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Why the infrared structure of QCD amplitudes !

@ Perturbation theory calculations of amplitudes beyond the leading order
exhibit infrared divergences, which in physical processes must cancel
between the virtual corrections and the real emissions

Q@  While the finite part of an amplitude depends on the scattering process at hand, the

infrared-divergent part is process independent (but for the parton species involved):
it is universal, and reveals the infrared structure of the gauge theory

@ Guesses have been made on the all-order structure of the infrared divergences

(dipole formula). The high-energy limit is one more tool which allows us to
constrain the all-order structure
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel

Q@ For a 4-gluon tree amplitude, we obtain
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Cvov, (Pa;Par)  are called impact factors

000000

Py b v

000000

Py /i’ Vy

Wednesday, June 25, 14



High-energy limit

@ In perturbative QCD, in the Regge limit s » t,

any scattering process is dominated by gluon exchange in the t channel

Q@ For a 4-gluon tree amplitude, we obtain

c S
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Cvov, (Pa;Par)  are called impact factors

Q@  leading logarithms of s/t are obtained by the substitution
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel

. . Pa O Vy Pa' Q4 Vg

Q@ For a 4-gluon tree amplitude, we obtain 900000@000Q0Q0.
R , 5 ve | 9
MET299(5 1) = 262 | (T%)0as Cor, (pa,pa»] ’ [(Tc>bb/c,,b,/b, (v, 1 >] e §
ol
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000000@000000

Cvav, (PasPar)  are called impact factors on b2 py O vy

11 (s \*?
Q@  leading logarithms of s/t are obtained by the substitution g (—_t>

Q@  «(t) is the Regge gluon trajectory, with infrared coefficients

o) = 20D G (%H’E))Q o® + 0 (o?)
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High-energy limit

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel

Q@ For a 4-gluon tree amplitude, we obtain \_o_c;a_o_c_ogc'_'a_o_c;o_o_,
s | §l
ML (5,0) = 262 | (T)an Cury (o) | (ZDCa )| v h
L’?Cﬁdf‘f(‘;%\’?’l?ﬂ"’fﬁ
Cvav, (PasPar)  are called impact factors oy b 1 py b vy
11 s\
Q@  leading logarithms of s/t are obtained by the substitution g (—_t>

Q@  «(t) is the Regge gluon trajectory, with infrared coefficients

o) = 20D G (%H’E))Q o® + 0 (o?)

47 47
~(1) b 2 404 o6
2 2) _ 0 . ~(2)
ol — C’A% — CAE o? = Oy [—6—2 + VK E+CA (2—7 —2C3> +ny (—2—7>]
Q  inthe Regge limit, the amplitude is invariant under s <> u exchange.
To NLL accuracy, the amplitude is given by Fadin Lipatov 1993

Mias’ (5,1)

s S a(t) s o(t)
2g8 ; (Tc)aa’cuava/ (pCL?pCL/)] <——t) + <_—t)

[(Tc)bb’ Cuyvyr (Db Do )]
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Factorisation of a multi-leg amplitude

--------
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y FRY y Tejeda-Yeomans Sterman 2002
) A 8 Kosower 2003
—_—— — —— Aybat Dixon Sterman 2006
S Becher Neubert 2009

Gardi Magnea 2009

J ((21%' i)’ 6)
2p; - p; (2p; - ny)? Z ‘u?
1 9 )

p; = 3iQo/v2 value of Qo is immaterial in S,

to avoid double counting of soft-collinear region (IR double poles),
Jiremoves eikonal part from Ji, which is already in S
Jil)i contains only single collinear poles
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Factorisation

@ Soft gluons decouple from the hard part of the amplitude
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Factorisation

@ Soft gluons decouple from the hard part of the amplitude

&@ Ward identities decouple soft gluons from jets

-

soft gluons see jets as scalar particles
representing the evolution of the external legs

w colour links only the hard and soft parts of the amplitude
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Factorisation

@ Soft gluons decouple from the hard part of the amplitude

&@ Ward identities decouple soft gluons from jets

soft gluons see jets as scalar particles
representing the evolution of the external legs

-

w colour links only the hard and soft parts of the amplitude

Q@ Soft function is a matrix which mixes the colour representations
and is driven by the anomalous dimension matrix ['s
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

0 s 1
E FS 17y Xs) — (%) s

(simplest) solution: dipole formula

n

= 1 1 4
TS (pii, v — _Ape(a In(pi)T; - T; + = 6.s(cvs C Becher Neubert 2009
(Pig> ) dip 3l ); (0is) R ); Gardi Magnea 2009
with
(4) . . as(p?) as(B)\ o (s’
Vi (as) = Ciyr (as) Vi (ag) = 2 - + K - + K - +
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Reduced soft anomalous dimension

@  the evolution equation for the reduced soft anomalous dimension

o = 1
FS 17y Xs) — (%) s
j%éiﬁ o pr (pij, as) L (as)

