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Why the infrared structure of gauge amplitudes ?

Perturbation theory calculations of amplitudes beyond the leading order
exhibit infrared divergences, which in physical processes must cancel 
between the virtual corrections and the real emissions

While the finite part of an amplitude depends on the scattering process at hand, the 
infrared-divergent part is process independent (but for the parton species involved):
it is universal, and reveals the infrared structure of the gauge theory

Guesses have been made on the all-order structure of the infrared divergences
(dipole formula). The high-energy limit is one more tool which allows us to 
constrain the all-order structure
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In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

High-energy limit
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In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

High-energy limit

For a 4-gluon tree amplitude, we obtain

Mgg→gg
aa′bb′ (s, t) = 2 g2s

[
(T c)aa′Cνaνa′ (pa, pa′)

]
s

t

[
(Tc)bb′Cνbνb′ (pb, pb′)

]

Cνaνa′ (pa, pa′) are called impact factors
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[
(Tc)bb′Cνbνb′ (pb, pb′)

]

Cνaνa′ (pa, pa′) are called impact factors

leading logarithms of s/t are obtained by the substitution
1

t
→ 1

t
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s
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)α(t)
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In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

High-energy limit

For a 4-gluon tree amplitude, we obtain

Mgg→gg
aa′bb′ (s, t) = 2 g2s

[
(T c)aa′Cνaνa′ (pa, pa′)

]
s

t

[
(Tc)bb′Cνbνb′ (pb, pb′)

]

Cνaνa′ (pa, pa′) are called impact factors

leading logarithms of s/t are obtained by the substitution
1

t
→ 1

t

(
s

−t

)α(t)

α(t) is the Regge gluon trajectory, with infrared coefficients

α(t) =
αs(−t, ε)

4π
α(1) +

(
αs(−t, ε)

4π

)2

α(2) + O
(
α3
s

)

α(1) = CA
γ̂(1)
K

ε
= CA

2

ε
α(2) = CA

[
−b0
ε2

+ γ̂(2)
K

2

ε
+ CA

(
404

27
− 2ζ3

)
+ nf

(
−56

27

)]
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In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

High-energy limit

For a 4-gluon tree amplitude, we obtain

Mgg→gg
aa′bb′ (s, t) = 2 g2s

[
(T c)aa′Cνaνa′ (pa, pa′)

]
s

t

[
(Tc)bb′Cνbνb′ (pb, pb′)

]

Cνaνa′ (pa, pa′) are called impact factors

leading logarithms of s/t are obtained by the substitution
1

t
→ 1

t

(
s

−t

)α(t)

Mgg→gg
aa′bb′ (s, t) = 2 g2s

s

t

[
(T c)aa′Cνaνa′ (pa, pa′)

] [(
s

−t

)α(t)

+

(
−s

−t

)α(t)
] [

(Tc)bb′Cνbνb′ (pb, pb′)

]
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Γµ(p1, p2;µ2, ε) ≡< 0|Jµ(0)|p1, p2 >= v̄(p2)γµu(p1) Γ
(

Q2

µ2
, αs(µ2), ε

)

Resummation: Sudakov form factor
Sudakov (quark) form factor as matrix element of EM current

obeys evolution equation

Q2 ∂

∂Q2
ln

[
Γ

(
Q2

µ2
, αs(µ2), ε

)]
=

1
2

[
K

(
αs(µ2), ε

)
+ G

(
Q2

µ2
, αs(µ2), ε

)]

K is a counterterm; G is finite as ε→ 0
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Γµ(p1, p2;µ2, ε) ≡< 0|Jµ(0)|p1, p2 >= v̄(p2)γµu(p1) Γ
(

Q2

µ2
, αs(µ2), ε

)

