Progress on NNLO subtraction

Vittorio Del Duca INFN Torino

RADCOR 3 October 2005

NLO features

- Jet structure: final-state collinear radiation
- PDF evolution: initial-state collinear radiation
- Opening of new channels
- Θ Reduced sensitivity to fictitious input scales: μ_R , μ_F
 - predictive normalisation of observables
 - first step toward precision measurements
 - accurate estimate of signal and background for Higgs and new physics
- Matching with parton-shower MC's: MC@NLO

Jet structure

the jet non-trivial structure shows up first to NLO

NNLO corrections may be relevant if

- the main source of uncertainty in extracting info from data is due to NLO theory: α_S measurements
- NLO corrections are large:
 Higgs production from gluon fusion in hadron collisions
- NLO uncertainty bands are too large to test theory vs. data: b production in hadron collisions
- NLO is effectively leading order: energy distributions in jet cones

in short, NNLO is relevant where NLO fails to do its job

Summary of $\alpha_S(M_Z)$

S. Bethke hep-ex/0407021

world average of $\alpha_S(M_Z)$ using $\overline{\rm MS}$ and NNLO results only $\alpha_S(M_Z) = 0.1182 \pm 0.0027$ (cf. 2002 $\alpha_S(M_Z) = 0.1183 \pm 0.0027$ outcome almost identical because new entries wrt 2002 - LEP jet shape observables and 4-jet rate, and HERA jet rates and shape variables - are NLO)

filled symbols are NNLO results

Is NLO enough to describe data ?

b cross section in $p\bar{p}$ collisions at 1.96 TeV

NLO + NLL

good agreement with data (with use of updated FF's by Cacciari & Nason)

The CDF value in the inset was preliminary. The published value is (CDF hep-ex/0412071)

 $19.4 \pm 0.3(stat)^{+2.1}_{-1.9}(syst)$ nb

Cacciari, Frixione, Mangano, Nason, Ridolfi 2003

Is NLO enough to describe data ?

di-lepton rapidity distribution for (Z, γ^*) production vs. Tevatron Run I data

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003

Is NLO enough to describe data ? Drell-Yan W cross section at LHC with leptonic decay of the W							
	Cuts A $\longrightarrow \left \eta^{(e)}\right < 2.5, \ p_{_T}^{(e)} > 20 \ {\rm GeV}, \ p_{_T}^{(\nu)} > 20 \ {\rm GeV}$						
	Cuts B $\longrightarrow \left \eta^{(e)}\right < 2.5, \ p_{_T}^{(e)} > 40 \text{ GeV}, \ p_{_T}^{(\nu)} > 20 \text{ GeV}$						
		LO		LO+HW	NLO	MC@NLO	
	Cuts A	0.5249	<u>−7.7</u> %	0.4843	0.4771	+ <u>1.5</u> % 0.4845	
		↓5.4%			↓7.0%	↓6.3%	
	Cuts A, no spin	0.5535			0.5104	0.5151	
	Cuts B	0.0585	+ <u>208</u> %	0.1218	0.1292	+2.9% 0.1329	
		↓29%			↓16%	↓18%	
	Cuts B, no spin	0.0752			0.1504	0.1570	

 $|MC@NLO - NLO| = \mathcal{O}(2\%)$

S. Frixione M.L. Mangano 2004

NNLO useless without spin correlations

Precisely evaluated Drell-Yan W, Z cross sections could be used as ``standard candles'' to measure the parton luminosity at LHC

Is NLO enough to describe data ?

Total cross section for inclusive Higgs production at LHC

NNLO prediction stabilises the perturbative series

NNLO state of the art

- **Q** Drell-Yan W, Z production
 - total cross section Hamberg, van Neerven, Matsuura 1990 Harlander, Kilgore 2002
 - Providity distribution Anastasiou et al. 2003
- Higgs production
 - total cross section Harlander, Kilgore; Anastasiou, Melnikov 2002
 - fully differential cross section

Anastasiou, Melnikov, Petriello 2004

 $\Theta e^+e^- \rightarrow 3$ jets

the $1/N_c^2$ terms

the Gehrmanns, Glover 2004-5

NNLO Drell-Yan Z production at LHC

30%(15%) NLO increase wrt to LO at central Y's (at large Y's) NNLO decreases NLO by 1-2%

scale variation: $\approx 30\%$ at LO; $\approx 6\%$ at NLO; less than 1% at NNLO

C.Anastasiou L. Dixon K. Melnikov F. Petriello 2003

Scale variations in Drell-Yan Z production

C. Anastasiou L. Dixon K. Melnikov F. Petriello 2003

Higgs production at LHC

a fully differential cross section: bin-integrated rapidity distribution, with a jet veto

