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Why the infrared structure of QCD amplitudes ?

Perturbation theory calculations of amplitudes beyond the leading order
exhibit infrared divergences, which in physical processes must cancel 
between the virtual corrections and the real emissions

While the finite part of an amplitude depends on the scattering process at hand, the 
infrared-divergent part is process independent (but for the parton species involved):
it is universal, and reveals the infrared structure of the gauge theory

Guesses have been made on the all-order structure of the infrared divergences
(dipole formula). The high-energy limit is one more tool which allows us to 
constrain the all-order structure
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In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

High-energy limit
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In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

High-energy limit

For a 4-gluon tree amplitude, we obtain

Mgg!gg
aa0bb0 (s, t) = 2 g2s


(T c)aa0C⌫a⌫a0 (pa, pa0)

�
s

t


(Tc)bb0C⌫b⌫b0 (pb, pb0)

�

C⌫a⌫a0 (pa, pa0) are called impact factors
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�

in the Regge limit, the amplitude is invariant under s ↔ u exchange.

To NLL accuracy,  the amplitude is given by Fadin Lipatov 1993
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Factorisation of a multi-leg amplitude

Mueller 1981
Sen 1983
Botts Sterman 1987
Kidonakis Oderda Sterman 1998
Catani 1998
Tejeda-Yeomans Sterman 2002
Kosower 2003
Aybat Dixon Sterman 2006
Becher Neubert 2009
Gardi Magnea 2009

to avoid double counting of soft-collinear region (IR double poles), 
Ji removes eikonal part from Ji, which is already in S
Ji/Ji contains only single collinear poles

MN (pi/µ, ⇥) =
⇤

L

SNL(�i · �j , ⇥) HL
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2 value of Q0  is immaterial in S, J
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Factorisation
Soft gluons decouple from the hard part of the amplitude 
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Factorisation
Soft gluons decouple from the hard part of the amplitude 

Ward identities decouple soft gluons from jets

soft gluons see jets as scalar particles 
representing the evolution of the external legs

colour links only the hard and soft parts of the amplitude
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Factorisation
Soft gluons decouple from the hard part of the amplitude 

Ward identities decouple soft gluons from jets

soft gluons see jets as scalar particles 
representing the evolution of the external legs

colour links only the hard and soft parts of the amplitude

Soft function is a matrix which mixes the colour representations
and is driven by the anomalous dimension matrix ΓS
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Reduced soft anomalous dimension
the evolution equation for the reduced soft anomalous dimension

Becher Neubert 2009
Gardi Magnea 2009

(simplest) solution: dipole formula

with
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Reduced soft anomalous dimension
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Becher Neubert 2009
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with
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only 2-eikonal-line correlations

generalises 2-loop solution

colour matrix structure fixed at one loop

cusp anomalous dimension plays role of IR coupling
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Dipole formula for the amplitude

combining the dipole-formula solution for the reduced soft function
with the jet functions, one obtains a dipole formula for the amplitude
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Possible corrections to the dipole formula
the cusp anomalous dimension might violate Casimir scaling at 4 loops

�(i)
K (↵s) = Ci�̂K(↵s) + �̃(i)

K (↵s)
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Possible corrections to the dipole formula
the cusp anomalous dimension might violate Casimir scaling at 4 loops

4-line correlations may appear at 3 loops; 
then the solution of the reduced soft anomalous dimension would be

�S̄(⇢ij ,↵s) = �S̄(⇢ij ,↵s)
���
dip

+�(⇢ijkl,↵s)

⇢ijkl =
⇢ij⇢kl
⇢ik⇢jl
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K (↵s)
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Possible corrections to the dipole formula
the cusp anomalous dimension might violate Casimir scaling at 4 loops

4-line correlations may appear at 3 loops; 
then the solution of the reduced soft anomalous dimension would be

�S̄(⇢ij ,↵s) = �S̄(⇢ij ,↵s)
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+�(⇢ijkl,↵s)
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⇢ik⇢jl
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K (↵s) = Ci�̂K(↵s) + �̃(i)

K (↵s)

Δ is constrained by Bose symmetry, collinear limits and transcendentality bounds

Becher Neubert 2009
Dixon Gardi Magnea 2009
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Dipole formula in the high-energy limit
we introduce the colour operators 