(simplest) solution: dipole formula

n

= 1 1 4
TS (s s — _Ape(a In(p;)Ts - T + = b(a. C Becher Neubert 2009
(P> ta) dip 8 el ); (0is) R ); Gardi Magnea 2009
with
0 A : ors (12) s (1N | e (s
Vi (as) = Ciyr (as) Vi (ag) = 2 - + K - + K - + -

only 2-eikonal-line correlations

generalises 2-loop solution

colour matrix structure fixed at one loop

O © © O

cusp anomalous dimension plays role of IR coupling
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Dipole formula for the amplitude

@  combining the dipole-formula solution for the reduced soft function
with the jet functions, one obtains a dipole formula for the amplitude

M (%,as(;f),e) = (ﬁ,as(ui),e) ”H<& r ozs(/f),e)

poop

where all the collinear and soft singularities are in the dipole operator Z

A (%7058(”2),6) — exp {; /0“2 d:\; FK <OZ<>\2)) > In (‘)\S;j) T, T; - iil’m (as(A?)) ] }
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Possible corrections to the dipole formula

@ the cusp anomalous dimension might violate Casimir scaling at 4 loops

W (as) = Ciik (as) + 72 ()
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Possible corrections to the dipole formula

@ the cusp anomalous dimension might violate Casimir scaling at 4 loops

W (as) = Ciik (as) + 72 ()

@ 4-line correlations may appear at 3 loops;
then the solution of the reduced soft anomalous dimension would be

T2 (pig, as) = T (piz, a) ot A(pijki; os)
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Possible corrections to the dipole formula

@ the cusp anomalous dimension might violate Casimir scaling at 4 loops

W (as) = Ciik (as) + 72 ()

@ 4-line correlations may appear at 3 loops;
then the solution of the reduced soft anomalous dimension would be

T (pij, as) = T (pij, as) ) + A(pijii, as)

@  Ais constrained by Bose symmetry, collinear limits and transcendentality bounds

Becher Neubert 2009
Dixon Gardi Magnea 2009
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Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+T, T,+ T+ T, +Ty =0

Tt:Ta+Ta’7 4

T, =T, +T, T2+ T; + T, = ) _ C; =Ciot
=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

2 (B o)) = Z(Fauud)e) Za (5 au(ut)ve) exp [<i3 K (an(u),€) o]
T p

Duhr Gardi Magnea White VDD 201 |
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Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+T, T,+T,+T,+Ty =0

Tt:Ta_'_Ta’a 4

T, =T, +T, T2+ T; + T, = ) _ C; =Ciot
1=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

2 (B auut)e) = Z(Fauu®)e) Za (g0u(ut)se) exp [<i5K (u(u),€) o
T p

Duhr Gardi Magnea White VDD 201 |

|

which is determined by the cusp anomalous dimension, through

~

& colour and s dependence are in the operator Z

Z (;:as(u2),€) = exp {K(Oés(,uz),é> lln (%) T? + ir T?

1 [*dA?
K(ozs(,uQ),e) = —ZA 2 K (as(X?€)) ,
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Dipole formula in the high-energy limit

@ we introduce the colour operators

Ts=T,+T, T,+T,+T,+Ty =0

Tt:Ta_'_Ta’a 4

T, =T, +T, T2+ T; + T, = ) _ C; =Ciot
1=1

Q@ in the limit s » t, the dipole operator Z becomes, to power accuracy in s/t

2 (B auut)e) = Z(Fauu®)e) Za (g0u(ut)se) exp [<i5K (u(u),€) o
T p

Duhr Gardi Magnea White VDD 201 |

|

which is determined by the cusp anomalous dimension, through

~

& colour and s dependence are in the operator Z

Z (;:as(u2),€) = exp {K(Oés(,u2),€> [11’1 (%) T? + ir T?

1 [*dA?
K(O{S(,LL2>,6> = —ZA 2 K (as(X?€)) ,

@ the dipole operator fixes the Regge pole structure
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< the operator Z is colourless and s independent

74 (%,as(ﬁ),e) = oxp {;4;32'(0‘8(“2)’6) T3
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with

p(ons)) = [ ity (3.
B; (Oés(MQ)aE) =5 /0“2 d)\—)fwi (as(A%,€))

one may think of the operator Z) as a jet operator,
which, as we will see, yields the divergent parts of the impact factor
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Possible corrections to the dipole formula in the HEL

@ the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

@ we know that corrections to A like

aS 3 a C aae pfcoe
A(212)(pijk:l7043) _ (?) TngTgTi [ f d f b L%234 (L1423 L%342 + L%423 L1342) +CYC1]

fulfill Bose symmetry, collinear limits and transcendentality bounds Dixon Gardi Magnea 2009
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Possible corrections to the dipole formula in the HEL

@ the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

@ we know that corrections to A like

aS 3 a C aae pfcoe
A(212)(Pijk:l7043) _ (?) TngTgTi [ f d f b L%234 (L1423 L%342 + L%423 L1342) +CYC1]

fulfill Bose symmetry, collinear limits and transcendentality bounds Dixon Gardi Magnea 2009