 $M_H = 150 \text{ GeV}$ (jet veto relevant in the $H \to W^+ W^-$ decay channel)

K factor is much smaller for the vetoed x-sect than for the inclusive one: average $|\mathbf{p}_T^j|$ increases from NLO to NNLO: less x-sect passes the veto

NLO assembly kit

NLO production rates

Process-independent procedure devised in the 90's

slicing

Giele Glover & Kosower

subtraction Frixione Kunszt & Signer; Nagy & Trocsanyi

- Gipole Catani & Seymour
- 🥥 antenna

Kosower; Campbell Cullen & Glover

$$\sigma = \sigma^{\text{LO}} + \sigma^{\text{NLO}} = \int_{m} d\sigma_{m}^{B} J_{m} + \sigma^{\text{NLO}}$$
$$\sigma^{\text{NLO}} = \int_{m+1} d\sigma_{m+1}^{R} J_{m+1} + \int_{m} d\sigma_{m}^{V} J_{m}$$

the 2 terms on the rhs are divergent in d=4

use universal IR structure to subtract divergences

$$\sigma^{\text{NLO}} = \int_{m+1} \left[d\sigma_{m+1}^{\text{R}} J_{m+1} - d\sigma_{m+1}^{\text{R},\text{A}} J_m \right] + \int_m \left[d\sigma_m^{\text{V}} + \int_1 d\sigma_{m+1}^{\text{R},\text{A}} \right] J_m$$

the 2 terms on the rhs are finite in d=4

Observable (jet) functions

 J_m vanishes when one parton becomes soft or collinear to another one

 $J_m(p_1, \dots, p_m) \to 0$, if $p_i \cdot p_j \to 0$

 $d\sigma_m^{\rm B}$ is integrable over I-parton IR phase space

 J_{m+1} vanishes when two partons become simultaneously soft and/or collinear

 $J_{m+1}(p_1, \dots, p_{m+1}) \to 0$, if $p_i \cdot p_j$ and $p_k \cdot p_l \to 0$ $(i \neq k)$

R and V are integrable over 2-parton IR phase space

observables are IR safe

 $J_{n+1}(p_1, ..., p_j = \lambda q, ..., p_{n+1}) \to J_n(p_1, ..., p_{n+1}) \quad \text{if} \quad \lambda \to 0$ $J_{n+1}(p_1, ..., p_i, ..., p_j, ..., p_{n+1}) \to J_n(p_1, ..., p_{n+1}) \quad \text{if} \quad p_i \to zp, \ p_j \to (1-z)p$

for all $n \ge m$

NLO IR limits

collinear operator

$$C_{ir}|\mathcal{M}_{m+2}^{(0)}(p_i, p_r, \ldots)|^2 \propto \frac{1}{s_{ir}} \langle \mathcal{M}_{m+1}(0)(p_{ir}, \ldots)|\hat{P}_{f_i f_r}^{(0)}|\mathcal{M}_{m+1}(0)(p_{ir}, \ldots)\rangle$$

soft operator

$$S_r |\mathcal{M}_{m+2}^{(0)}(p_r,\ldots)|^2 \propto \frac{s_{ik}}{s_{ir}s_{rk}} \langle \mathcal{M}_{m+1}(0)(\ldots)|T_i \cdot T_k|\mathcal{M}_{m+1}(0)(\ldots) \rangle$$

counterterm

$$\sum_{r} \left(\sum_{i \neq r} \frac{1}{2} \mathbf{C}_{ir} + \mathbf{S}_{r} \right) |\mathcal{M}_{m+2}^{(0)}(p_i, p_r, \ldots)|^2$$

performs double subtraction in overlapping regions

NLO overlapping divergences

 $C_{ir}S_r$ can be used to cancel double subtraction

 $C_{ir} \left(S_r - C_{ir} S_r \right) |\mathcal{M}_{m+2}^{(0)}|^2 = 0$

 $\mathbf{S}_r \left(\mathbf{C}_{ir} - \mathbf{C}_{ir} \mathbf{S}_r \right) |\mathcal{M}_{m+2}^{(0)}|^2 = 0$

the NLO counterterm

$$A_{1}|\mathcal{M}_{m+2}^{(0)}|^{2} = \sum_{r} \left[\sum_{i \neq r} \frac{1}{2} C_{ir} + \left(S_{r} - \sum_{i \neq r} C_{ir} S_{r} \right) \right] |\mathcal{M}_{m+2}^{(0)}(p_{i}, p_{r}, \ldots)|^{2}$$

has the same singular behaviour as SME, and is free of double subtractions $C_{ir} (1 - A_1) |\mathcal{M}_{m+1}^{(0)}|^2 = 0$ $S_r (1 - A_1) |\mathcal{M}_{m+1}^{(0)}|^2 = 0$

contains spurious singularities when parton $s \neq r$ becomes unresolved, but they are screened by J_m