Ts = Ta +Tb ,

Tt = Ta +Ta0 ,

Tu = Ta +Tb0

Ta +Tb +Ta0 +Tb0 = 0

in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

Duhr Gardi Magnea White VDD 2011
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the dipole operator fixes the Regge pole structure

in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

Duhr Gardi Magnea White VDD 2011
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one may think of the operator Z1 as a jet operator,
which, as we will see, yields the divergent parts of the impact factor
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Possible corrections to the dipole formula in the HEL

the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

fulfill Bose symmetry, collinear limits and transcendentality bounds

we know that corrections to Δ like
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has super-leading logs, which are incompatible with the high-energy limit
Duhr Gardi Magnea White VDD 2011
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Dipole formula & leading logs

to leading logarithmic accuracy in s/t, 
the dipole operator loses the imaginary part (s-channel)
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in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

the t-channel exchange colour structure is an eigenstate of the operator 
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Dipole formula beyond the leading logs
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to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as

NLL accuracy:

reproduces the singular part of the one- and two-loop Regge gluon trajectory,
while the imaginary part does not Reggeise
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Regge limit of the gluon-gluon amplitude

strip colour off & expand at one loop

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε2
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→ get one-loop quark impact factor
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Regge limit of the gluon-gluon amplitude

strip colour off & expand at one loop

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε2

perform the Regge limit of the quark-quark amplitude 
→ get one-loop quark impact factor

if factorisation holds, one can obtain the one-loop quark-gluon amplitude 
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does
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High-energy limit at 2 loops
in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε4
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High-energy limit at 2 loops
in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε4

perform the Regge limit of the quark-quark amplitude 
→ get two-loop quark impact factor

if factorisation holds, one can obtain the two-loop quark-gluon amplitude 
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit:
it doesn’t!  by a π2/ε2 factor Glover VDD 2001
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to account for a factorization breaking remainder,
we write the amplitude in the high-energy limit as 
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with for the s ↔ u exchange symmetry 

for qq scattering 

we include a possible factorization breaking remainder at 2 loops and beyond
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to compare with the amplitude in the high-energy limit, 
it is better to define the infrared operator as
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The terms proportional to Tt2 reproduce the structure of the high-energy amplitude.
The breaking of high-energy factorization arises from the last term, which is a color- and
process-dependent phase. This is in accordance with the expectation that the failure of 
high-energy factorization should come from the mixing of different color amplitudes

Falcioni Magnea Vernazza VDD 2013, and in progress
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Comparing infrared and high-energy factorizations

1 loop

↵(1) = CA
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Regge trajectory
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confirming that the quark-gluon amplitude in the high-energy limit can be obtained
by assembling the Regge trajectory with the gluon and quark impact factors

is universalM (1),1

M (1),0
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confirming that the quark-gluon amplitude in the high-energy limit can be obtained
by assembling the Regge trajectory with the gluon and quark impact factors

is universalM (1),1

M (1),0

2 loops

Regge trajectory ↵(2) = CA
2b�(2)

K

✏
+Re

h
bH(2),1,[8]

rs

i

with constraint Re
h
bH(2),1,[8]
gg

i
= Re

h
bH(2),1,[8]
qg

i
= Re

h
bH(2),1,[8]
qq

i

which ensures that the trajectory is universal

M (2),1

Wednesday, June 25, 14



2 loops

we may collect all factorization-breaking terms in a remainder
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mismatch between true amplitude and NLL expansion may be quantified by
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Falcioni Magnea Vernazza VDD 2013
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3 loops

we expect that the single-log terms, which define the 3-loop Regge trajectory,
are plagued by non-factoring contributions
we may define the 3-loop remainder suitably
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+
⇣
K(1)

⌘2

⇡Ot,s

Im(H(1),0)

H(0),[8]
� ⇡2

4
O2

s�u
Re(H(1),1)

H(0),[8]
+

⇡2

4
O2

t (1� 2
rs)

Re(H(1),1)

H(0),[8]

�

� ⇡K(1)Os�u
Im(H(2),1)

H(0),[8]
+O(✏0)

↵(3) = CA
16b�(3)

K

3✏
+O(✏0)

