# Higgs production in association with jets at the LHC

Vittorio Del Duca INFN LNF

Moriond ``QCD and Hadronic Interactions'' La Thuile 21 March 2007

# LHC kinematic reach





Х

## **HIGGS PRODUCTION MODES AT LHC**

In proton collisions at 14 TeV, and for  $M_H>100~{\rm GeV}$  the Higgs is produced mostly via

- gluon fusion  $gg \to H$ 
  - largest rate for all  $\,M_{H}$
  - proportional to the top Yukawa coupling  $y_t$
  - weak-boson fusion (WBF) qq 
    ightarrow qqH
    - second largest rate (mostly u d initial state)
    - proportional to the WWH coupling
  - Higgs-strahlung  $q\bar{q} 
    ightarrow W(Z)H$ 
    - third largest rate
    - same coupling as in WBF
  - $t\bar{t}(b\bar{b})H$  associated production
    - same initial state as in gluon fusion, but higher x range
    - proportional to the heavy-quark Yukawa coupling  $y_Q$



# **HIGGS PRODUCTION AT LHC**





- gluon fusion cross section is  $~\sim 20-60~{
  m pb}$
- ) WBF cross section is  $\sim 3-5~{
  m pb}$ 
  - $WH, ZH, tar{t}H$  yield cross sections of  $\sim 0.2-3~{
    m pb}$



- energetic jets in the forward and backward directions
- Higgs decay products between the tagging jets
- sparse gluon radiation in the central-rapidity region, due to colourless W/Z exchange
- NLO corrections increase the WBF production rate by about 10%, and thus are small and under control
- WBF can be measured with good statistical accuracy:  $\sigma \times BR \approx \mathcal{O}(10\%)$

## SIGNAL SIGNIFICANCE AND (STAT + SYST) ERROR



# Cross sections at high Q<sup>2</sup>

separate the short- and the long-range interactions through factorisation



$$X = W, Z, H, Q\bar{Q}, \text{high-}E_T \text{jets}, \dots$$

 $\hat{\sigma}$  is known as a fixed-order expansion in  $\alpha_S$ 

 $\hat{\sigma} = C\alpha_S^n (1 + c_1\alpha_S + c_2\alpha_S^2 + \ldots)$ 

 $c_1 = NLO$   $c_2 = NNLO$ 

or as an all-order resummation

 $\hat{\sigma} = C \alpha_S^n [1 + (c_{11}L + c_{10})\alpha_S + (c_{22}L^2 + c_{21}L + c_{20})\alpha_S^2 + \dots]$ where  $L = \ln(M/q_T), \ln(1-x), \ln(1/x), \ln(1-T), \dots$  $c_{11}, c_{22} = \lfloor L - c_{10}, c_{21} = \text{NLL} - c_{20} = \text{NNLL}$ 



## **HIGGS PRODUCTION VIA GLUON FUSION**



• energy scales: 
$$\hat{s} = M_{\rm H}^2$$
 and  $M_t^2$ 

╋

## **HIGGS PRODUCTION VIA GLUON FUSION**

LEADING ORDER
$$\mathcal{O}(\alpha_s^2)$$
 $gg \to H$  $\rarcological $\mathcal{O}(\alpha_s^2)$  $gg \to H$  $\rarcological $\mathfrak{O}(\alpha_s^3)$  $\rarcological $\mathcal{O}(\alpha_s^3)$  $\rarcological $\mathcal{O}(\alpha_s^3)$  $\rarcological $\mathcal{O}(\alpha_s^3)$  $\rarcological $\mathcal{O}(\alpha_s^3)$  $\rarcological $\mathcal{O}(\alpha_s^3)$  $\rarcological $\mathfrak{O}(\alpha_s^3)$  $\rarcological $\mathfrak{O}(\alpha_s^3)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

╋



Djouadi, Graudenz, Spira, Zerwas, '93-'95

• large K factor:  $\sigma^{\text{NLO}} = K^{\text{NLO}} \sigma^{\text{LO}} \qquad \mathcal{O}(40 - 100\%)$ 

## THE LARGE TOP-MASS LIMIT



I.

