$\begin{array}{c} \textbf{Radiative Corrections} \\ \textbf{to} \\ \textbf{Di-Photon} + \textbf{1 Jet Production} \end{array}$

VITTORIO DEL DUCA I.N.F.N. TORINO

WITH

F. MALTONI, Z. TRÒCSÀNYI, Z. NAGY

MONTE CARLO WORKSHOP

CERN, JULY 9 2003

HIGGS + 1 Jet $\rightarrow \gamma\gamma$ + 1 Jet

A leading order parton level study (CompHEP) at 30 fb^{-1} at LHC Abdullin et al. hep-ph/9805341

• event selection cuts $\begin{cases} 2 \text{ isolated photons with } p_{\gamma \mathrm{T}} \geq 40 \text{ GeV} & |\eta_{\gamma}| \leq 2.5 \\ 1 \text{ jet with } & E_{\mathrm{jetT}} \geq 30 \text{ GeV} & |\eta_{\mathrm{jet}}| \leq 4.5 \\ \text{photon-photon distance } & \Delta R_{\gamma\gamma} \geq 0.3 \\ \text{jet-photon distance } & \Delta R_{\gamma\mathrm{jet}} \geq 0.3 \end{cases}$ • $M_{\gamma\gamma}$ bin $\Delta M_{\gamma\gamma} = \begin{cases} 3.25 & \text{GeV} & \text{ATLAS} \\ 2.0 & \text{GeV} & \text{CMS} \end{cases}$ photon identification efficiency 73% $\checkmark \sqrt{\hat{s}} \ge 300 \text{ GeV}$ is used in order to improve S/B

HIGGS + 1 Jet $\rightarrow \gamma\gamma$ + 1 Jet

A hadron level study (CompHEP & PYTHIA) at 30 fb^{-1}

Zmushko ATLAS Note 2002

• event selection cuts: same as in Abdullin et al., but for $\Delta R_{\gamma \text{jet}} \ge 0.4$

- $M_{\gamma\gamma} \text{ bin } \Delta M_{\gamma\gamma} = 3.64 \text{ GeV}$ photon identification efficiency 80 %
- \frown no K factor included for the signal
- S/B increases with $\sqrt{\hat{s}} \rightarrow \sqrt{\hat{s}} \geq 300 \text{ GeV}$ is used

• S/\sqrt{B} is roughly independent of $\sqrt{\hat{s}}$

• for $M_{\rm H} = 120 \ {
m GeV}$, $S/\sqrt{B} = 4.9$

Caveat: background (and thus S/\sqrt{B}) depends on the evolution scale for PYTHIA parton showering: $Q^2 = 0.5M_{\gamma\gamma}^2 + p_T^2$

SIGNAL: HIGGS + 1 JET

Several sources for the inclusive Higgs production at high transverse momentum or with an associated jet

***** Higgs + 1 Jet via Gluon Fusionde Florian, Grazzini, Kunszt 99***** Weak-Boson Fusion: $qq \rightarrow qqH$ Campbell, Ellis; Figy, Oleari, Zeppenfeld 03***** Associated Weak-Boson Production: HW, HZHan, Willenbrok 92They are all known at NLO, and are all included in MCFM Campbell, Ellis

SIGNAL: HIGGS + 1 JET

Several sources for the inclusive Higgs production at high transverse momentum or with an associated jet

***** Higgs + 1 Jet via Gluon Fusionde Florian, Grazzini, Kunszt 99***** Weak-Boson Fusion: $qq \rightarrow qqH$ Campbell, Ellis; Figy, Oleari, Zeppenfeld 03***** Associated Weak-Boson Production: HW, HZHan, Willenbrok 92They are all known at NLO, and are all included in MCFM Campbell, Ellis

BACKGROUND: $\gamma\gamma+1$ Jet

***** QCD Production of $pp \rightarrow \gamma \gamma + 1$ JetMaltoni, Nagy, Trocsanyi, VDD 03***** ElectroWeak Production of $pp \rightarrow \gamma \gamma + 1$ JetThey are known at NLO

HIGGS + 1 JET VIA GLUON FUSION

• 1-loop $gg \to gH \quad qg \to qH \quad + \quad \text{crossings}$

HIGGS + 1 JET VIA GLUON FUSION

• **1-loop** $gg \to gH$ $qg \to qH$ + crossings

NLO CORRECTIONS $O(\alpha_s^4)$

• 1-loop $gg \to ggH \quad qg \to qgH \quad qQ \to qQH \quad + \text{ crossings}$

Kilgore, Oleari, Schmidt, Zeppenfeld, VDD 01

• 2-loop $gg \to gH$ $qg \to qH$ + crossings is at present unknown

for Higgs + 1 jet, the large M_t limit is accurate if $M_{\rm H} \ll 2M_t$ and $p_{\rm T} \ll M_t$