Falcioni Magnea Vernazza VDD, in progress

such that the trajectory be

Ot = T2
t ,

Ot,s =
⇥
T2

t ,T
2
s

⇤
,

Os,t,s =
⇥
T2

s,
⇥
T2

t ,T
2
s

⇤⇤
with

M (3),1
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BFKL resummation
In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

BFKL is a resummation of multiple gluon radiation out of the gluon exchanged
in the t channel, at LL and NLL accuracy in ln(s/t)

the LL terms are obtained in the approximation of a strong rapidity ordering
and no kT ordering of the emitted gluons

the resummation yields a 2-dim integral equation in kT for the evolution
of the gluon propagator exchanged in the t channel

Balitsky Fadin Kuraev Lipatov 1977-78
Fadin Lipatov 1998

the solution is a Green’s function of the momenta flowing in and out of 
the gluon ladder exchanged in the t channel
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Mueller-Navelet jets

d�̂gg

dp21?dp
2
2?d�jj

=
⇡

2


CA↵s

p21?

�
f(~q1?, ~q2?,�y)


CA↵s

p22?

�

the cross section for dijet production at large rapidity
intervals  

can be described through the BFKL Green’s function

ŝ = xaxbS , t = �
q

p

2
1?p

2
2?

�y = y1 � y2 = ln

✓
ŝ

�t

◆
� 1

with

f(~q1?, ~q2?,�y) =
1

(2⇡)2
p

q21? q22?

+1X

n=�1
ein�

Z +1

�1
d⌫

✓
q21?
q22?

◆i⌫

e⌘ �⌫,n

⌘ ⌘ CA ↵s

⇡
�y

�⌫,n = �2�E �  

✓
1

2
+

|n|
2

+ i⌫

◆
�  

✓
1

2
+

|n|
2

� i⌫

◆

with

and the LL BFKL eigenvalue

and ɸ the angle between q1
2 and q2

2
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Mueller-Navelet dijet cross section

azimuthal angle distribution (ɸjj = ɸ-π)

d�̂gg

d�jj
=

⇡(CA↵s)2

2E2
?

"
�(�jj � ⇡) +

1X

k=1

 1X

n=�1

ein�

2⇡
fn,k

!
⌘k
#

fn,k =
1

2⇡

1

k!

Z 1

�1
d⌫

�k
⌫,n

⌫2 + 1
4

with
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Mueller-Navelet dijet cross section

azimuthal angle distribution (ɸjj = ɸ-π)

d�̂gg

d�jj
=

⇡(CA↵s)2

2E2
?

"
�(�jj � ⇡) +

1X

k=1

 1X

n=�1

ein�

2⇡
fn,k

!
⌘k
#

fn,k =
1

2⇡

1

k!

Z 1

�1
d⌫

�k
⌫,n

⌫2 + 1
4

with

the dijet cross section is �̂gg =
⇡(CA↵s)2

2E2
?

1X

k=0

f0,k ⌘
k

with

f0,0 = 1 ,

f0,1 = 0 ,

f0,2 = 2⇣2 ,

f0,3 = �3⇣3 ,

f0,4 =
53

6
⇣4 ,

f0,5 = � 1

12
(115⇣5 + 48⇣2⇣3)

Mueller Navelet 1987
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use complex transverse momentum p
k? ! p̃

k

= px
k

+ ipy
k

and a complex variable

the Green's function can be expanded into a power series in η 

f(~q1?, ~q2?,�y) =
1

2
�(2)(~q1? � ~q2?) +

1

2⇡
p
q21? q22?

1X

k=1

⌘k fk(w,w
⇤)

w =
p̃1
p̃2

where the coefficient functions fk are given by the inverse Fourier-Mellin transform

fk(w,w
⇤) =

1

k!

+1X

n=�1
(�1)n

⇣ w

w⇤

⌘n/2
Z +1

�1

d⌫

2⇡
|w|2i⌫ �k

⌫,n

BFKL Green’s function and single-valued functions

⇣ w

w⇤

⌘1/2
= e�i�jj = �ei�
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use complex transverse momentum p
k? ! p̃

k

= px
k

+ ipy
k

and a complex variable

the Green's function can be expanded into a power series in η 

f(~q1?, ~q2?,�y) =
1

2
�(2)(~q1? � ~q2?) +

1
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p
q21? q22?