@ however, in the high-energy limit

(—512)(—534) s\ o . s
= == i Lisga = 2(L — _ (_)
Frass (—s13)(—524) —t) © e ( i) L= t
(—513)(—s24) —t 1\’
= = ; L ~ —2L
P1342 (—512)(—593) s 11 ; 1342
2
—S —S s+t i _
P1423 = E—siié—sii = ( p ) e Lyg03 >~ 21w
3
A (500 ) = (_O‘S) T, TETY 32m[( LA —inL? — 722 — mf’)L) fade pebe
T

+ (sz?) ~37%L% - mSL) feae fdbe] +O(It/s)

has super-leading logs, which are incompatible with the high-energy limit
Duhr Gardi Magnea White VDD 201 |
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Dipole formula & leading logs

@ to leading logarithmic accuracy in sft,
the dipole operator loses the imaginary part (s-channel)

M (%,as(/f),e) = eXp{K(as(ﬁ),e) In (_%) Tf} Z1 M (%,as(/f)?e)
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Dipole formula & leading logs

@ to leading logarithmic accuracy in sft,
the dipole operator loses the imaginary part (s-channel)

M (%,as(/f),e) = eXp{K(as(ﬁ),e) In (_%) T?} Z1 M (%,as(u2)76>

@ in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

the t-channel exchange colour structure is an eigenstate of the operator

{
s

0
T2 S 18t 20 oy T T
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Dipole formula & leading logs

@ to leading logarithmic accuracy in sft,
the dipole operator loses the imaginary part (s-channel)

M (%,as(/f),e) = eXp{K(as(ﬁ),e) In (_%) T?} Z1 M (%,as(u2)76>

@ in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel
in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order,
the other channel contributions being power suppressed

the t-channel exchange colour structure is an eigenstate of the operator

!
I.'-_a-

0
T2 S 18t 20 oy T T

Q@ to leading logarithmic accuracy in s/t, the parton-parton scattering amplitude becomes

ZlfH{f—Ucf

Ca K(as(,uQ),e)
ff—=ff _ (S
mirmit = ()

to leading order, the cusp anomalous dimension is

Vi (ag) = 2% - O(oz?) w K(ag,€e) = i %s —|—(’)(a§)

7

so the singular part of the one-loop Regge gluon trajectory becomes

2
ot = Cy -+ 0 (") in agreement with the high-energy limit of parton-parton amplitudes
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Dipole formula beyond the leading logs

@ to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as

s S K(asa€) T%
A (Z;as(lu2)7€) — (_> CXp {iﬂ'K(CYS,E) Tg}

—t
(T Ko 0] () [z}
o {3 o] (artn () 22 22,2 i (%) ot ) )
{

@ NLL accuracy:

~(1) 2 (972 pah 1672 bo3@ 4050 p250
oo 2 o (B0 (5 ) L

T Ar € 47 € 22 4 3e 3e2 3e3

reproduces the singular part of the one- and two-loop Regge gluon trajectory,
while the imaginary part does not Reggeise
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Dipole formula beyond the leading logs

@ to power accuracy in s/t (thus to arbitrary logarithmic accuracy),
the dipole operator Z can be rewritten as

s S K(asa€) T%
A (Z;as(lu2)7€) — (_> CXp {iﬂ'K(CYS,E) Tg}

—t
(T Ko 0] () [z}
o {3 o] (artn () 22 22,2 i (%) ot ) )
{

@ NLL accuracy:

~(1) 2 (972 pah 1672 bo3@ 4050 p250
oo 2 o (B0 (5 ) L

T Ar € 47 € 22 4 3e 3e2 3e3

reproduces the singular part of the one- and two-loop Regge gluon trajectory,
while the imaginary part does not Reggeise

@  NNLL accuracy:

) 1 2 which is non-logarithmic

] T2 32 2
Ola;): —> —gm K (as,€) (T5) and non-diagonal in the t channel

2
Oa): —> - % K°(as,€) In (%) {Ti, T}, T?H breaks down the Regge-pole picture
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Amplitudes in the high-energy limit

@ Regge limit of the gluon-gluon amplitude

2 (1) Con o] [ (2) T+ (22)
s + aa’ “Yvav, PasPa’ ¢ ¢

strip colour off & expand at one loop

S
)0y =225 (a0 () +2000))

Ny

7

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, €, starting at |/€?

M3 (s,1) = 29

[(TC)bb’ val/b/ (pb7 pb’)
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Amplitudes in the high-energy limit
@ Regge limit of the gluon-gluon amplitude

000 ) S ) s\ ¢ _g\ )
Maa’bb’ (Sat) — 293 ; (T )CLCL’CI/aVa/ (pavpa’) —_t + ——t

strip colour off & expand at one loop

s S
mgy)—mg = 2g° " (oz(l)(t) In (——t) + 20;;) (t))

VS

0 0T 0y g 8T

%
%

[(Tc)bb’ val/b/ (pb7 pb’)

%W

the Regge gluon trajectory is universal;

the one-loop gluon impact factor is a polynomial in t, €, starting at /€2

erform the Regge limit of the quark-quark amplitude
Q P g8 q q P
— get one-loop quark impact factor
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Amplitudes in the high-energy limit

