" @ 2"

Sym[H (a1, ...,an;z)] = (=1)*(an —2) @ ® (a1 — )

k is the number of d’s equal to |

laiy €1 0,1}
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@ using symbols, one can reduce the HPLs to a minimal set Buehler Duhr ||

weight |: B%l)(a:) =Inzx, B§2)(x) = In(1 —x), B§3)(x) = In(1 + z)

1 —
weight 2: By (¢) =Lis(z),  By”(x) =Lis(~z), By’ (x)=Li ( 2 w)

weight 3:  polylogarithms of type Li3 of various arguments

weight 4:  polylogarithms of type Li4 of various arguments,
plus a few polylogarithms of type Liy2, like Lip2(-1, x) etc.
Alternatively, the polylogarithms of type Liz> can be replaced
by the HPLs: H(0,1,0,-1; x) and H(O,1,1,-1; x)

if needed numerically, any combination of HPLs up to weight 4
can be evaluated in terms of a minimal set of humerical routines
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@ using symbols, one can reduce the HPLs to a minimal set Buehler Duhr ||

weight |: B%l)(a:) =Inzx, B§2)(x) = In(1 —x), B§3)(x) = In(1 + z)

1 —
weight 2: By (¢) =Lis(z),  By”(x) =Lis(~z), By’ (x)=Li ( 2 w)

weight 3:  polylogarithms of type Li3 of various arguments

weight 4:  polylogarithms of type Li4 of various arguments,
plus a few polylogarithms of type Liy2, like Lip2(-1, x) etc.
Alternatively, the polylogarithms of type Liz> can be replaced
by the HPLs: H(0,1,0,-1; x) and H(O,1,1,-1; x)

if needed numerically, any combination of HPLs up to weight 4
can be evaluated in terms of a minimal set of humerical routines

Q@ These features generalise to multiple polylogarithms  Duhr Gangl Rhodes (in progress)

weight |: one needs functions of type In x

weight 2: Li2(x)

weight 3: Liz(x)

weight 4: Li4(x), Li22(x,y)

weight 5: Lis(x), Li2,3(x,y)

weight 6: Lie(x), Li2,4(x,y), Liz3(x,y), Li2,2.2(x,y)
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2-loop 6-edged Wilson loop
integral

function

symbol

simpler function
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2-loop 6-edged Wilson loop
integral

function

symbol

simpler function

ideally
integral
differential equations
Drummond Henn Trnka 10
discontinuities
Caron-Huot | |
symbol

algorithm
Duhr Gangl Rhodes (in progress)

(simpler) function
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