1X

k=1

⌘k fk(w,w
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w =
p̃1
p̃2

where the coefficient functions fk are given by the inverse Fourier-Mellin transform

fk(w,w
⇤) =

1

k!

+1X

n=�1
(�1)n

⇣ w

w⇤

⌘n/2
Z +1

�1

d⌫

2⇡
|w|2i⌫ �k

⌫,n

fk should be real-analytic functions of w

they should have a unique, well-defined value for every ratio of the 
magnitudes of the two jet transverse momenta and angle between them

BFKL Green’s function and single-valued functions

⇣ w

w⇤

⌘1/2
= e�i�jj = �ei�
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Harmonic polylogarithms

classical polylogarithms Lim(z) =

Z z

0
dz0

Lim�1(z0)

z0

with Remiddi Vermaseren 1999

harmonic polylogarithms (HPLs)

H(a, ~w; z) =

Z z

0
dt f(a; t)H(~w; t) f(�1; t) =

1

1 + t
, f(0; t) =

1

t
, f(1; t) =

1

1� t

{a, ~w} 2 {�1, 0, 1}

HPLs obey the differential equations

d

dz
H0!(z) =

H!(z)

z
,

d

dz
H1!(z) =

H!(z)

1� z

subject to the constraints

H(z) = 1, H~0n
(z) =

1

n!
lnn z, lim

z!0
H! 6=~0n

(z) = 0

HPLs form a shuffle algebra

H!1(z)H!2(z) =
X

!

H!(z) with ω the shuffle of ω1 and ω2

HPLs are multi-valued functions on the complex plane
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Single-valued harmonic polylogarithms
define a function ℒ that is real-analytic and single-valued on
and that has the same properties as the HPLs 

C/{0, 1}

it obeys the differential equations

@

@z
L0!(z) =

L!(z)

z

@

@z
L1!(z) =

L!(z)

1� z

subject to the constraints

Le(z) = 1 , L~0n
(z) =

1

n!
lnn |z|2 lim

z!0
L! 6=~0n

(z) = 0

the SVHPLs ℒω(z)  also form a shuffle algebra

L!1(z)L!2(z) =
X

!

L!(z) with ω the shuffle of ω1 and ω2
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Single-valued harmonic polylogarithms
define a function ℒ that is real-analytic and single-valued on
and that has the same properties as the HPLs 

C/{0, 1}

it obeys the differential equations

@

@z
L0!(z) =

L!(z)

z

@

@z
L1!(z) =

L!(z)

1� z

subject to the constraints

Le(z) = 1 , L~0n
(z) =

1

n!
lnn |z|2 lim

z!0
L! 6=~0n

(z) = 0

the SVHPLs ℒω(z)  also form a shuffle algebra

L!1(z)L!2(z) =
X

!

L!(z) with ω the shuffle of ω1 and ω2

Brown 2004
SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel
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Single-valued harmonic polylogarithms
define a function ℒ that is real-analytic and single-valued on
and that has the same properties as the HPLs 

C/{0, 1}

it obeys the differential equations

@

@z
L0!(z) =

L!(z)

z

@

@z
L1!(z) =

L!(z)

1� z

subject to the constraints

Le(z) = 1 , L~0n
(z) =

1

n!
lnn |z|2 lim

z!0
L! 6=~0n

(z) = 0

the SVHPLs ℒω(z)  also form a shuffle algebra

L!1(z)L!2(z) =
X

!

L!(z) with ω the shuffle of ω1 and ω2

Brown 2004
SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel

examples

L0(z) = H0(z) +H0(z̄) = ln |z|2

L1(z) = H1(z) +H1(z̄) = � ln |1 + z|2

L0,1(z) =
1

4

⇥
�2H1,0 + 2H̄1,0 + 2H0H̄1 � 2H̄0H1 + 2H0.1 � 2H̄0,1

⇤

= Li2(z)� Li2(z̄) +
1

2
ln |z|2 (ln(1� z)� ln(1� z̄))