Resummation: Sudakov form factor
Sudakov (quark) form factor as matrix element of EM current

obeys evolution equation

Q2 ∂

∂Q2
ln

[
Γ

(
Q2

µ2
, αs(µ2), ε

)]
=

1
2

[
K

(
αs(µ2), ε

)
+ G

(
Q2

µ2
, αs(µ2), ε

)]

K is a counterterm; G is finite as ε→ 0

RG invariance requires

µ
dG

dµ
= −µ

dK

dµ
= γK(αs(µ2))

γK is the cusp anomalous dimension

Korchemsky Radyushkin 1987

the solution is

Γ
(
Q2, ε

)
= exp

{
1

2

∫ −Q2

0

dξ2

ξ2

[
G
(
−1, ᾱs(ξ

2, ε), ε
)
− 1

2
γK

(
ᾱs(ξ

2, ε)
)
ln

(
−Q2

ξ2

)]}

Thursday, May 17, 2012



cusp anomalous dimension

loop expansion of the cusp anomalous dimension

K =
(

67
18
− ζ2

)
CA −

10
9

TF Nf

γ(i)
K = 2Ci

αs(µ2)
π

+ KCi

(
αs(µ2)

π

)2

+ · · ·

with
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Factorisation of a multi-leg amplitude

Mueller 1981
Sen 1983
Botts Sterman 1987
Kidonakis Oderda Sterman 1998
Catani 1998
Tejeda-Yeomans Sterman 2002
Kosower 2003
Aybat Dixon Sterman 2006
Becher Neubert 2009
Gardi Magnea 2009

to avoid double counting of soft-collinear region (IR double poles), 
Ji removes eikonal part from Ji, which is already in S
Ji/Ji contains only single collinear poles

MN (pi/µ, ε) =
∑

L

SNL(βi · βj , ε) HL

(
2pi · pj

µ2
,
(2pi · ni)2

n2
i µ

2

) ∏

i

Ji

(
(2pi · ni)2

n2
i µ

2
, ε

)

Ji

(
2(βi · ni)2

n2
i

, ε

)

pi = βiQ0/
√

2 value of Q0  is immaterial in S, J
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Factorisation
Soft gluons decouple from the hard part of the amplitude 
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Factorisation
Soft gluons decouple from the hard part of the amplitude 

Ward identities decouple soft gluons from jets

soft gluons see jets as scalar particles 
representing the evolution of the external legs

colour links only the hard and soft parts of the amplitude
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Factorisation
Soft gluons decouple from the hard part of the amplitude 

Ward identities decouple soft gluons from jets

soft gluons see jets as scalar particles 
representing the evolution of the external legs

colour links only the hard and soft parts of the amplitude

Soft function is a matrix which mixes the colour representations
and is driven by the anomalous dimension matrix ΓS
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- introduce auxiliary vector ni (ni
2 ≠ 0) to separate collinear region

- define a jet using a Wilson line along ni

Jet definition

ū(p) J

(
(2p · n)2

n2µ2
, ε

)
=< p|ψ̄(0)Φn(0,−∞)|0 >

Φn(λ2, λ1) = P exp

[
ig

∫ λ2

λ1

dλn · A(λn)

]
Wilson line

partonic jet

eikonal jet J
(

2(β · n)2

n2
, ε

)
=< 0|Φ̄β(∞, 0)Φn(0,−∞)|0 >
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 
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Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities

functional dependence on ni constrained by classical invariance
of  Wilson lines under rescaling ni → αi ni
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 

single poles carry                    dependence
thus violate classical rescaling symmetry wrt β ⇒ cusp anomalous dim

(β · n)2/n2

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities

functional dependence on ni constrained by classical invariance
of  Wilson lines under rescaling ni → αi ni
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 

single poles carry                    dependence
thus violate classical rescaling symmetry wrt β ⇒ cusp anomalous dim

(β · n)2/n2

δj is a constant

double poles and kinematic dependence of single poles are controlled by cusp γK, 
like in the quark form factor