## THE LARGE TOP-MASS LIMIT







## **NLO** CORRECTIONS









K factor in the large  $M_t$  limit  $K_{\infty} = \lim_{M_t \to \infty} K$ NLO rate in the large  $M_t$  limit  $\sigma_{\infty}^{\text{NLO}} = K_{\infty}^{\text{NLO}} \sigma^{\text{LO}}$   $\sigma_{\infty}^{\text{NLO}}$  is within 10% of  $\sigma^{\text{NLO}}$ for  $M_{\text{H}} \lesssim 1 \text{ TeV}$   $gg \to H$  in the large  $M_t$  limit

**NNLO** CORRECTIONS





**HIGGS COUPLINGS AND QUANTUM NUMBERS** 

The properties of the Higgs-like resonance are its

- couplings: gauge, Yukawa, self-couplings
- quantum numbers: charge, colour, spin, CP

The gauge coupling has also CP properties and a tensor structure. Info on that can be obtained by analysing the final-state topology of Higgs + 2 jet events

H+ **2 JETS RATE** as a function of  $M_{\rm H}$ 



WBF cuts enhance WBF wrt gluon fusion by a factor 10

SCALE DEPENDENCE

renormalisation  $\mu_R$  & factorisation  $\mu_F$  scales

Kilgore, Oleari, Schmidt, Zeppenfeld, VDD hep-ph/0108030

 $\mu_R = \xi \mu_0, \ \mu_F = \sqrt{p_{j_1 \perp} p_{j_2 \perp}}$ 

 $\mu_F = \xi \mu_0, \, \mu_R = M_Z$ 



Strong μ<sub>R</sub> dependence: the calculation is LO and  $O(\alpha_s^4)$ Solution is LO and  $O(\alpha_s^4)$ Solution is a natural scale for α<sub>s</sub> ?
high energy limit suggests α<sup>4</sup><sub>s</sub> → α<sub>s</sub>(p<sub>j1⊥</sub>)α<sub>s</sub>(p<sub>j1⊥</sub>)α<sup>2</sup><sub>s</sub>(M<sub>H</sub>)

•  $\sigma$  varies by a factor 2.5 for  $\mu_0/2 < \mu_R < 2\mu_0$ 

• mild  $\mu_F$  dependence:  $\mathcal{O}(10\%)$  over the  $\mu_0/5 < \mu_R < 5\mu_0$  range

## NLO corrections

NLO corrections increase the WBF production rate by about 10 %, with a few % change under µ<sub>R</sub> scale variation

> Campbell, Ellis; Figy, Oleari, Zeppenfeld 2003 Berger Campbell 2004

NLO corrections in the large M<sub>top</sub> limit increase the gluon fusion production rate by about 15--25 %, but the change under µ<sub>R</sub> scale variation is sizeable
Campbell, Ellis, Zanderighi 2006



#### **RAPIDITY DISTRIBUTIONS**

 $\Delta \eta_{jj}$ : rapidity difference between the two jets



• WBF events spontaneously have a large  $\Delta \eta_{jj}$ 

╋

• dip in gluon fusion at low  $\Delta \eta_{jj}$  is unphysical:  $R_{jj} = \sqrt{\Delta \eta_{jj} + \Delta \phi_{jj}} > 0.6$ 

#### **AZIMUTHAL ANGLE CORRELATIONS**

 $\Delta \phi_{jj} \equiv$  the azimuthal angle between the two jets



 $\mathcal{A}_{WBF} \sim \frac{1}{2p_1 \cdot p_4 - M_W^2} \frac{1}{2p_2 \cdot p_3 - M_W^2} \hat{s}m_{jj}^2$  $\blacktriangleright \text{ a flat } \Delta \phi_{jj} \text{ distribution}$ 

gluon fusion in the large  $M_t$  limit  $\mathcal{L}_{eff} = \frac{1}{4}A \ H \ G^a_{\mu\nu}G^{a\ \mu\nu} \quad A = \frac{\alpha_s}{3\pi v}$   $\mathcal{A}_{gluon} \sim J^{\mu}_1(q^{\nu}_1q^{\mu}_2 - g^{\mu\nu}q_1 \cdot q_2)J^{\nu}_2$   $J^{\mu} \equiv \text{quark-gluon current}$ for  $|p_i^{\ z}| \gg |p_i^{\ x,y}| \quad i = 3,4$ : forward jets  $\mathcal{A}_{gluon} \sim (J^0_1J^0_2 - J^3_1J^3_2) \ p_{3\perp} \cdot p_{4\perp}$  $\clubsuit$  zero at  $\Delta\phi_{jj} = \frac{\pi}{2}$ 