Wednesday, June 25, 14



a generating functional of SVHPLs
to all orders in η the BFKL Green's function can be written 
in terms of a generating functional of SVHPLs Dixon Duhr Pennington VDD 2013

writing the coefficient function fk as

fk(w,w
⇤) =

|w|
|1 + w|2 Fk(w,w

⇤)

we obtain that the first few functions Fk are

F1(w,w
⇤) = 1 ,

F2(w,w
⇤) = �L1 �

1

2
L0 ,

F3(w,w
⇤) = L1,1 +

1

2
(L0,1 + L1,0) +

1

6
L0,0 ,

F4(w,w
⇤) = �L1,1,1 �

1

2
(L0,1,1 + L1,0,1 + L1,1,0)�

1

4
L0,1,0

� 1

6
(L0,0,1 + L1,0,0)�

1

24
L0,0,0 +

1

3
⇣3
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this allows us to write the azimuthal angle distribution as

d�̂gg

d�jj
=

⇡(CA↵s)2

2E2
?

"
�(�jj � ⇡) +

1X

k=1

ak(�jj)

⇡
⌘k

#

where the contribution of the kth loop is

ak(�jj) =

Z 1

0

d|w|
|w| fk(w,w

⇤) =
ImAk(�jj)

sin�jj

Azimuthal angle distribution
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d�̂gg

d�jj
=

⇡(CA↵s)2

2E2
?

"
�(�jj � ⇡) +

1X
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ak(�jj)
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Z 1
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Azimuthal angle distribution

with

A1(�jj) = �1

2
H0 ,

A2(�jj) = H1,0 ,

A3(�jj) =
2

3
H0,0,0 � 2H1,1,0 +

5

3
⇣2H0 � i⇡ ⇣2 ,

A4(�jj) = �4

3
H0,0,1,0 �H0,1,0,0 �

4

3
H1,0,0,0 + 4H1,1,1,0 � ⇣2

✓
2H0,1 +

10

3
H1,0

◆
+

4

3
⇣3 H0 + i⇡

⇣
2⇣2H1 � 2⇣3

⌘
,

A5(�jj) = �46

15
H0,0,0,0,0 +

8

3
H0,0,1,1,0 + 2H0,1,0,1,0 + 2H0,1,1,0,0 +

8

3
H1,0,0,1,0 + 2H1,0,1,0,0

+
8

3
H1,1,0,0,0 � 8H1,1,1,1,0 � ⇣2

✓
33

5
H0,0,0 � 4H0,1,1 � 4H1,0,1 �

20

3
H1,1,0

◆

� ⇣3

✓
2H0,1 +

8

3
H1,0

◆
+

217

15
⇣4H0 + i⇡


⇣2

✓
10

3
H0,0 � 4H1,1

◆
+ 4⇣3H1 �

10

3
⇣4

�

where Hi,j,... ⌘ Hi,j,...(e
�2i�jj ) Dixon Duhr Pennington VDD 2013
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Transverse momentum distribution
d�̂gg

dp21?dp
2
2?

=
⇡(CA↵s)2

2p21?p
2
2?

"
�(p21? � p22?) +

1

2⇡
p

p21? p22?
b(⇢; ⌘)

#

where ⇢ = |w| b(⇢; ⌘) =
2⇡ ⇢

1� ⇢2

1X

k=1

Bk(⇢) ⌘
k
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Transverse momentum distribution
d�̂gg

dp21?dp
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B3(⇢) =
1
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B4(⇢) = � 1
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H0,0,0 �

4
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1
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1

3
⇣3 ,

B5(⇢) =
1
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H0,0,0,0 +

2

3
H0,0,0,1 +

2

3
H0,0,1,0 +

8

3
H0,0,1,1 +

1

3
H0,1,0,0 + 4H0,1,0,1

+ 2H0,1,1,0 + 8H0,1,1,1 +
1

12
H1,0,0,0 +

8

3
H1,0,0,1 + 2H1,0,1,0 + 8H1,0,1,1

+
2

3
H1,1,0,0 + 8H1,1,0,1 + 4H1,1,1,0 + 16H1,1,1,1 + ⇣3

✓
� 1

12
H0 �

2

3
H1

◆
,

where Hi,j,... ⌘ Hi,j,...(⇢
2) Dixon Duhr Pennington VDD 2013
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Mueller-Navelet dijet cross section reloaded

the dijet cross section �̂gg =
⇡(CA↵s)2

2E2
?