@ Regge limit of the gluon-gluon amplitude

NGO RPN
Tc aa’ “Yvav, r \Mas Pa’ -, I
2 [0 Cors ] (%) +(2)

S
MG s,t) = 22

[(TC)bb’ CVbe/ (pb7 pb’)

strip colour off & expand at one loop

S
mgg)_)gg =22 " <oz(1)(t) In <—t) + 2055;) (t))

S
t —

VS

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, €, starting at /€2

@ perform the Regge limit of the quark-quark amplitude
— get one-loop quark impact factor

Q@ if factorisation holds, one can obtain the one-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does
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High-energy limit at 2 loops

Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

s |1 2. 5[ s s
M =297 [5 (a(l)(t)> In (—t) + (a<2>(t) +200 (1) oz(l)(t)) In (—t) +20®

— — — e

Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/€*
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High-energy limit at 2 loops

Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

s |1 2. 5[ s s
M gy = 2975 [5 (oz(l)(t)> In (—t) + (a<2>(t) +200 (1) oz(l)(t)) In (—t) +20®

— — — e

Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/€*

Q@  perform the Regge limit of the quark-quark amplitude
— get two-loop quark impact factor
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High-energy limit at 2 loops
Q@ in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is

m?, = 2932 F (a(l)(t)>21n2 (it) + (a<2>(t) +2CM(t) a(l)(t)) In (%) +2C45) () + (Céé) (t))Zl

— . — = 7

Q@ the two-loop Regge gluon trajectory is universal;
the two-loop gluon impact factor is a polynomial in t, €, starting at |/€*

Q@  perform the Regge limit of the quark-quark amplitude
— get two-loop quark impact factor

@ if factorisation holds, one can obtain the two-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit:
it doesn’t! by a TT%/€? factor Glover VDD 200
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@ toaccount for a factorization breaking remainder,
we write the amplitude in the high-energy limit as

ML (o0 ) = 2 O
T

X {C’r (%,o%) [A+ (;,0&8) + Ko A_ (;,Q{S)]CS (%,O@) - R[fs] (%, %,O@) + O (

_ o\ @) a(t)
with AL (;,as> = (—j) + (%) for the s <> u exchange symmetry
4 — N? :
Fgg = Kqg = 0 Kag = 37 for qqg scattering

we include a possible factorization breaking remainder at 2 loops and beyond
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@ toaccount for a factorization breaking remainder,
we write the amplitude in the high-energy limit as

ML (o0 ) = 2 O
T

X {C’r (%,o%) [A+ (;,0&8) + Ko A_ (;,as)]C’S (%,O@) - R[fs] (%, %,O@) + O (

we include a possible factorization breaking remainder at 2 loops and beyond

Expanded in &s and In(s/t), they are

1 (s =\ [ 8 N [T
i <_2,_2,a$> — 4ra, 3Y (?) In (__t) A7 (0] <_2>

e R n=0 1=0 H
oo n—2
REI(S L) = S (%)”mk S\ poks (L
rs ,LL27 ,LL2’ S T - o rs ,LL2
n=2 k=0
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@ to compare with the amplitude in the high-energy limit,
it is better to define the infrared operator as

Zs G,as(ﬁ)m) =Z (%as(/f),e) exp [—igK(%(uz)m)Cmt}

= exp{K(as)[(log (_%) —ig(1+ms)>T?+ig (T TiJr'frsT?)]}

The terms proportional to T¢? reproduce the structure of the high-energy amplitude.
The breaking of high-energy factorization arises from the last term, which is a color- and
process-dependent phase. This is in accordance with the expectation that the failure of
high-energy factorization should come from the mixing of different color amplitudes

Falcioni Magnea Vernazza VDD 2013, and in progress
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Comparing infrared and high-energy factorizations

Q@ |loop
~(1)

MOl —p> Regge trajectory o) = ¢, K is universal

€

MM —>  impact factor () = %Zflr)r + %ﬁﬁ)’o’[g] r=gq,q
1
with constraints Zf,lf){,qg ~ 5 {Zl(,llzi,qq + Zf,lf){,gg}

. 1 . .
1),0,18]\ __ 1),0,[8 1),0,[8
Re (Hcgg) | ]) =3 [Re (Hég) | ]) + Re (Héq) [ ])}

confirming that the quark-gluon amplitude in the high-energy limit can be obtained
by assembling the Regge trajectory with the gluon and quark impact factors
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Comparing infrared and high-energy factorizations

Q@ |loop
~(1)

MOl —p> Regge trajectory o) = ¢, K is universal

€

MM —>  impact factor () = %Zflr)r + %ﬁﬁ)’o’[g] r=gq,q
1
with constraints Zf,lf){,qg ~ 5 {Zl(,llzi,qq + Zf,lf){,gg}

. 1 . .
1),0,18]\ __ 1),0,[8 1),0,[8
Re (Hcgg) | ]) =3 [Re (Hég) | ]) + Re (Héq) [ ])}

confirming that the quark-gluon amplitude in the high-energy limit can be obtained
by assembling the Regge trajectory with the gluon and quark impact factors

