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NLO cross sections 

2005 Les Houches list almost completed

pp → V + 4 jets C. Berger et al (BlackHat) 2010new physics
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in the past, long time span to add one more jet to a x-section

2 → 2 and 2 → 3 processes: 
almost all computed and included into NLO packages

2 → 4 processes: a few computed

pp→ t t̄ b b̄ Bredenstein Denner Dittmaier Pozzorini;
Bevilacqua Czakon Papadopoulos Pittau Worek 2009 

2 → 5 processes: just one

Berger et al. (BlackHat); K. Ellis Melnikov Zanderighi 2009   

pp→ QQ̄ + 2 jets Bevilacqua Czakon Papadopoulos Worek 2010

(VBF)  Figy Hankele Zeppenfeld 2007pp→ H + 3 jets

pp→ V + 4 jets Berger et al. (BlackHat) 2010

in the last few years, huge progress

pp→ V + 3 jets

The NLO revolution

pp→W+W+ + 2 jets Melia Melnikov Rontsch Zanderighi 2010   
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one-loop amplitudes  

↓   IR finite terms are process dependent:
     many final-state particles → many scales → lengthy expressions

Kunszt Signer Trocsanyi 1994; Catani 1998↑   IR divergences are universal

An can be reduced to boxes, triangles and bubbles
with rational coefficients 

one-loop n-point amplitudes An are IR divergent

I: master integrals
b, c, d: rational functions of kinematic variables
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higher polygons contribute only to O(ε)
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One-Loop Master Integrals

although the one-loop n-point amplitudes An 
are usually computed numerically, 

it is convenient to have the one-loop master 
integrals computed analytically, to be input
once and for all in your numerical routine
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Is NLO enough to describe data ?

Total cross section for inclusive Higgs production at LHC

µR = 2MH µF = MH/2

lower
contour bands are

upper
µR = MH/2 µF = 2MH

scale uncertainty
is about 10%

NNLO prediction stabilises the perturbative series
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NNLO corrections may be relevant if
NLO corrections are large: 
Higgs production from gluon fusion in hadron collisions

NLO uncertainty bands are too large to test
theory vs. data:  b production in hadron collisions

NLO is effectively leading order:
energy distributions in jet cones
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NNLO state of the art 
Drell-Yan W, Z production  

total cross section Hamberg van Neerven Matsuura 1990
Harlander Kilgore 2002

Higgs production
total cross section

fully differential x-section

Harlander Kilgore;  Anastasiou Melnikov 2002
Ravindran Smith van Neerven 2003

Anastasiou Melnikov Petriello 2004
Catani de Florian Grazzini 2007

e
+
e
−

→ 3 jets
de Ridder Gehrmann Glover Heinrich 2007
Weinzierl 2008

fully differential x-section

event shapes, αs

NNLO + NLL accuracy
TH uncertainty much reduced

Melnikov Petriello 2006
Catani Cieri Ferrera de Florian Grazzini 2009

αs(M2
Z) = 0.1224± 0.0009 (stat)± 0.0009 (exp)± 0.0012 (had)± 0.0035 (theo)

Dissertori et al. 2009
αs(M2

Z) = 0.1224± 0.0039 combined in quadrature
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World average of αS(MZ)

S. Bethke arXiv:0908.1135

αs(MZ) = 0.1184± 0.0007

vertical line and shaded band mark the world average

first time that shapes are included at NNLO

∆αs

αs
= 0.6%
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NNLO assembly kit  
e
+
e
−

→ 3 jets

double virtual

real-virtual

double real
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Two-loop matrix elements

two-jet production qq
′
→ qq

′
, qq̄ → qq̄, qq̄ → gg, gg → gg

C. Anastasiou N. Glover C. Oleari M. Tejeda-Yeomans 2000-01

Z. Bern A. De Freitas L. Dixon 2002

photon-pair production qq̄ → γγ, gg → γγ

C. Anastasiou N. Glover M. Tejeda-Yeomans 2002
Z. Bern A. De Freitas L. Dixon 2002

e
+
e
−

→ 3 jets

L. Garland T. Gehrmann N. Glover A. Koukoutsakis E. Remiddi 2002

γ
∗
→ qq̄g

V + 1 jet production
T. Gehrmann E. Remiddi 2002

Drell-Yan     productionV

R. Hamberg W. van Neerven T. Matsuura 1991

Higgs production
R. Harlander W. Kilgore; C. Anastasiou K. Melnikov 2002

qq̄ → V

qq̄ → V g

gg → H (in the                limit)mt → ∞
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Two-Loop Master Integrals
planar massless double box V. Smirnov 1999

non-planar massless double box

V. Smirnov 2000

Tausk 1999

planar one-mass double box
non-planar one-mass double box

is the two-loop four-point amplitude
in N=4 SYM
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N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars
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N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams
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N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)
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MHV amplitudes in planar N=4 SYM

at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
a helicity-less loop coefficient M (L)

n = M (0)
n m(L)

n
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MHV amplitudes in planar N=4 SYM

at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
a helicity-less loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6
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MHV amplitudes in planar N=4 SYM

at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
a helicity-less loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