1X

k=0

f0,k ⌘
k

the first 5 loops were computed by Mueller-Navelet. Here are a few more 
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3024
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� 242776937

725760
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605321
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2583643

16200
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340200
⇣2 ⇣9 ,

f0,12 =
74711

162000
⇣5,3 ⇣4 �

13793
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3965011
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+
252163

181440
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2
3 +

8101339
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680400
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620606448000
⇣12 +
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2721600
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f0,13 =
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23625
⇣5,3,3 ⇣2 �
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⇣2 ⇣5 ⇣

2
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302400
⇣7 ⇣
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3

� 5724191

100800
⇣25 ⇣3 �
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⇣10 ⇣3 �
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⇣11 ⇣2 �
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Dixon Duhr Pennington VDD 2013
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Conclusions

the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture
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Conclusions

the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles, 
to leading power accuracy in s/t

thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy

at LL accuracy, the solution of the BFKL resummation can be expressed
in terms of real-analytic functions, more specifically in terms of single-valued
harmonic polylogarithms

we are able to compute differential distributions through 6 loops,
and the Mueller-Navelet cross section through 13 loops
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�µ(p1, p2;µ2, ⇤) �< 0|Jµ(0)|p1, p2 >= v̄(p2)⇥µu(p1) �
�

Q2

µ2
, �s(µ2), ⇤

⇥

Resummation: Sudakov form factor
Sudakov (quark) form factor as matrix element of EM current

obeys evolution equation

Q2 ⇧

⇧Q2
ln

⇧
�

⇤
Q2

µ2
, �s(µ2), ⇥

⌅⌃
=

1
2

⇧
K

�
�s(µ2), ⇥

⇥
+ G

⇤
Q2

µ2
, �s(µ2), ⇥

⌅⌃

K is a counterterm; G is finite as ε→ 0
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�µ(p1, p2;µ2, ⇤) �< 0|Jµ(0)|p1, p2 >= v̄(p2)⇥µu(p1) �
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Q2

µ2
, �s(µ2), ⇤

⇥

Resummation: Sudakov form factor
Sudakov (quark) form factor as matrix element of EM current

obeys evolution equation

Q2 ⇧

⇧Q2
ln

⇧
�

⇤
Q2

µ2
, �s(µ2), ⇥

⌅⌃
=

1
2

⇧
K

�
�s(µ2), ⇥

⇥
+ G

⇤
Q2

µ2
, �s(µ2), ⇥

⌅⌃

K is a counterterm; G is finite as ε→ 0

RG invariance requires

µ
dG

dµ
= �µ

dK

dµ
= ⇥K(�s(µ2))

γK is the cusp anomalous dimension

Korchemsky Radyushkin 1987

the solution is

�

�
Q2, ✏

�
= exp

(
1

2

Z �Q2

0

d⇠2

⇠2


G
�
�1, ↵̄s(⇠

2, ✏), ✏
�
� 1

2

�K
�
↵̄s(⇠

2, ✏)
�
ln

✓
�Q2

⇠2

◆�)
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cusp anomalous dimension

loop expansion of the cusp anomalous dimension

K =
�

67
18
� �2

⇥
CA �

10
9

TF Nf

⇥(i)
K = 2Ci

�s(µ2)
⌅

+ KCi

�
�s(µ2)

⌅

⇥2

+ · · ·

with
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- introduce auxiliary vector ni (ni
2 ≠ 0) to separate collinear region

- define a jet using a Wilson line along ni

Jet definition

ū(p) J

�
(2p · n)2

n2µ2
, �

⇥
=< p|⇤̄(0)�n(0,�⇤)|0 >

�n(�2, �1) = P exp

�
ig

⇤ �2

�1

d�n · A(�n)

⇥
Wilson line

partonic jet

eikonal jet J
�

2(� · n)2

n2
, ⇥

⇥
=< 0|�̄�(⇤, 0)�n(0,�⇤)|0 >
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 
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Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities

functional dependence on ni constrained by classical invariance
of  Wilson lines under rescaling ni → αi ni
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 

single poles carry                    dependence
thus violate classical rescaling symmetry wrt β ⇒ cusp anomalous dim