J
(
2(β · n)2

n2
, ε

)
= exp

{
1

4

∫ µ2

0

dλ2

λ2

[
δJi

(
αs(λ

2, ε)
)
− 1

2
γK

(
ᾱs(λ

2, ε)
)
ln

(
2(β · n)2µ2

n2λ2

)]}

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities

functional dependence on ni constrained by classical invariance
of  Wilson lines under rescaling ni → αi ni
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Soft function S

(cN )ijklSNL

(
βa · βb, αs(µ

2), ε
)

=
∑

i′j′k′l′

< 0|Φk,k′

−β2
(0,∞)Φi,i′

β1
(∞, 0)Φj,j′

β3
(0,∞)Φl,l′

−β4
(∞, 0)|0 > (cL)i′j′k′l′

soft function is a matrix which mixes the colour representations 
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Soft function S

(cN )ijklSNL

(
βa · βb, αs(µ

2), ε
)

=
∑

i′j′k′l′

< 0|Φk,k′

−β2
(0,∞)Φi,i′

β1
(∞, 0)Φj,j′

β3
(0,∞)Φl,l′

−β4
(∞, 0)|0 > (cL)i′j′k′l′

soft function is a matrix which mixes the colour representations 

matrix evolution equation

ΓS soft anomalous dimension,
singular due to the UV and collinear poles

µ
d

dµ
SJL

(
βa · βb, αs(µ

2), ε
)

= −
∑

N

[ΓS ]JN
(
βa · βb, αs(µ

2), ε
)
SNL

(
βa · βb, αs(µ

2), ε
)
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Soft function S

(cN )ijklSNL

(
βa · βb, αs(µ

2), ε
)

=
∑

i′j′k′l′

< 0|Φk,k′

−β2
(0,∞)Φi,i′

β1
(∞, 0)Φj,j′

β3
(0,∞)Φl,l′

−β4
(∞, 0)|0 > (cL)i′j′k′l′

soft function is a matrix which mixes the colour representations 

matrix evolution equation

ΓS soft anomalous dimension,
singular due to the UV and collinear poles

µ
d

dµ
SJL

(
βa · βb, αs(µ

2), ε
)

= −
∑

N

[ΓS ]JN
(
βa · βb, αs(µ

2), ε
)
SNL

(
βa · βb, αs(µ

2), ε
)

in DimReg the solution is

S
(
βa · βb, αs(µ

2), ε
)
= P exp

{
−1

2

∫ µ2

0

dλ2

λ2
ΓS

(
βa · βb, αs(µ

2), ε
)
}

ΓS =
∞∑

n=1

Γ(n)
S

(
αs(µ2)

π

)n
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Soft anomalous dimension
for an amplitude with an arbitrary # of legs

Aybat Dixon Sterman 2006

K is 2-loop coefficient of cusp anomalous dimension

ΓS has cusp singularities like γJ

Γ(2)
S =

K

2
Γ(1)
S
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N = 4 SUSY in the planar limit

colour-wise, the planar limit is trivial:can absorb S into Ji
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N = 4 SUSY in the planar limit

colour-wise, the planar limit is trivial:can absorb S into Ji

each slice is square root of Sudakov form factor

Mn =
n∏

i=1

[
M[gg→1]

(
si,i+1

µ2
, αs, ε

)]1/2

hn({pi}, µ2, αs, ε)
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N = 4 SUSY in the planar limit

colour-wise, the planar limit is trivial:can absorb S into Ji

each slice is square root of Sudakov form factor

Mn =
n∏

i=1

[
M[gg→1]

(
si,i+1

µ2
, αs, ε

)]1/2

hn({pi}, µ2, αs, ε)

β fn = 0 ⇒ coupling runs only through dimension

ln
[
Γ

(
Q2

µ2
, αs(µ2), ε

)]
= −1

2

∞∑

n=1

(
αs(µ2)

