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Why the infrared structure of gauge amplitudes ?

@ Perturbation theory calculations of amplitudes beyond the leading order
exhibit infrared divergences, which in physical processes must cancel
between the virtual corrections and the real emissions

Q@  While the finite part of an amplitude depends on the scattering process at hand, the

infrared-divergent part is process independent (but for the parton species involved):
it is universal, and reveals the infrared structure of the gauge theory

@ Guesses have been made on the all-order structure of the infrared divergences

(dipole formula). The high-energy limit is one more tool which allows us to
constrain the all-order structure
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,

any scattering process is dominated by gluon exchange in the t channel

Q@ For a 4-gluon tree amplitude, we obtain
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Mzgzbg’g(& t> — 29? (T )a,a,’Cz/aya/ (paapa’)] Z [(Tc)bb’ Cz/bz/b/ (pbvpb’)]

Cvov, (Pa;Par)  are called impact factors

Q@  leading logarithms of s/t are obtained by the substitution
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel

. . Pa O Vy Pa' a4 Vgl
Q@ For a 4-gluon tree amplitude, we obtain 900000@000Q0Q0.
— 2 S o gi
Mgg’bl)g’g(‘S?t) — 298 (Tc)aa’CVaVa/ (paapa’)] Z [(Tc)bb’cz/bz/b/ (pb7pb’)] 1 l =
ol
o
SIS IIR
Cvov, (Pa;Par)  are called impact factors _— o ¥
1 1 a(t)
@ leading logarithms of s/t are obtained by the substitution Pl <—_t>

Q@  «(t) is the Regge gluon trajectory, with infrared coefficients

aft) = (=) ) + (as(_t’€)>2 a? + 0 (a?)
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel

Q@ For a 4-gluon tree amplitude, we obtain 900000000000,
Mggzgg(saw — 293 (Tc)aa’Cuaua/ (paapa’)] E [(Tc)bb’cz/bz/b/ (pbvpb’)] 4. ¢ l (C;E
L’F“G"E‘%’F“TS“U\
Cvov, (PasPar)  are called impact factors o b v py b vy
11 s\
Q@  leading logarithms of s/t are obtained by the substitution Pl (_—t)
Q@  «(t) is the Regge gluon trajectory, with infrared coefficients
as(—t, €) as(—t,e)\’
a(t) = 201D a0 (20D 004 0 (o)
~(1) b 2 404 56
2 2 0, ~(2)
oM =0y — o, 2 o = Ca [_6_2 Tk T Ca (2—7 _2<3> o (_2_7)]
€ €

Q@  inthe Regge limit, the amplitude is invariant under s <> u exchange.

To NLL acc

Miay’ (5,1)

uracy, the amplitude is given by

s S a(t) s o(t)
298 Z (Tc)aa’cual/a/ (pCL?pCL/)] <—_t> + (_—t>

[(Tc)bb’ Cuyuyr (Db Do )]
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Resummation: Sudakov form factor

Q@  Sudakov (quark) form factor as matrix element of EM current

_ @
Flu(plapZ;:uQ?E) =< O|JM(O)|plap2 > = /U(pQ)fYMu(pl)F <F7a8(:u2)76

obeys evolution equation

0 1, [F (522?%(“2)76)] _ % [K (as(?),€) + G (3—22,043(#2)»6)]

0Q?

K is a counterterm; G is finiteas €— 0
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Resummation: Sudakov form factor

Q@  Sudakov (quark) form factor as matrix element of EM current

_ @
Fﬂ(p17p2;:u27€) =< O|JM(O)|plap2 > = /U(pQ)fYMu(pl)F <?7a8(:u2)76

obeys evolution equation

Q2aTg2m [F (3227048(“2),6)] _ % [K (as(?),€) + G (3—22,@8(#2)#)]

K is a counterterm; G is finiteas €— 0

@  RG invariance requires
dG dK
b o= i (s (7))
weoo H Korchemsky Radyushkin 1987

Yk is the cusp anomalous dimension

the solution is

I (Q2€) = exp {; /0_Q2 dg—gj [G (—1,a5(&% €),€) — %WK (as(€%,€)) In (_;222)] }
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cusp anomalous dimension

@ loop expansion of the cusp anomalous dimension

| 2 27 \ 2
7%):207; Oés(M)JFKCi (Oés(,u )) 4.