#### **AZIMUTHAL ANGLE DISTRIBUTION**



the azimuthal angle distribution discriminates between WBF and gluon fusion

`note that the large  $M_t$  limit curve approximates very well the exact curve

# 3 complementary approaches to $\hat{\sigma}$

|                                           | matrix-elem MC's                                               | fixed-order x-sect                                  | shower MC's                                                                 |
|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
| final-state<br>description                | hard-parton jets.<br>Describes geometry,<br>correlations,      | limited access to<br>final-state<br>structure       | full information<br>available at the<br>hadron level                        |
| higher-order effects:<br>loop corrections | hard to implement:<br>must introduce<br>negative probabilities | straightforward<br>to implement<br>(when available) | included as<br>vertex corrections<br>(Sudakov FF's)                         |
| higher-order effects:<br>hard emissions   | included, up to high<br>orders (multijets)                     | straightforward<br>to implement<br>(when available) | approximate,<br>incomplete phase<br>space at large angles                   |
| resummation of<br>large logs              | ?                                                              | feasible<br>(when available)                        | unitarity<br>implementation<br>(i.e. correct shapes<br>but not total rates) |

M.L. Mangano KITP collider conf 2004



Parton showering and hadronisation are modelled through shower Monte Carlos (HERWIG o PYTHIA)

# Azimuthal angle distribution

![](_page_22_Figure_1.jpeg)

### Caveat !

the plot has been obtained by generating also the jets through the showers

# Matrix-element MonteCarlo generators

multi-parton generation: processes with many jets (or W/Z/H bosons)

- ALPGEN M.L.Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002
- MADGRAPH/MADEVENT W.F. Long F. Maltoni T. Stelzer 1994/2003
- COMPHEP A. Pukhov et al. 1999
- GRACE/GR@PPA T. Ishikawa et al. K. Sato et al. 1992/2001
- HELAC C. Papadopoulos et al. 2000
- processes with 6 final-state fermions
  - PHASE E. Accomando A. Ballestrero E. Maina 2004
- merged with parton showers
  - all of the above, merged with HERWIG or PYTHIA
  - SHERPA F. Krauss et al. 2003

# Azimuthal angle distribution

ALPGEN: H + 2 jets at parton level + parton shower by HERWIG

Klamke Mangano Moretti Piccinini Pittau Polosa Zeppenfeld VDD 2006

**VBF** cuts

 $p_{Tj}^{tag} > 30 \text{ GeV} \quad |\eta_j| < 5 \quad R_{jj} > 0.6$  $|\eta_{j1} - \eta_{j2}| < 4.2 \quad \eta_{j1} \cdot \eta_{j2} < 0$  $m_{jj} > 600 \text{ GeV}$ 

 $A_{\Phi}$ : a quantity that characterises how deep the dip is

| $A_{\phi}$   | parton level | shower level |
|--------------|--------------|--------------|
| ggH + 2 jets | 0.474(3)     | 0.357(3)     |
| VBF + 2 jets | 0.017(1)     | 0.018(1)     |

![](_page_24_Figure_7.jpeg)

dash: VBF solid: gluon fusion w/ PS dot-dash: ditto w/o PS

$$A_{\phi} = \frac{\sigma(\Delta\phi < \pi/4) - \sigma(\pi/4 < \Delta\phi < 3\pi/4) + \sigma(\Delta\phi > 3\pi/4)}{\sigma(\Delta\phi < \pi/4) + \sigma(\pi/4 < \Delta\phi < 3\pi/4) + \sigma(\Delta\phi > 3\pi/4)}$$

 $\Delta \Phi$  is the azimuthal angle between the tagging jets

# Jet multiplicity

![](_page_25_Figure_1.jpeg)

Normalised jet multiplicity after parton shower for H + 2 (solid) and 3 (dashes) partons. Solid curve is normalised to the total x-sect for H + 2 jets. Note the log scale on the rhs panel

VBF cuts $p_{Tj}^{tag} > 30 \text{ GeV}$  $p_{Tj} > 20 \text{ GeV}$  $|\eta_j| < 5$  $R_{jj} > 0.6$  $|\eta_{j1} - \eta_{j2}| < 4.2$  $\eta_{j1} \cdot \eta_{j2} < 0$  $m_{jj} > 600 \text{ GeV}$ 

WWH COUPLING

The azimuthal angle  $\Delta \phi_{jj}$  between the jets can be used as a tool to investigate the tensor structure of the WWH coupling Plehn, Rainwater, Zeppenfeld hep-ph/0105325