(� · n)2/n2

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities

functional dependence on ni constrained by classical invariance
of  Wilson lines under rescaling ni → αi ni
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting 

single poles carry                    dependence
thus violate classical rescaling symmetry wrt β ⇒ cusp anomalous dim

(� · n)2/n2

δj is a constant

double poles and kinematic dependence of single poles are controlled by cusp γK, 
like in the quark form factor

J
✓
2(� · n)2

n2
, ✏

◆
= exp

(
1

4

Z µ2

0

d�2

�2


�Ji

�
↵s(�

2, ✏)
�
� 1

2

�K
�
↵̄s(�

2, ✏)
�
ln

✓
2(� · n)2µ2

n2�2

◆�)

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles ↔ UV singularities

functional dependence on ni constrained by classical invariance
of  Wilson lines under rescaling ni → αi ni
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Soft function S

(cN )ijklSNL

�
�a · �b,↵s(µ

2), ✏
�

=
X

i0j0k0l0

< 0|�k,k0

��2
(0,1)�i,i0

�1
(1, 0)�j,j0

�3
(0,1)�l,l0

��4
(1, 0)|0 > (cL)i0j0k0l0

soft function is a matrix which mixes the colour representations 
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Soft function S

(cN )ijklSNL

�
�a · �b,↵s(µ

2), ✏
�

=
X

i0j0k0l0

< 0|�k,k0

��2
(0,1)�i,i0

�1
(1, 0)�j,j0

�3
(0,1)�l,l0

��4
(1, 0)|0 > (cL)i0j0k0l0

soft function is a matrix which mixes the colour representations 

matrix evolution equation

ΓS soft anomalous dimension,
singular due to the UV and collinear poles

µ
d

dµ
SJL

�
�a · �b,↵s(µ

2), ✏
�

= �
X

N

[�S ]JN
�
�a · �b,↵s(µ

2), ✏
�
SNL

�
�a · �b,↵s(µ

2), ✏
�
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Soft function S

(cN )ijklSNL

�
�a · �b,↵s(µ

2), ✏
�

=
X

i0j0k0l0

< 0|�k,k0

��2
(0,1)�i,i0

�1
(1, 0)�j,j0

�3
(0,1)�l,l0

��4
(1, 0)|0 > (cL)i0j0k0l0

soft function is a matrix which mixes the colour representations 

matrix evolution equation

ΓS soft anomalous dimension,
singular due to the UV and collinear poles

µ
d

dµ
SJL

�
�a · �b,↵s(µ

2), ✏
�

= �
X

N

[�S ]JN
�
�a · �b,↵s(µ

2), ✏
�
SNL

�
�a · �b,↵s(µ

2), ✏
�

in DimReg the solution is

S
�
�a · �b,↵s(µ

2
), ✏

�
= P exp

(
�1

2

Z µ2

0

d�2

�2
�S

�
�a · �b,↵s(µ

2
), ✏

�
)

�S =
1X

n=1

�(n)
S

✓
↵s(µ2)

⇡

◆n
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Reduced soft function

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities ⇒ must respect rescaling βi → κi βi

S̄ depends only on

Dixon Magnea Sterman 2008S̄JL (⇢ij , ✏) =
SJL (�i · �j , ✏)

nY

i=1

Ji

✓
2(�i · ni)2

n2
i

, ✏

◆

⇢ij =
(�i · �j)2

2(�i · ni)2

n2
i

2(�j · nj)2

n2
j
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Reduced soft function

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities ⇒ must respect rescaling βi → κi βi

S̄ depends only on

Dixon Magnea Sterman 2008S̄JL (⇢ij , ✏) =
SJL (�i · �j , ✏)

nY

i=1

Ji

✓
2(�i · ni)2

n2
i

, ✏

◆

⇢ij =
(�i · �j)2

2(�i · ni)2

n2
i

2(�j · nj)2

n2
j

the factorisation becomes

S̄ has only single poles due to large-angle soft emissions

MN (pi/µ, ✏) =
X

L

S̄NL(⇢ij , ✏)HL

✓
2pi · pj
µ2

,
(2pi · ni)2

n2
iµ

2

◆Y

i

Ji

✓
(2pi · ni)2

n2
iµ

2
, ✏

◆
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