s s

with

67 10
K=——0(|Cs— =TrN
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Factorisation of a multi-leg amplitude

--------
AAAAAAA

QU - Mueller 198
A ’m' Botts Sterman 987
) D e 4 Kidonakis Oderda Sterman 1998
P y 4N LN Catani 1998
y FRY y Tejeda-Yeomans Sterman 2002
) A 8 Kosower 2003
—_—— — —— Aybat Dixon Sterman 2006
S Becher Neubert 2009

Gardi Magnea 2009

20, - 0: (2p; - n;)? ’ g 2
Mn (pi/p,€) = EL: Sni(Bi- B €) Hy < pusz’ ( Z;ZZMT;) ) 1:[ B (2(; 'um)2 6)
1 D) )

p; = $iQo/v2 value of Qo is immaterial in S, |

to avoid double counting of soft-collinear region (IR double poles),
Jiremoves eikonal part from i, which is already in S
Jil)i contains only single collinear poles
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Factorisation

@ Soft gluons decouple from the hard part of the amplitude

Thursday, May 17, 2012



Factorisation

@ Soft gluons decouple from the hard part of the amplitude

&@ Ward identities decouple soft gluons from jets

-

soft gluons see jets as scalar particles
representing the evolution of the external legs

w colour links only the hard and soft parts of the amplitude
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Factorisation

@ Soft gluons decouple from the hard part of the amplitude

&@ Ward identities decouple soft gluons from jets

soft gluons see jets as scalar particles
representing the evolution of the external legs

-

w colour links only the hard and soft parts of the amplitude

Q@ Soft function is a matrix which mixes the colour representations
and is driven by the anomalous dimension matrix ['s
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Jet definition

- introduce auxiliary vector n; (n? # 0) to separate collinear region
- define a jet using a Wilson line along n;

partonic jet u(p) J ((Qp )’ , e> = < p|Y(0)®,,(0, —00)|0 >

A2
Wilson line D, (A2, A1) = Pexp z'g/ dAn - A(An)
)

1

23 - n)? _
eikonal jet j( (ﬁ n) 7€> :<O’(I)5(OO,O)(I)7L(O,—OO)|O>
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Eikonal jet & cusp anomalous dimension

@  eikonal jets are Wilson line correlators, introduced to avoid double counting
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Eikonal jet & cusp anomalous dimension

@  eikonal jets are Wilson line correlators, introduced to avoid double counting

@ Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities

Q functional dependence on n; constrained by classical invariance
of Wilson lines under rescaling n; » i n;
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities

Q functional dependence on n; constrained by classical invariance
of Wilson lines under rescaling n; » i n;

@  single poles carry (3 - n)? /n* dependence
thus violate classical rescaling symmetry wrt B = cusp anomalous dim
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities

Q functional dependence on n; constrained by classical invariance
of Wilson lines under rescaling n; » i n;

@  single poles carry (3 - n)? /n* dependence
thus violate classical rescaling symmetry wrt B = cusp anomalous dim

@ double poles and kinematic dependence of single poles are controlled by cusp Yk,
like in the quark form factor

(B e [ i e (2525

n

Oj is a constant
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Soft function S

Q soft function is a matrix which mixes the colour representations

(en)ijriSNL (Ba - Bp, s (1), €)

— Z < O|<I>li’§2 (0, oo)q)gi’ (oo,())@%’gj (O,oo)CI)l_’lB4(oo,O)|O > (cp)irjrkn
,I:/j/k/l/
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Soft function S

Q soft function is a matrix which mixes the colour representations
(en)ijriSNL (Ba - Bp, s (1), €)

— Z < O|<I>]i’§2 (O,oo)q)g’f (oo,())@%’gj (O,oo)CI)l_’lB4(oo,O)\O > (cp)irjrkn
,L'/j/k/l/

@ matrix evolution equation

d
M@S.]L (Ba + Bb, aS(M2)7 E)

— _Z [FS]JN (5@ ‘ 5b7a8(ﬂ2>7€) SNL (5‘1 ' 51”&3(“2)’6)

['s soft anomalous dimension,
singular due to the UV and collinear poles
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Soft function S

Q soft function is a matrix which mixes the colour representations

(en)ijriSNL (Ba - Bp, s (1), €)