~(2)
9 .
M@ P> Regge trajectory  a® = C4 ZE 4 Re {Hﬁ)’l’[gq

€

with constraint Re {ﬁé?’l’[ﬂ — Re {ﬁé?’l’[ﬂ — Re {ﬁég),l,[&}

which ensures that the trajectory is universal
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Q@ 2loops

M@0 we may collect all factorization-breaking terms in a remainder

2 [ ~(1)\ 2 5]
@00 — _™ [k 1 K 2_( 2 (2 2)) <o>} J
i 4 ( € ) o [(Os—)” = (1w (T5)7) ) H
with O,_, =2T% — Ciot + (1 + k)T
2 2 2
: 2),0,08 _ T 3 2),0,[8] __ 3T 2),0,[8] __ n
specifically R{208 = s <1— N§> , RPOBL = -5 R2)0B = -4z
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Q@ 2loops

M@0 we may collect all factorization-breaking terms in a remainder

2 /() 2 |

. 1 7]

R(Q),O,[]] = —TZL <7K ) H(O) [8] |:( (Os—u)2 (]- - K/ (Tz) ) )H(O)i| ’
e 9

with O,_, =2T% — Ciot + (1 + k)T

- 2),0,08] _ T 3 20,08 _ O Do _ T
specifically R{2*F = — <1— N2> . RO = SR RO T A2

C

—= impact factor

2 q 1 N
O = ~3 (Zflf){ rr) + §Z£,2f){,rr + sz,lf){,rr Re [Hr(l})’o’[éﬂ
8]

- %K“) 0, ,Im [ﬁg)’o} ~ 0, (1+ky) Im [HU) 0} ~ 70, (1+ k) Re [H“) 1} ]
] 2

1 T
8

- (re :ﬁ<1),0,[8]D2 n

8 (1 -+ ) (Re [BOE)) 4 TRe [A209]
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Q@ 2loops

M@0 we may collect all factorization-breaking terms in a remainder

2 /() 2 |

. 1 7]

R(2>’O’[]] = —TZL <7K ) H(O) [8] |:< (Os—u)2 (1 - Kf (Tz) ) )H(O)i| ’
6 9

with  O,_, =2T2 — Cioi + (1 + k.5)T?

2 2 2
specifically RO — T <1_ 3 ) S R@oE — 3T e _ T

N2 2¢2 9 4e?

C

—=> impact factor

2 1 1 .
Cc? = —3 Zf,lﬁ,rr) + §Z£,2f){,rr + EZ&){,U Re [Hﬁl)’o’[g}

[8]
o] = 0 (14 k) 1 [AD9] — 701 (14 ) Re [ |

(1 + Kfrr) (Re |:f—:f(1)71a[8]:|)2 + lRe |:f—:f(2)70a[8]:|
Irr 2 Irr

real, color singlet, from jet function
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Q@ 2loops

M9 we may collect all factorization-breaking terms in a remainder

2 /() 2 |

. 1 7]

R(2>’O’[]] = —7; <7K ) H(O) [8] |:< (Os—u)2 (1 - Kf (Tz) ) )H(O)i| ’
6 9

with  O,_, =2T2 — Cioi + (1 + k.5)T?

2 2 2
specifically RO — T <1_ 3 ) S R@oE — 3T e _ T

N2 2¢2 9 4e?

C

—=> impact factor

2 1 1 .
Cc? = —3 Zf,lﬁ,rr) + §Z£,2f){,rr + EZ&){,U Re [Hﬁl)’o’[g}

lRe |:f—:f(2)70a[8]:|

real, color singlet, from jet function , o ,
potentially factorization breaking, but
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Q@ 2loops

M9 we may collect all factorization-breaking terms in a remainder

2 /() 2 |

. 1 7]

R(2>’O’[]] = —7; <7K ) H(O) [8] |:< (Os—u)2 (1 - Kf (Tz) ) )H(O)i| ’
6 9

with  O,_, =2T2 — Cioi + (1 + k.5)T?

2 2 2
specifically RO — T <1_ 3 ) S R@oE — 3T e _ T

N2 2¢2 9 4e?

C

—=> impact factor

2 1 1 .
Cc? = —3 Zf,lﬁ,rr) + §Z£,2f){,rr + EZ&){,U Re [Hﬁl)’o’[g}

lRe |:f—:f(2)70a[8]:|

real, color singlet, from jet function , o ,
potentially factorization breaking, but

(8] (8]

77(1),0
[OS_“ m | H "]

1 77(1),0 77(1),0
~ 5[0H tm [H{EC| + 0, Im | HD®]

impact factor so defined preserves factorization

Wednesday, June 25, 14



@  mismatch between true amplitude and NLL expansion may be quantified by

2),0
A _ M c@ L o@ L cWem T M)
(2)7(),[8]_]_](0),[8] g T +070, 4( + kK)o

q9

1

1
2),0,(8 2),0,[8 2),0,[8
2[Rgg> ”—Q(Réq) 8 4 R(2) [])]
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@  mismatch between true amplitude and NLL expansion may be quantified by