NNLO cross sections

- Sector decomposition Denner Roth 1996; Binoth Heinrich 2000 Anastasiou, Melnikov, Petriello 2003
 - $\widehat{}$
- the only method which, so far, yields useful NNLO cross sections
 - $\widehat{\mathbf{1}}$
- cancellation of divergences is performed numerically
- Ź
- process dependent
- Subtraction
 - process independent
 - $\mathbf{1}$
 - cancellation of divergences is semi-analytic

NNLO assembly kit

Two-loop matrix elements

two-jet production $qq' \rightarrow qq', \ q\bar{q} \rightarrow q\bar{q}, \ q\bar{q} \rightarrow qg, \ gq \rightarrow qq$ C.Anastasiou N. Glover C. Oleari M. Tejeda-Yeomans 2000-01 Z. Bern A. De Freitas L. Dixon 2002 photon-pair production $q\bar{q} \rightarrow \gamma\gamma, gg \rightarrow \gamma\gamma$ C.Anastasiou N. Glover M. Tejeda-Yeomans 2002 Z. Bern A. De Freitas L. Dixon 2002 $e^+e^- \rightarrow 3 \text{ jets} \qquad \gamma^* \rightarrow q\bar{q}q$ L. Garland T. Gehrmann N. Glover A. Koukoutsakis E. Remiddi 2002 V+1 jet production $q\bar{q} \rightarrow Vq$ G T. Gehrmann E. Remiddi 2002 Drell-Yan V production $q\bar{q} \rightarrow V$ R. Hamberg W. van Neerven T. Matsuura 1991 Higgs production $gg \to H$ (in the $m_t \to \infty$ limit) R. Harlander W. Kilgore; C. Anastasiou K. Melnikov 2002

Z. Bern W. Kilgore C. Schmidt VDD 1998-99; D. Kosower P. Uwer 1999; S. Catani M. Grazzini 1999; D. Kosower 2003

universal subtraction counterterms

several ideas and works in progress

D. Kosower; S. Weinzierl; the Gehrmanns & G. Heinrich 2003 S. Frixione M. Grazzini 2004; G. Somogyi Z. Trocsanyi VDD 2005

but completely figured out only for $e^+e^-
ightarrow 3~{
m jets}$

the Gehrmanns & N. Glover 2005

NNLO subtraction $\sigma^{\text{NNLO}} = \int_{m+2} d\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} d\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_{m} d\sigma_{m}^{\text{VV}} J_{m}$

the 3 terms on the rhs are divergent in d=4 use universal IR structure to subtract divergences

$$\sigma^{\text{NNLO}} = \int_{m+2} \left[d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m \right]$$

takes care of doubly-unresolved regions, but still divergent in singly-unresolved ones

$$+\int_{m+1} \left[d\sigma_{m+1}^{\mathrm{RV}} J_{m+1} - d\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_1} J_m \right]$$

still contains $1/\epsilon$ poles in regions away from 1-parton IR regions

$$+\int_{m} \left[d\sigma_{m}^{\mathrm{VV}} + \int_{2} d\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{2}} + \int_{1} d\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_{1}} \right] J_{m}$$

NNLO counterterm

construct the 2-unresolved-parton counterterm using the IR currents

$$\begin{split} \mathbf{A}_{2} |\mathcal{M}_{m+2}^{(0)}|^{2} &= \sum_{r} \sum_{s \neq r} \left\{ \sum_{i \neq r, s} \left[\frac{1}{6} \mathbf{C}_{irs} + \sum_{j \neq i, r, s} \frac{1}{8} \mathbf{C}_{ir;js} + \frac{1}{2} \mathbf{S}_{rs} \right. \\ &+ \frac{1}{2} \left(\mathbf{C} \mathbf{S}_{ir;s} - \mathbf{C}_{irs} \mathbf{C} \mathbf{S}_{ir;s} - \sum_{j \neq i, r, s} \mathbf{C}_{ir;js} \mathbf{C} \mathbf{S}_{ir;s} \right) \right] \\ &- \sum_{i \neq r, s} \left[\mathbf{C} \mathbf{S}_{ir;s} \mathbf{S}_{rs} + \mathbf{C}_{irs} \left(\frac{1}{2} \mathbf{S}_{rs} - \mathbf{C} \mathbf{S}_{ir;s} \mathbf{S}_{rs} \right) \right. \\ &+ \sum_{j \neq i, r, s} \mathbf{C}_{ir;js} \left(\frac{1}{2} \mathbf{S}_{rs} - \mathbf{C} \mathbf{S}_{ir;s} \mathbf{S}_{rs} \right) \right] \right\} |\mathcal{M}_{m+2}^{(0)}|^{2} \end{split}$$