— Z < O|<I>]i’§2 (O,oo)q)iﬁ’f (oo,())@%’gj (O,oo)CI)l_’lB4(oo,O)\O > (cp)irjrkn
i/j/k/l/

@ matrix evolution equation

d
M@S.]L (Ba + Bb, as(MQ)a E)

— _Z [FS]JN (ﬁa ‘ 5b7a8(ﬂ2)7€) SNL (5‘1 ' 5b’a5(“2)’6)

['s soft anomalous dimension,
singular due to the UV and collinear poles

@ in DimReg the solution is

)\2

©.@) . Ozs 2 n
Ls=> T (—ET“ )>
n=1

p? d)\? \
S (Ba - By, as(p?),€) = Pexp {; /O ~5Ts (Ba - Boy s (p?), e)} ~
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Soft anomalous dimension

Q@  for an amplitude with an arbitrary # of legs

Fg) = %Fg) Aybat Dixon Sterman 2006

K is 2-loop coefficient of cusp anomalous dimension

['s has cusp singularities like Y,
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N = 4 SUSY in the planar limit

@ colour-wise, the planar limit is trivial:can absorb S into J;

Thursday, May 17, 2012



N = 4 SUSY in the planar limit

@ colour-wise, the planar limit is trivial:can absorb S into J;

@  each slice is square root of Sudakov form factor

n o 1/2
My =TT Mo (52 ase) | hlimad i

2
1=1 H
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N = 4 SUSY in the planar limit

@ colour-wise, the planar limit is trivial:can absorb S into J;

@  each slice is square root of Sudakov form factor

n o 1/2
My =TT Mo (52 ase) | hlimad i

2
1=1 p

@ B fn=0 = coupling runs only through dimension s () e = g (AF)A*
the Sudakov form factor has a simple solution

(]S () () [

n=1 K

= |R structure of N = 4 SUSY amplitudes
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Reduced soft function

Q Syt (pij, €) = Sy (Bi B €) Dixon Magnea Sterman 2008

fla (52

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities = must respect rescaling Bi = Ki B

» 8 depends Onl)’ on Pij = 2(6 . 7(7/5)12 QBZ% . n,)Q
) 7 J J
TR
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Reduced soft function

Q Syt (pij, €) = Sy (Bi B €) Dixon Magnea Sterman 2008

fla (52

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities = must respect rescaling Bi = Ki B

» S depends Onl)’ on Pij = 2(6 . 7(?/5)12 ZBZ; . n,)Q
) 7 J J
TR

Q the factorisation becomes

21 21, an 2’1, nlz
M (pi/p,€) ZSNL Pijs € )HL( = 2p]7 P )HJ< i 1) 7€>

1

S has only single poles due to large-angle soft emissions
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

o = 1
FS 17y Xs) — (%) s
j%éiﬁ o pr (pij, as) L (as)

(simplest) solution: dipole formula

n

= 1 1 4
TS (pis, v — (s In(pi)T; - T; + = 6s(cvs C Becher Neubert 2009
(P> ta) dip 8 el ); (ois) R ); Gardi Magnea 2009
with
0 A : ors (12) s (1N | e (s
Vi (as) = Ciyr (as) Vi (ag) = 2 . + K - + K - + -
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

o = 1
FS 17y Xs) — (%) s
j%éiﬁ o pr (pij, as) L (as)

(simplest) solution: dipole formula

n

= 1 1 4
TS (pis, v — (s In(pi)T; - T; + = 6s(cvs C Becher Neubert 2009
(P> ta) dip 8 el ); (ois) g 0l ); Gardi Magnea 2009
with
0 A : ors (12) s (1N | e (s
Vi (as) = Ciyr (as) Vi (ag) = 2 . + K - + K - + -

Q only 2-eikonal-line correlations
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

o = 1
FS 17y Xs) — (%) s
j%éiﬁ o pr (pij, as) L (as)

(simplest) solution: dipole formula

n

= 1 1 4
TS (pis, v — (s In(pi)T; - T; + = 6s(cvs C Becher Neubert 2009
(P> ta) dip 8 el ); (ois) g 0l ); Gardi Magnea 2009
with
0 A : ors (12) s (1N | e (s
Vi (as) = Ciyr (as) Vi (ag) = 2 . + K - + K - + -

only 2-eikonal-line correlations

© O

generalises 2-loop solution
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