2),0
A _ My c@ L o@ L cWem T M)
(2).0.18] = (0, [5] ¢ TCg Tl 0y 4( +r) |

q9

1

1
2),0,(8 2),0,[8 2),0,[8
2[Rgg> ”—Q(Réq) 8 4 R(2) [])]

which agrees with the mismatch found by Glover and me in 2001

m2(KW)2 73 /N2 +1 ™ 3 (N2 +1
Aol = 5 |3 T T 216\ N2

Falcioni Magnea VernazzaVDD 2013
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Q@ 3 loops

M(3)71

we expect that the single-log terms, which define the 3-loop Regge trajectory,
are plagued by non-factoring contributions

we may define the 3-loop remainder suitably

2 3[4 1 1 2H )
R(3>’1 — WZ (K(1)> [_ _Os,t,s + Os—uot,s - §Ot0§_u + 502(1 _ Ker)]

3 H (0),[8]
(1) o B2 B,
O, =T},

Wlth Ot,s — [T%7 Tﬂ )

Os,t,s — [Tga [T%7T§H
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Q@ 3 loops

M3l we expect that the single-log terms, which define the 3-loop Regge trajectory,
are plagued by non-factoring contributions

we may define the 3-loop remainder suitably

2 3[4 1 1 2H )
R(B)’l — WZ (K(1>) [_ _Os,t,s + Os—uot,s - §Ot0§_u + 50?(1 _ ’%er)]

3 H(0),[8]
() [ron D - on S ot )
0, =T%,

Wlth Ot,s — [T'?v Tﬂ )

Os,t,s — [Tga [T%7T§H

~(3)
such that the trajectory be a® = 0y Rl + O(e")

Falcioni Magnea Vernazza VDD, in progress
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BFKL resummation

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel

@ BFKL is a resummation of multiple gluon radiation out of the gluon exchanged
in the t channel, at LL and NLL accuracy in In(s/t) ’.
@ the LL terms are obtained in the approximation of a strong rapidity ordering rrro
and no kT ordering of the emitted gluons '

Q the resummation yields a 2-dim integral equation in k1 for the evolution o
of the gluon propagator exchanged in the t channel — ooreesieeeom

Q the solution is a Green’s function of the momenta flowing in and out of

the gluon ladder exchanged in the t channel
Balitsky Fadin Kuraev Lipatov 1977-78
Fadin Lipatov 1998
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Mueller-Navelet jets

Q@  the cross section for dijet production at large rapidity

: S
intervals Ay =1y —y, =In (_t> > 1

with  §==z.2,5, t=—\/p? p3,

d(Afgg 7 [CAOzS] R R CA(XS
— X f<Q1J_7 q21 , Ay)
dpi dp3 do;; 2 | pi, Py,

can be described through the BFKL Green’s function

1 +00 . 400 q2 v >
f(q_)].J_7 JQJ.) Ay) — 5 5 5 Z Eizn(/5 / dv (%) el Xv.n
2T Vi 451 W — o0 921

CACVS

with 7= Ay and ¢ the angle between qi2and @ =

and the LL BFKL eigenvalue

1 1
oo () o (3o )
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Mueller-Navelet dijet cross section

@  azimuthal angle distribution (¢ = $-TT)

S35~ +z< 3 ”"bfnk)nk]

k=1 \n=—o0

d@'gg _W(CAOAS)
d¢j; 2B}

1 1 i x,,n
with Jfor = dv

k»l oo V2—|——
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Mueller-Navelet dijet cross section

@  azimuthal angle distribution (¢ = $-TT)

do (C 043)2 ng
By = 287 [ (01 = Z( > )"]

nN=—oo

1 1 i x,,n

n, dv
with  for =54, v
.. . . A CAas
Q@  the dijet cross sectionis g9 = 2E2 Z forn" Mueller Navelet 1987
f0,0 — 17
fO,l — Oa
with Jo2 = 2C2,
fo,3 = —3Gs,
53
Joa =~ G4
1
fos = —=5 (115C5 + 48(2(3)

12
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BFKL Green’s function and single-valued functions

Q@  use complex transverse momentum  Pr1 — Pk = P, + i}

. p1 w2
and a complex variable w = 5 (E) = e il = —¢'®

the Green's function can be expanded into a power series in I

1 1 -~
f(Gie, Gor, Ay) = 56 (@ — ou) + an fr(w, w®)
: 2m\/47, 43, k=1

where the coefficient functions fx are given by the inverse Fourier-Mellin transform
+o0 + 00
* 1 n w \"/? dv 2iv |k
flww) = 30 o () [ S,

*
w _
n—=—oo o0
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BFKL Green’s function and single-valued functions

@  use complex transverse momentum Pkl — Dk = Py + ip}

. p1 w2
and a complex variable w = 5o (E> iP5 — _pi®

the Green's function can be expanded into a power series in I

— — 1 — —
f((Ju,C]u,Ay) — 55(2)((J1¢ - QQJ_) + Zn fk w, w*
2m ququ k=1

where the coefficient functions fx are given by the inverse Fourier-Mellin transform