π

)n (
−Q2

µ2

)−nε
[

γ(n)
K

2n2ε2
+

G(n)(ε)
nε

]

⇒ IR structure of N = 4 SUSY amplitudes

the Sudakov form factor has a simple solution

ᾱs(µ2)µ2ε = ᾱs(λ2)λ2ε
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Reduced soft function

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities ⇒ must respect rescaling βi → κi βi

S̄ depends only on

Dixon Magnea Sterman 2008S̄JL (ρij , ε) =
SJL (βi · βj , ε)

n∏

i=1

Ji

(
2(βi · ni)2

n2
i

, ε

)

ρij =
(βi · βj)2

2(βi · ni)2

n2
i

2(βj · nj)2

n2
j
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Reduced soft function

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities ⇒ must respect rescaling βi → κi βi

S̄ depends only on

Dixon Magnea Sterman 2008S̄JL (ρij , ε) =
SJL (βi · βj , ε)

n∏

i=1

Ji

(
2(βi · ni)2

n2
i

, ε

)

ρij =
(βi · βj)2

2(βi · ni)2

n2
i

2(βj · nj)2

n2
j

the factorisation becomes

S̄ has only single poles due to large-angle soft emissions

MN (pi/µ, ε) =
∑

L

S̄NL(ρij , ε)HL

(
2pi · pj
µ2

,
(2pi · ni)2

n2
iµ

2

)∏

i

Ji

(
(2pi · ni)2

n2
iµ

2
, ε

)

Thursday, May 17, 2012



Reduced soft anomalous dimension
the evolution equation for the reduced soft anomalous dimension

Becher Neubert 2009
Gardi Magnea 2009

(simplest) solution: dipole formula

with

∑

j !=i

∂

∂ ln ρij
ΓS̄(ρij , αs) =

1

4
γ(i)
K (αs)

ΓS̄(ρij , αs)
∣∣∣
dip

= −1

8
γ̂K(αs)

∑

i !=j

ln(ρij)Ti · Tj +
1

2
δ̂S̄(αs)

n∑

i=1

Ci

γ(i)
K (αs) = Ciγ̂K(αs) γ̂K(αs) = 2

αs(µ2)

π
+K

(
αs(µ2)

π

)2

+K(2)

(
αs(µ2)

π

)3

+ · · ·
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Reduced soft anomalous dimension
the evolution equation for the reduced soft anomalous dimension
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Reduced soft anomalous dimension
the evolution equation for the reduced soft anomalous dimension

Becher Neubert 2009
Gardi Magnea 2009

(simplest) solution: dipole formula

with

only 2-eikonal-line correlations

generalises 2-loop solution

∑

j !=i

∂

∂ ln ρij
ΓS̄(ρij , αs) =

1

4
γ(i)
K (αs)

colour matrix structure fixed at one loop

cusp anomalous dimension plays role of IR coupling

ΓS̄(ρij , αs)
∣∣∣
dip

= −1

8
γ̂K(αs)

∑

i !=j

ln(ρij)Ti · Tj +
1
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π
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Dipole formula for the amplitude

combining the dipole-formula solution for the reduced soft function
with the jet functions, one obtains a dipole formula for the amplitude

M
(
pi
µ
, αs(µ

2), ε

)
= Z

(
pi
µf

, αs(µ
2
f ), ε

)
H

(
pi
µ
,
µf

µ
, αs(µ

2), ε

)

where all the collinear and soft singularities are in the dipole operator Z

Z

(
pl
µ
, αs(µ

2), ε

)
= exp

{
1

2

∫ µ2

0

dλ2

λ2

[
γ̂K

(
αs(λ2)

)

4

∑

(i,j)

ln

(
−sij
λ2

)
Ti ·Tj −

L∑

i=1

γJi

(
αs(λ

2)
) ]

}
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Possible corrections to the dipole formula
the cusp anomalous dimension might violate Casimir scaling at 4 loops