%, _ .
FS 17y s ) — s

(simplest) solution: dipole formula

n

= 1 1 4
TS (pis, v — (s In(pi)T; - T; + = 6s(cvs C Becher Neubert 2009
(P> ta) dip 8 el ); (ois) g 0l ); Gardi Magnea 2009
with
0 A : ors (12) s (1N | e (s
Vi (as) = Ciyr (as) Vi (ag) = 2 . + K - + K - + -

only 2-eikonal-line correlations

generalises 2-loop solution

© O

colour matrix structure fixed at one loop

©
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

1, s 1 ¢
FS 17 s:_(Z) s
> gy Tl = i@

(simplest) solution: dipole formula

n

= 1 1 4
TS (pis, v — (s In(pi)T; - T; + = 6s(cvs C Becher Neubert 2009
(P> ta) dip 8 el ); (ois) T2 st ); Gardi Magnea 2009
with
0 A A ovs (12 s (1N | e (s
Vi (as) = Cir (as) Vi (ag) = 2 . + K - + K - + .-

only 2-eikonal-line correlations

generalises 2-loop solution

colour matrix structure fixed at one loop

O © © O

cusp anomalous dimension plays role of IR coupling
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Dipole formula for the amplitude

@  combining the dipole-formula solution for the reduced soft function
with the jet functions, one obtains a dipole formula for the amplitude

M (%,as(u2)76> = <ﬁ,as(u?),6) ”H(& - ozs(/f),e>

poop

where all the collinear and soft singularities are in the dipole operator Z

. <%’%(M2)76) . {; /Ou2 d:\; FK (aj(A2)) Y In (_)\327;7'> T, - T; - ii% (s (A?)) ] }
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Possible corrections to the dipole formula

@ the cusp anomalous dimension might violate Casimir scaling at 4 loops

VD () = CAg (as) + 33 (ars)
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Possible corrections to the dipole formula

@ the cusp anomalous dimension might violate Casimir scaling at 4 loops

VD () = CAg (as) + 33 (ars)

@ 4-line correlations may appear at 3 loops;
then the solution of the reduced soft anomalous dimension would be

I (pig, as) = T (piz, a) ot A(pijkis as)
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Possible corrections to the dipole formula

@ the cusp anomalous dimension might violate Casimir scaling at 4 loops

VD () = CAg (as) + 33 (ars)

@ 4-line correlations may appear at 3 loops;
then the solution of the reduced soft anomalous dimension would be

I (pig, as) = T (piz, a) ot A(pijkis as)

@  Ais constrained by Bose symmetry, collinear limits and transcendentality bounds

Becher Neubert 2009
Dixon Gardi Magnea 2009
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Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+ T, T,+T,+T,+Ty =0
Tt:Ta_'_Ta’a 4
2 2 2
Tu:Ta—l—Tb/ TS+Tt+Tu:ZC’L
1=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

i o~ t
Z (%,as(ﬂ2),€> = 7 (?%(/ﬂ),é) Z1 (E,Oés(/f),é) Duhr Gardi Magnea White VDD 201 |

Thursday, May 17, 2012



Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+ T, T,+T,+T,+Ty =0
Tt:Ta_'_Ta’a 4
2 2 2
Tu:Ta—l—Tb/ TS+Tt+Tu:ZC@
1=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

i o~ t
Z (%,Oés(u2),€> = 7 (?Oés(/LQ),G) Z1 (E,Oés(/f),é) Duhr Gardi Magnea White VDD 201 |

o the operator Z is colourless and s independent
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Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+ T, T,+T,+T,+Ty =0
Tt:Ta_'_Ta’a 4
2 2 2
T,=T,+ Ty r:[‘s—|—r'[‘t—i_’:[‘uZE:C’Z
i=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

i o~ t
Z (%,%(MQ),€> = Z (?%(/LQ),E) Z1 (E,QS(MQ),E) Duhr Gardi Magnea White VDD 201 |