+o0
* 1 n w \ /2 e dv 2tv
fk<w7w )Z Enzz_oo(_l) (E) [m o ‘w| Xl/n
w  fk should be real-analytic functions of w

they should have a unique, well-defined value for every ratio of the
magnitudes of the two jet transverse momenta and angle between them
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Harmonic polylogarithms

@ classical polylogarithms 1., (z) = /z g Timo1(2)
0

Z/
@  harmonic polylogarithms (HPLs)

H(a,w;z):/o dt f(a;t) H(w;t) f(—l;t)=%+t» f(OBt):%7 f(l?t):%_t

with {a,w} € {—-1,0,1} Remiddi Vermaseren 1999

Q@  HPLs obey the differential equations

Hoo(2) = . —Hi(2) =
dz"° (2) 2 dz" " (2) 1—z
subject to the constraints
. ,
H(z) =1, Hy (2) = ] In" z, il_r% H, .5 (2)=0

@  HPLs form a shuffle algebra

H,,(2) Hyy(2) = Y Hy,(z)  with w the shuffle of W) and w>

@  HPLs are multi-valued functions on the complex plane
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Single-valued harmonic polylogarithms

Q@  define a function # that is real-analytic and single-valued on C/{0,1}
and that has the same properties as the HPLs

it obeys the differential equations

%) - Lu(2) 0 - Lo(2)
&EO(H(Z) B Z aﬁlw(Z) B 1—=z
subject to the constraints
| B, ,
Lo(z)=1, Ly (z) = ] In" |z|? ;1_% L,.5 (2)=0

the SVHPLs #(z) also form a shuffle algebra

Loy (2) Lo (2) =Y Lo(2) with W the shuffle of W, and w>
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Single-valued harmonic polylogarithms

define a function # that is real-analytic and single-valued on C/{0,1}
and that has the same properties as the HPLs

it obeys the differential equations

0 - Lu(2) J - Lo(2)
@LOW(Z)_ z &Elw(z)_ 1—z

subject to the constraints

1
Lo(z)=1, Ls (2) = —In" 2|7 lim £ 5 (2) =0

n - n' z—0

the SVHPLs #(z) also form a shuffle algebra

Loy (2) Lo (2) =Y Lo(2) with W the shuffle of W, and w>

SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel

Brown 2004
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Single-valued harmonic polylogarithms

define a function # that is real-analytic and single-valued on C/{0,1}
and that has the same properties as the HPLs

it obeys the differential equations

0 - Lu(2) J - Lo(2)
@Low(z)_ z &Elw(z)_ 1—z

subject to the constraints

1
L.(2)=1, Ly (z) = ] In" |z|? ;1_% L,.5 (2)=0

the SVHPLs #(z) also form a shuffle algebra

Loy (2) Lo (2) =D Lo(2) with W the shuffle of W, and W)

SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel

,C()(Z)
ﬁl (Z)

Hy(2) + Hy(2) = In |2|?

Hi(2)+ H(2) = —In|1 + 2|°

1 _ _ _ _
,Co,l(Z) = 1 [—2H1,0 + 2H1,0 + 2H0H1 — 2HOH1 + 2H0.1 — 2H071}

examples

= Lis(z) — Lig(2) + % In|z* In(1 — 2) — In(1 — 2))

Brown 2004




a generating functional of SVHPLs

@ to all orders in n the BFKL Green's function can be written

in terms of a generating functional of SVHPLs

writing the coefficient function fi as

N w) .
Se(w,w”) = 1+ w2 Fy(w, w”)

we obtain that the first few functions Fi are
F1 (w, w*) = 1 y

1
Fg(w,w*) — —£1 — 5,60,
§ 1 1
Fs(w,w*) = L1+ 5(50,1 + L10) + 650,0 ,
. 1 1
Filw,w*) =—=L111 — 5(50,1,1 + L1014+ L11,0) — 150,1,0

1 1 1
— —(L L ——L —
6( 0,01+ L1.00) 54 +0.0.0 + 3C3

Dixon Duhr Pennington VDD 2013
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Azimuthal angle distribution

@  this allows us to write the azimuthal angle distribution as

o W(CAozS)Q > ay (¢
do,; 2Ei Za 21

where the contribution of the k™ loop is

ap(¢j5) = /OOO dlu] (w, w*) = fm Ak (9);)

k 5
|’U}’ S111 ¢jj
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Azimuthal angle distribution

@  this allows us to write the azimuthal angle distribution as

dé'gg o W(CAOéS)Q
doj; — 2E%

— aj <b

=1

where the contribution of the k™ loop is

a(¢;;) :/0 al k(w, w") = A (655)

|w[ S111 quj
with
1
A1(9j5) = —5 o,
Az(¢j5) = Hip,
2
As(pj) = §H00 0—2H1 10+ CQHO —im (o,