γ(i)
K (αs) = Ciγ̂K(αs) + γ̃(i)

K (αs)
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Possible corrections to the dipole formula
the cusp anomalous dimension might violate Casimir scaling at 4 loops

4-line correlations may appear at 3 loops; 
then the solution of the reduced soft anomalous dimension would be

ΓS̄(ρij , αs) = ΓS̄(ρij , αs)
∣∣∣
dip

+∆(ρijkl, αs)

ρijkl =
ρijρkl
ρikρjl

γ(i)
K (αs) = Ciγ̂K(αs) + γ̃(i)

K (αs)
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Possible corrections to the dipole formula
the cusp anomalous dimension might violate Casimir scaling at 4 loops

4-line correlations may appear at 3 loops; 
then the solution of the reduced soft anomalous dimension would be

ΓS̄(ρij , αs) = ΓS̄(ρij , αs)
∣∣∣
dip

+∆(ρijkl, αs)

ρijkl =
ρijρkl
ρikρjl

γ(i)
K (αs) = Ciγ̂K(αs) + γ̃(i)

K (αs)

Δ is constrained by Bose symmetry, collinear limits and transcendentality bounds

Becher Neubert 2009
Dixon Gardi Magnea 2009
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Dipole formula in the high-energy limit
we introduce the colour operators 

Ts = Ta +Tb ,

Tt = Ta +Ta′ ,

Tu = Ta +Tb′

Ta +Tb +Ta′ +Tb′ = 0

T2
s +T2

t +T2
u =

4∑

i=1

Ci

in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

Z

(
pi
µ
, αs(µ

2), ε

)
= Z̃

(s
t
, αs(µ

2), ε
)
Z1

(
t

µ2
, αs(µ

2), ε

)
Duhr Gardi Magnea White VDD 2011
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Ta +Tb +Ta′ +Tb′ = 0

T2
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t +T2
u =
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Ci

the operator Z1 is colourless and s independent

in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t
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Dipole formula in the high-energy limit
we introduce the colour operators 

Ts = Ta +Tb ,

Tt = Ta +Ta′ ,

Tu = Ta +Tb′

Ta +Tb +Ta′ +Tb′ = 0

T2
s +T2

t +T2
u =

4∑

i=1

Ci

the operator Z1 is colourless and s independent

colour and s dependence are in the operator Z̃
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t
, αs(µ

2), ε
)

= exp

{
K
(
αs(µ

2), ε
)[

ln

(
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)
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t + iπT2
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]}

which is determined by the cusp anomalous dimension, through

K
(
αs(µ

2), ε
)
= −1

4

∫ µ2

0

dλ2

λ2
γ̂K

(
αs(λ

2, ε)
)
,

in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

Z

(
pi
µ
, αs(µ

2), ε

)
= Z̃

(s
t
, αs(µ

2), ε
)
Z1

(
t

µ2
, αs(µ

2), ε

)
Duhr Gardi Magnea White VDD 2011
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for completeness, the operator Z1 is
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Dipole formula & leading logs

to leading logarithmic accuracy in s/t, 
the dipole operator loses the imaginary part (s-channel)

M
(
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µ
, αs(µ
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)
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)
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}
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, αs(µ

2), ε

)
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Dipole formula & leading logs
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in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

the t-channel exchange colour structure is an eigenstate of the operator 

T2
t Hff→ff |t/s|→0−−−−−→ Ct Hff→ff

t
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in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

the t-channel exchange colour structure is an eigenstate of the operator 

T2
t Hff→ff |t/s|→0−−−−−→ Ct Hff→ff

t

to leading logarithmic accuracy in s/t, the parton-parton scattering amplitude becomes

Mff→ff =

(
s

−t

)CA K(αs(µ
2),ε)

Z1 Hff→ff
t

to leading order, the cusp anomalous dimension is

γ̂K(αs) = 2
αs

π
+ O(α2

s) K(αs, ε) =
1

2ε

αs

π
+O(α2
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so the singular part of the one-loop Regge gluon trajectory becomes