Take a gauge-invariant effective Lagrangian with dim. 6 operators (CP even and CP odd) describing an anomalous WWH coupling  $\mathcal{L}_6 = \frac{g^2}{2\Lambda_{2,6}^2} \left(\Phi^{\dagger}\Phi\right) V_{\mu\nu}V^{\mu\nu} + \frac{g^2}{2\Lambda_{2,6}^2} \left(\Phi^{\dagger}\Phi\right) \widetilde{V}_{\mu\nu}V^{\mu\nu}$ 

• expand  $\Phi$  about the vev (get dim. 5 (D5) operators)  $\mathcal{L}_5 = \frac{1}{\Lambda_{e,5}} H W^+_{\mu\nu} W^{-\mu\nu} + \frac{1}{\Lambda_{o,5}} H \widetilde{W}^+_{\mu\nu} W^{-\mu\nu}$  with  $\frac{1}{\Lambda_5} = \frac{g^2 v}{\Lambda_6^2}$ 

• CP odd D5 operator:  $\epsilon^{\mu\nu\alpha\beta}$  tensor in the coupling  $\Rightarrow$  zero at  $\Delta\phi_{jj} = 0, \pi$ 

CP even D5 operator is like the effective ggH coupling  $\mathcal{A}_{\text{CP even}} \sim \frac{1}{\Lambda_{e,5}} J_1^{\mu} (q_1^{\nu} q_2^{\mu} - g^{\mu\nu} q_1 \cdot q_2) J_2^{\nu} \Rightarrow \text{zero at } \Delta \phi_{jj} = \frac{\pi}{2}$ 

#### AZIMUTHAL ANGLE DISTRIBUTION FOR WWH COUPLINGS

• assume a Higgs-like scalar signal is found at LHC at the SM rate (for D5 operators:  $\Lambda_5 \sim 500 \text{ GeV}$ )

![](_page_27_Figure_2.jpeg)

WBF cuts:  $p_{j\perp} > 20 \text{ GeV}$   $|\eta_j| < 5$   $R_{jj} > 0.6$   $\eta_{j_1} \cdot \eta_{j_2} < 0$  $|\eta_{j_1} - \eta_{j_2}| > 4.2$ 

- the  $\Delta \phi_{jj}$  distribution
  - discriminates between different WWH couplings

 is independent of the particular decay channel and the Higgs mass range

#### **INTERFERENCE EFFECTS IN THE** $\Delta \phi_{jj}$ **DISTRIBUTION**

- assume a Higgs candidate is found at LHC with a predominantly SM  $g^{\mu\nu}$
- + coupling. How sensitive are experiments to any D5 terms ?
  - no interference between SM and CP odd D5 operator

![](_page_28_Figure_4.jpeg)

 $\Delta \phi_{jj}$  distribution for the SM and interference with a CP even D5 coupling. The two curves for each sign of the operator correspond to values  $\sigma/\sigma_{\rm SM} = 0.04, 1.0$ . Error bars correspond to an integrated luminosity of 100 fb<sup>-1</sup> per experiment, distributed over 6 bins, and are statistical only

interference between SM and CP even D5 operator: |A|<sup>2</sup> = |A<sub>SM</sub> + A<sub>e,5</sub>|<sup>2</sup>

all terms, but |A<sub>SM</sub>|<sup>2</sup>, have an approximate zero at Δφ<sub>jj</sub> = π/2

systematic uncertainty induced by H + 2 jet rate from gluon fusion

HG<sub>µν</sub>G<sup>µν</sup> is a CP even D5 operator

 $\bigcirc$  In WBF no colour is exchanged in the t channel

Solution For the second structure of the second struc

Barger, Phillips & Zeppenfeld hep-ph/9412276

The central-jet veto can also be used to distinguish between Higgs production via gluon fusion and via WBF

![](_page_30_Figure_0.jpeg)

# CONCLUSIONS

- Once a Higgs-like resonance is found at the LHC, we shall want to study its couplings and quantum numbers
- In Higgs + 2 jets, the azimuthal angle correlation between the two jets can be used as a tool to distinguish between WBF and gluon fusion, and to investigate the tensor structure of the WWH coupling
- Because of the characteristic final-state topology induced by WBF production large-rapidity cuts can be used to deplete gluon fusion wrt WBF
  - We examined Higgs + 2 jet-production through matrix-element MC's, which include shower effects.
    - the analysis confirms the one at the parton level
    - however, in gluon fusion large fraction of events with 3 or more jets
      - → need a CKKW-type analysis
      - $\rightarrow$  need NLO overall normalisation  $\rightarrow$  MC@NLO