G. Somogyi Z. Trocsanyi VDD 2005

performing double and triple subtractions in overlapping regions

 $C_{irs} (1 - A_2) |\mathcal{M}_{m+2}^{(0)}|^2 = 0$ $S_{rs} (1 - A_2) |\mathcal{M}_{m+2}^{(0)}|^2 = 0$ $C_{ir;is} (1 - A_2) |\mathcal{M}_{m+2}^{(0)}|^2 = 0$ $CS_{ir;s} (1 - A_2) |\mathcal{M}_{m+2}^{(0)}|^2 = 0$

$$\sigma^{\text{NNLO}} = \sigma^{\text{NNLO}}_{\{m+2\}} + \sigma^{\text{NNLO}}_{\{m+1\}} + \sigma^{\text{NNLC}}_{\{m\}}$$

$$\sigma_{\{m+2\}}^{\text{NNLO}} = \int_{m+2} \left[\mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_2} J_m \right]$$

must be finite in the doubly-unresolved regions

$$-\mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_1} J_{m+1} + \mathrm{d}\sigma_{m+2}^{\mathrm{RR},\mathrm{A}_{12}} J_m$$

G. Somogyi Z. Trocsanyi VDD 2005

 A_1 takes care of the singly-unresolved regions and A_{12} of the over-subtracting

$$\sigma_{\{m+1\}}^{\text{NNLO}} = \int_{m+1} \left[d\sigma_{m+1}^{\text{RV}} J_{m+1} - d\sigma_{m+1}^{\text{RV},A_1} J_m + \int_1 \left(d\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},A_{12}} J_m \right) \right]_{d=4}$$
$$\sigma_{\{m\}}^{\text{NNLO}} = \int_m \left[d\sigma_m^{\text{VV}} + \int_2 d\sigma_{m+2}^{\text{RR},A_2} + \int_1 d\sigma_{m+1}^{\text{RV},A_1} \right]_{d=4} J_m$$

need to construct A_{12} such that all overlapping regions in I-parton and 2-parton IR phase space regions are counted only once

$$\begin{split} \mathbf{C}_{ir}(\mathbf{A}_{1} + \mathbf{A}_{2} - \mathbf{A}_{12}) |\mathcal{M}_{m+2}^{(0)}|^{2} &= \mathbf{C}_{ir} |\mathcal{M}_{m+2}^{(0)}|^{2} \\ \mathbf{S}_{r}(\mathbf{A}_{1} + \mathbf{A}_{2} - \mathbf{A}_{12}) |\mathcal{M}_{m+2}^{(0)}|^{2} &= \mathbf{S}_{r} |\mathcal{M}_{m+2}^{(0)}|^{2} \\ \mathbf{C}_{irs}(\mathbf{A}_{1} + \mathbf{A}_{2} - \mathbf{A}_{12}) |\mathcal{M}_{m+2}^{(0)}|^{2} &= \mathbf{C}_{irs} |\mathcal{M}_{m+2}^{(0)}|^{2} \\ \mathbf{C}_{ir;js}(\mathbf{A}_{1} + \mathbf{A}_{2} - \mathbf{A}_{12}) |\mathcal{M}_{m+2}^{(0)}|^{2} &= \mathbf{C}_{ir;js} |\mathcal{M}_{m+2}^{(0)}|^{2} \\ \mathbf{C}_{sir;s}(\mathbf{A}_{1} + \mathbf{A}_{2} - \mathbf{A}_{12}) |\mathcal{M}_{m+2}^{(0)}|^{2} &= \mathbf{C}_{ir;s} |\mathcal{M}_{m+2}^{(0)}|^{2} \\ \mathbf{S}_{rs}(\mathbf{A}_{1} + \mathbf{A}_{2} - \mathbf{A}_{12}) |\mathcal{M}_{m+2}^{(0)}|^{2} &= \mathbf{S}_{rs} |\mathcal{M}_{m+2}^{(0)}|^{2} \end{split}$$

the definition of A_{12} is rather simple

$$\mathbf{A}_{12}|\mathcal{M}_{m+2}^{(0)}|^2 \equiv \mathbf{A}_1\mathbf{A}_2|\mathcal{M}_{m+2}^{(0)}|^2$$

but showing that it has the right properties is non trivial, and requires considering iterated singly-unresolved limits and strongly-ordered doubly-unresolved limits

Conclusions

- in the last few years, a lot of progress on the computation of NNLO cross sections
- sector decomposition is already up and running
- subtraction is making substantial progress