α(1) = CA
2

ε
+ O

(
ε0
)

in agreement with the high-energy limit of parton-parton amplitudes
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Dipole formula beyond the leading logs
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to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as
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NLL accuracy:

K(αs, ε) =
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+
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(
γ̂(2)
K

8ε
− b0
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+O(α3
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reproduces the singular part of the one- and two-loop Regge gluon trajectory,
while the imaginary part does not Reggeise
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NNLL accuracy:

O(α2
s) : − 1

2
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) (
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which is non-logarithmic
and non-diagonal in the t channel

breaks down the Regge-pole picture
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Mgg→gg
aa′bb′ (s, t) = 2 g2s

s

t

[
(T c)aa′Cνaνa′ (pa, pa′)

] [(
s

−t

)α(t)

+

(
−s

−t

)α(t)
] [

(Tc)bb′Cνbνb′ (pb, pb′)

]
Regge limit of the gluon-gluon amplitude

strip colour off & expand at one loop

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε2

m(1)
gg→gg = 2 g2s

s

t

(
α(1)(t) ln

(
s

−t

)
+ 2C(1)

gg (t)

)

Amplitudes in the high-energy limit
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perform the Regge limit of the quark-quark amplitude 
→ get one-loop quark impact factor

if factorisation holds, one can obtain the one-loop quark-gluon amplitude 
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does
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High-energy limit at 2 loops
in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε4

m(2)
gg→gg = 2 g2s

s

t

[
1

2

(
α(1)(t)

)2
ln2

(
s

−t

)
+

(
α(2)(t) + 2C(1)

gg (t)α(1)(t)
)
ln

(
s

−t

)
+ 2C(2)

gg (t) +
(
C(1)

gg (t)
)2

]
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αs, ε

) (
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s
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is it related to  ?
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Breaking down of the Regge-pole picture
the analytic structure of an amplitude sports cuts and poles

in the Regge limit, cuts should occur in 3-loop non-planar double-cross diagrams
Mandelstam 1965

is it related to                                                           ?− π2

3
K3(αs, ε) ln

(
s

−t

)[
T2

s,
[
T2

t ,T
2
s

]]
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Possible corrections to the dipole formula

the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

fulfill Bose symmetry, collinear limits and transcendentality bounds

we know that corrections to Δ like

∆(212)(ρijkl, αs) =
(αs

π

)3
Ta

1T
b
2T

c
3T

d
4

[
fadef cbe L2

1234

(
L1423 L

2
1342 + L2

1423 L1342

)
+ cycl

]

Dixon Gardi Magnea 2009
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L = ln
(s
t

)

however, in the high-energy limit

ρ1234 =
(−s12)(−s34)

(−s13)(−s24)
=

(
s

−t

)2

e−2iπ ; L1234 = 2(L− iπ)

ρ1342 =
(−s13)(−s24)

(−s14)(−s23)
=

(
−t

s+ t

)2

; L1342 " −2L

ρ1423 =
(−s14)(−s23)

(−s12)(−s34)
=

(
s+ t

s

)2

e2iπ ; L1423 " 2iπ

∆(212)(ρijkl, αs)) =
(αs

π

)3
Ta

1T
b
2T

c
3T

d
4 32 iπ

[(
− L4 − iπL3 − π2L2 − iπ3L

)
fadef cbe

+
(
2iπL3 − 3π2L2 − iπ3L

)
f caefdbe

]
+O (|t/s|)

has super-leading logs, which are incompatible with the high-energy limit
Duhr Gardi Magnea White VDD 2011
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Conclusions

the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture
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Conclusions

the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles, 
to leading power accuracy in s/t

thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy

conversely, the high-energy limit allows us to put constraints
on the possible corrections to the dipole formula 
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