∑

pq

F 2me(p, q, P, Q)

at 1 loop

n ≥ 6

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R
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m(2)
n (ε) =

1
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[
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n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) + R

at all loops, ansatz for a resummed exponent

Bern Dixon Smirnov 05

m(L)
n = exp

[ ∞∑

l=1

al
(
f (l)(ε) m(1)

n (lε) + Const(l) + E(l)
n (ε)

)]
+ R
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MHV amplitudes in planar N=4 SYM

at any order in the coupling, colour-ordered MHV amplitude
in N=4 SYM can be written as tree-level amplitude times
a helicity-less loop coefficient M (L)
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n
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n =
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at all loops, ansatz for a resummed exponent

Bern Dixon Smirnov 05

m(L)
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al
(
f (l)(ε) m(1)

n (lε) + Const(l) + E(l)
n (ε)

)]
+ R

remainder
function
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ansatz for MHV amplitudes in planar N=4 SYM
Bern Dixon Smirnov 05

cusp anomalous dimension, known to all orders of a

collinear anomalous dimension, known through O(a4) 

Korchemsky Radyuskin 86 
Beisert Eden Staudacher 06 

Bern Dixon Smirnov 05 
Cachazo Spradlin Volovich 07

‘t Hooft parameter coupling a =
λ

8π2
(4πe−γ)ε λ = g2N

f (l)(ε) =
γ̂(l)

K

4
+ ε

l

2
Ĝ(l) + ε2 f (l)

2

γ̂(l)
K

Ĝ(l)

E(l)
n (ε) = O(ε)

ansatz generalises the iteration formula for the 2-loop n-pt amplitude mn(2) 
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W [Cn] = Tr P exp
[
ig

∮
dτ ẋµ(τ)Aµ(x(τ))

]

closed contour Cn made by light-like external momenta pi = xi − xi+1

Alday Maldacena 07

MHV amplitudes ⇔  Wilson loops

agreement between n-edged Wilson loop and n-point MHV amplitude
at weak coupling (aka weak-weak duality)

Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Brandhuber Heslop Travaglini 07verified for n-edged 1-loop Wilson loop
up to 6-edged 2-loop Wilson loop

n-edged 2-loop Wilson loops also computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

no amplitudes are known beyond the 6-point 2-loop amplitude

Wilson loops are easier to compute than amplitudes
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Wilson loops & conformal symmetry
N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts is 
given by the finite parts of the BDS ansatz + R

for n = 4, 5,  R is a constant
for n ≥ 6,    R is a function of conformally invariant cross ratios

Drummond Henn Korchemsky Sokatchev 07

VDD Duhr Smirnov 09
Goncharov Spradlin Vergu Volovich 10u36 =

x2
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Wilson loops at weak and strong coupling

the 2 curves are strikingly similar

Alday Gaiotto Maldacena 09
Brandhuber Heslop Khoze Travaglini 09

VDD Duhr Smirnov 09

comparison of the 6-edged Wilson loop at weak and strong couplings

Wilson loops can also be computed at strong coupling Alday Maldacena 07
Alday Gaiotto Maldacena 09

u =
1

4 cos2(φ/3)
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Conclusions

a lot of progress in pQCD in the last few years in
NLO computations with many jets

an exciting period of LHC phenomenology has begun

at 2 loops, the planar massless master integrals are now known 
up to 6 points; work is in progress to compute them for 7 or 
more points

we expect substantial progress also for NNLO computations

Friday, March 25, 2011



Back-up slides
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 Zn symmetric regular hexagons
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regular hexagons are characterised by
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u14 = u25 = u36 = u

At strong coupling, remainder function is obtained from ``minimal area surfaces in AdS5 which end 
on a null polygonal contour at the boundary’’. One gets ``integral equations which determine the 
area as a function of the shape of the polygon. The equations are identical to those of the 
Thermodynamics Bethe Ansatz. The area is given by the free energy of the TBA system. The high 
temperature limit of the TBA system can be exactly solved’’

Rstrong
6 (u, u, u) =

π

6
− 1

3π
φ2 − 3

8
(
ln2(u) + 2 Li2(1− u)

)

Alday Gaiotto Maldacena 09

u =
1

4 cos2(φ/3)
(

free energy

(
BDS - BDSlike
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Amplitudes in twistor space

xa ↔ (Za, Za+1)

twistors live in the fundamental irrep of SO(2,4)

any point in dual space corresponds to a line in twistor space
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Amplitudes in twistor space

xa ↔ (Za, Za+1)

twistors live in the fundamental irrep of SO(2,4)

any point in dual space corresponds to a line in twistor space

null separations in dual space correspond 
to intersections in twistor space
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Amplitudes in twistor space

xa ↔ (Za, Za+1)

twistors live in the fundamental irrep of SO(2,4)

any point in dual space corresponds to a line in twistor space

null separations in dual space correspond 
to intersections in twistor space

m(2)
n =

1
2

∑

i<j<k<l<i

2-loop n-pt MHV amplitudes can be written 
as sum of pentaboxes in twistor space

Arkani-Hamed Bourjaily Cachazo Trnka10
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