HIGGS + 1 JET IN THE LARGE M_t LIMIT

NLO CORRECTIONS

 ${\cal O}(lpha_{\scriptscriptstyle S}^4)$

 $\begin{array}{c} \bullet & 1 \text{-loop} & gg \to gH & qg \to qH & + \text{ crossings} \\ \bullet & \text{tree} & gg \to ggH & qg \to qgH & qQ \to qQH & + \text{ crossings} \\ \end{array}$

de Florian, Grazzini, Kunszt hep-ph/9902483

✓ large K factor: K^{NLO}_∞ ≃ 1.6
 ✓ variation of μ_R = μ_F = μ = 0.5 → 2 : ±35% at LO; ±20% at NLO

• not known, except for $gg \to g\gamma\gamma$, which is effectively a leading order term. $gg \to g\gamma\gamma$ is about 20% of $qg \to q\gamma\gamma$ at leading order

de Florian, Kunszt 99

Balazs, Nadolsky, Schmidt, Yuan 99

Maltoni, Nagy, Trocsanyi, VDD hep-ph/0303012

event selection cuts $p_{\rm T} \ge 40 \text{ GeV}$ $|\eta| \le 2.5$ 2 isolated photons and 1 jet with $p_{\rm T} \ge 40 \text{ GeV}$ $|\eta| \le 2.5$ jet cone size $R_{\rm jet} = 1$ jet-photon distance $\Delta R_{\gamma \rm jet} \ge 1.5$ photon-photon transverse momentum $p_{\gamma\gamma{\rm T}} \ge 40 \text{ GeV}$ Standard photon isolation

hadronic energy allowed inside the cone of radius R_{γ} is $E_{\rm T} \leq E_{\rm T,max}$ with $E_{\rm T,max} = \# \, {\rm GeV}, \text{ or } \epsilon \, p_{\gamma {\rm T}}$

Smooth (Frixione) photon isolation hadronic energy allowed inside the cone of radius $r < R_{\gamma}$ is $E_{\rm T} \leq E_{{\rm T},{\rm max}} \left(\frac{1 - \cos r}{1 - \cos R_{\gamma}} \right)^n$ (we take n = 1) Frixione's photon isolation avoids fragmentation

INVARIANT MASS OF THE DI-PHOTON PAIR

 $p p \rightarrow \gamma \gamma + jet, E_{cm} = 14 \text{ TeV}$

Dependence of $M_{\gamma\gamma}$ on R_{γ} and ϵ

Dependence of the invariant mass distribution of the photon pair on the photon isolation parameters

Photon isolation $R_{\gamma} = 0.4$ $R_{\gamma} = 1$ large corrections (with a K factor > 2) for $R_{\gamma} = 0.4$

DEPENDENCE ON μ_{R}, μ_{F}

Dependence of the cross section on the renormalization and factorization scales in a bin of $118.5 \,\text{GeV} \le M_{\gamma\gamma} \le 121.5 \,\text{GeV}$

• Reference value for μ_R and μ_F : $\mu_0^2 = \left(M_{\gamma\gamma}^2 + p_{\text{jetT}}^2\right)/4$ • for $R_{\gamma} = 0.4$ the scale dependence increases at NLO

TRANSVERSE MOMENTUM DISTRIBUTION OF $\gamma\gamma$

• Photon isolation $R_{\gamma} = 0.4$ and $\epsilon = 0.5$

***** Note opening of the phase space: C-parameter effect

• leading order rates should not be multiplied by K factors

CONCLUSIONS

- We have presented the NLO corrections to $\gamma\gamma + 1$ Jet production
- a small isolation cone, $R_{\gamma} = 0.4$, results in
 - $\text{ \ \ more than } 100\% \text{ correction} \rightarrow K \text{ factor } > 2$
 - * a larger residual scale dependence at NLO than at leading order

CONCLUSIONS

- We have presented the NLO corrections to $\gamma\gamma + 1$ Jet production
- a small isolation cone, $R_{\gamma} = 0.4$, results in
 - $\text{ \ \ more than } 100\% \text{ correction} \rightarrow K \text{ factor } > 2$
 - * a larger residual scale dependence at NLO than at leading order

OPEN QUESTIONS

- ▶ We have used Frixione's photon isolation, which has been analysed in
 - $\stackrel{\blacktriangleright}{\rightarrow} \text{polarised } pp \text{ collisions}$ $\text{prompt } \gamma \text{ production in } \gamma\gamma \text{ collisions}$
 - LEP data on prompt γ production
 - \blacktriangleright an ATLAS simulation

but not in hadron collider experiments, so far

Frixione, Vogelsang 99 Fontannaz, Guillet, Heinrich 01 OPAL hep-ex/0305075 Wielers ATL-PHYS-2002-004