w the operator Z, is colourless and s independent

w) colour and s dependence are in the operator Z

Z(%%(Mg)7€) _ eXp{K(%(ﬁ,e) lln (_%) T} + i T2 }

which is determined by the cusp anomalous dimension, through

L[ dN?
K(ozs(u2),e> = —Z/O e K (as(A?€)) ,
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Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+ T, T,+T,+T,+Ty =0
Tt:Ta_'_Ta’a 4
2 2 2
T,=T,+ Ty r:[‘s—|_r'[‘t—i_’:[‘uZE:C’Z
i=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

i o~ t
Z <%,QS(M2),€> = Z (%Oés(/f),e) Z1 (E,QS(MQ),E) Duhr Gardi Magnea White VDD 201 |

o the operator Z is colourless and s independent

w colour and s dependence are in the operator Z

Z(%%(Mg)7€) _ eXp{K(%(ﬁ,e) lln (_it) T} + i T2 }

which is determined by the cusp anomalous dimension, through

L[ dN?
K(ozs(u2),e> = —Z/O e K (as(A?€)) ,

@ the dipole operator fixes the Regge pole structure, and beyond
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Dipole formula & leading logs

@ to leading logarithmic accuracy in sft,
the dipole operator loses the imaginary part (s-channel)

M (%,as(/f)m) = exp {K(as(ﬁ),e) In (_%) T?} Z1 M (%%(ﬁ)ﬁ)
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Dipole formula & leading logs

@ to leading logarithmic accuracy in sft,
the dipole operator loses the imaginary part (s-channel)

M (%,aS(MQ),E) = exp {K(as(u2)76> In (_%) T?} Z1 M (%,as(u2),6>

@ in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

>  the t-channel exchange colour structure is an eigenstate of the operator

t 0
T2 3 f=sf W20 o gy i T
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Dipole formula & leading logs

@ to leading logarithmic accuracy in sft,
the dipole operator loses the imaginary part (s-channel)

M (%,aS(MQ),E) = exp {K(as(u2)76> In (_%) T?} Z1 M (%,as(u2),6>

@ in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

the t-channel exchange colour structure is an eigenstate of the operator

!
.'-_J-

T2 3 f=sf W20 o gy i T
Q@ to leading logarithmic accuracy in s/t, the parton-parton scattering amplitude becomes

ZlfH{f—Ucf

Ca K(as(,uQ),e)
ff—=ff _ (S
mirmit = ()

to leading order, the cusp anomalous dimension is

Vi (ag) = 2% - O(oz?) w K(ag,€e) = i &s —|—(’)(oz§)

7

so the singular part of the one-loop Regge gluon trajectory becomes

2
ot = Cy -+0 (") in agreement with the high-energy limit of parton-parton amplitudes
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Dipole formula beyond the leading logs

@ to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as

-/ S K(asae) T%
Z (g,as(/f),e) = (—) exp {iﬂK(aS,e) T?}

—t
{_ig[z{(%,e)r In (_it) [T%,Ti}}
il (a0 (2) e s (2 )
{
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Dipole formula beyond the leading logs

@ to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as

2 - (2) T ooy
{_ig[z{(%,e)r In (_it) [T%,Ti}}
cesp {4 [K(on 0] (~2rtm (£) [r2 2w e () 22,2222
{

@ NLL accuracy:
~(2)
K(ag,€) = % 1 + (%)2 (WK L > +O(er)

T 2¢ T 8¢ 162

reproduces the singular part of the one- and two-loop Regge gluon trajectory,
while the imaginary part does not Reggeise

Thursday, May 17, 2012



Dipole formula beyond the leading logs

@ to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as

2 - (2) T ooy
{_ig[z{(%,e)r In (_it) [T%,Ti}}
cesp {4 [K(on 0] (~2rtm (£) [r2 2w e () 22,2222
{

@ NLL accuracy:
as 1 Qg 2 72 bo
K(as,e) = — — + (—S) K +O(er)

T 2¢ T 8¢ 162

reproduces the singular part of the one- and two-loop Regge gluon trajectory,
while the imaginary part does not Reggeise

@  NNLL accuracy:
1
2

O(aZ) : —= - §7T2 K2<a8,e> <T§)2

which is non-logarithmic
and non-diagonal in the t channel

2

Oag): —B> - % K*(a,€) In (%) {Ti, T, T?H breaks down the Regge-pole picture
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Amplitudes in the high-energy limit

Q@ Regge limit of the gluon-gluon amplitude

) S T C : ) s Oé(t)_l_ —s a(t)
s + aa’ “Yvav, PasPa’ ¢ ¢

strip colour off & expand at one loop

s
g%q)—>gg:29 t ( (1)()1n( )"‘20(1) )

Ny

7

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, €, starting at |/€?

M3 (5,1) = 29

[(Tc)bb’ val/b/ (pb7 pb’)
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Amplitudes in the high-energy limit

Q@ Regge limit of the gluon-gluon amplitude

000 ) S ) S a(t) s a(t)
Maa,’bb’ (Sat) — 293% (T )aa’cl/al/a/ (pavpa’) 4 + ——t

strip colour off & expand at one loop

S S
m, =24 - <a<1>(t) In <—t) +2CLY (t))

[(TC)bb’ CVbI/b/ (pb7 pb')

VS

%
;

the Regge gluon trajectory is universal;

the one-loop gluon impact factor is a polynomial in t, €, starting at /€2

erform the Regge limit of the quark-quark amplitude
Q@ P 88 q q P
— get one-loop quark impact factor
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Amplitudes in the high-energy limit

Q@ Regge limit of the gluon-gluon amplitude

NGO
Tc aa’ “Yvav, r \Mas Pa’ -, -,
2 [0 Cons ] (%) +(2)

S
MO (5,1) = 267

[(Tc)bb’ CVbl/b/ (pb7 pb’)

strip colour off & expand at one loop
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the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, €, starting at /€2

@ perform the Regge limit of the quark-quark amplitude
— get one-loop quark impact factor

Q@ if factorisation holds, one can obtain the one-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does
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High-energy limit at 2 loops

Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

s |1 2. 5[ s s
Mg = 2975 [5 <a(1)(t)) In (—t) + (a<2><t) +200 (1) a(l)(t)) In (—t) +20@
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Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/&*
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High-energy limit at 2 loops

Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

s |1 2. 5[ s s
Mg = 2975 [5 <a(1)(t)) In (—t) + (a<2><t) +200 (1) a(l)(t)) In (—t) +20@
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Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/&*

Q@  perform the Regge limit of the quark-quark amplitude
— get two-loop quark impact factor
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High-energy limit at 2 loops
Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is
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Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/&*

Q@  perform the Regge limit of the quark-quark amplitude
— get two-loop quark impact factor

@ if factorisation holds, one can obtain the two-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit:
it doesn’t! by a TT%/€? factor Glover VDD 200
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High-energy limit at 2 loops
Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

m? = 293§ F <a(1)(t)>2 In? (it) + (a<2>(t) +2C0 (1) Oz(l)(t)) In (it) +2C50 () + (Cg(f? (t))zl
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Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/&*

Q@  perform the Regge limit of the quark-quark amplitude
— get two-loop quark impact factor

@ if factorisation holds, one can obtain the two-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit:
it doesn’t! by a TT%/€? factor Glover VDD 200
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Breaking down of the Regge-pole picture

@ the analytic structure of an amplitude sports cuts and poles

@ in the Regge limit, cuts should occur in 3-loop non-planar double-cross diagrams
Mandelstam 1965
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Possible corrections to the dipole formula

@ the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

@ we know that corrections to A like

aS 3 a C ade prcoe
A(212)(pijk:l7043) — (7) T¢T5TSTY [ FereFee Ligsy (L1423 L3340 + Ligos L1342) +CYC1]

fulfill Bose symmetry, collinear limits and transcendentality bounds Dixon Gardi Magnea 2009

Thursday, May 17, 2012



Possible corrections to the dipole formula

@ the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

@ we know that corrections to A like

aS 3 a C aae pfcoe
A(212)(pijk:l7043) — (7) T¢T5TSTY [ FereFee Ligsy <L1423 L3340 + Ligos L1342> +CYC1]

fulfill Bose symmetry, collinear limits and transcendentality bounds Dixon Gardi Magnea 2009

@ however, in the high-energy limit
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has super-leading logs, which are incompatible with the high-energy limit
Duhr Gardi Magnea White VDD 201 |
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Conclusions

@ the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture
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@ from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t
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& the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

& from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t

& thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy
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Conclusions

& the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

& from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t

& thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy

& conversely, the high-energy limit allows us to put constraints
on the possible corrections to the dipole formula
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