4 4 10 4 )
Ay(pj5) = —§H0,0,1,0 — Hp 1,00 — §H1,o,o,o +4H1 11,0 — (2 (2H0,1 + §H1,0> + §C3 Hy +am (2C2H1 — 2C3) :

46 8 8
As(pj;) = 15H00000+3H00110+2H01010+2H01100+3H10010+2H10100
8 33 20
+§H1,1,0,0,08H1,1,1,1,0C2< = Hooo0—4Ho11—4H101 — ?H110>

8 217 10 10
— (3 (2H0,1 + §H1,0) —C4H0 +am [C2< 3 Hyo—4H; 1) + 4¢3 Hy — EQL]

H; . (e~2i%59) Dixon Duhr Pennington VDD 2013

where H;; .
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Transverse momentum distribution

d@'gg o 7T(OA043)2 1

= S(piL — i)+ b(p;n)
Q dP%LdP%L QP%Lng 27 p%J_ p%L
2 O
where p = |w| b(p;m) = ] WPQ ZBk(P) n"
—p
k=1
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Transverse momentum distribution

d@'gg o 7T(CA048>2 1

Q — 6(pi. —p3L) + b(p; )
2 2 2 .2 11 — P2y P51
dpy, dps | 2p1, D5, 270/ p%L p%L
where p = |w| Do) = 2P OOB k
(i) =7——5 > _ Brlp)n
P k=1
with
Bl(P) — 17
1
Bs(p) = 3 Hy—2Hq,
1
Bs(p) = EHO,O +2Ho 1 +Hyo+4H 1,
1 4 1 1
By(p) = —ﬂHo,o,o — 3Ho01 — Ho10—4Hp 11 — ng,o,o —4H1 01 —2H110—8Hy111 + 3 (3,
Bs(p) = —— Ho o0+ - + 2 Hoono+ SHoo1a + ~Ho oo+ AH
5(p) = 15gH0000 + 5Ho001 + 3 Hoo10+ 5Hoo11 + 5Ho100 0,1,0,1
1 8
+2Hp 110+ 8Ho 1,11+ EHLO,O,O + §H1,0,0,1 +2H1010+8H1,0,1,1
2 1 2
+ §H1,1,070 +8H1101 +4H1 110 +16H1 1,11 + (3 <_EHO — §H1) 7
where Hi, . =Hi, (o) Dixon Duhr Pennington VDD 2013
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Mueller-Navelet dijet cross section reloaded

~ CAOfs
Q@  the dijet cross section 049 = QB2 Z forn"

the first 5 loops were computed by Mueller-Navelet. Here are a few more
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Mueller-Navelet dijet cross section reloaded

the dijet cross section

CAOfs

Zfozc??

Ogg =

the first 5 loops were computed by Mueller-Navelet. Here are a few more

Jo6
fo,7
fos
fo,0
fo,10
fo,11

f0,12

f0,13

+_127008OO

2379684877

13 , 3737
116 3983

——C3C4——C2C5— 1

C’?a
369
—% C5,3 + 1—5@ Cg

an C5 C3
139 , 15517 3533
~ 0 & %2%@_
94721
Cr3 +

2488
65,302 ~ 577680
2872

_'4725
83
—C53C3 —— (5,33 — 01
C5 C6 —

50606057

453600

CS)
GG~ 2 GGy -

1948 2608
<4<3'+

105 105
13211 661411

3 2
G23 672 G5 G5 3024

(8 (3
2583643 28702763
Ca C7 —

5215361
60480

C2C5¢3+

C97

12099
224

1335931
47040

(7 C3+

315 120
242776937C 605321
11 —

16200 340200 2299
3965011 33356851

725760 3024

74711 Ccr 13793
5354 7 760

162000

252163 , 620477 . .,
(3 + 10030 G (3 +

101571047

C6,4,1,1 + 7.3C2 —

C5 C77

181440
71425871
680400 0t

1587600
4513
(5,3 Cs5 +

(55,3 +

C? Cg

C7.3,3 —

5724191
100800

(3¢ —

793800 4082400 >7°
G 904497401571619
255 2721600
27248
1390 (53,3 G2 — 2600 C7.3C3
125056
3 —_
2175 46
5235340800 3
297666465053 929717224973
Cll CQ -

Ca Co

8101339 342869
75600 Ca (5 (3 + 3730 G2 (7 (3
; | 484414571
620606448000 °'2
97003 13411
23625 9235200
7997743 187318 e 17411413
4725 2753 7302400
1874972477<, ¢ 2418071698069
2376000 ~'0>°
6 __1770762319CC -
6048000 523908000 °°7 2494800 °°® 628689600

5+

25669936301

63504000

Dixon Duhr Pennington VDD 2013

C1c
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Conclusions

@ the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture
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Conclusions

@ the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

@ from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t
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Conclusions

& the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

& from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t

& thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy
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& the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

& from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t

& thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy

@  at LL accuracy, the solution of the BFKL resummation can be expressed

in terms of real-analytic functions, more specifically in terms of single-valued
harmonic polylogarithms
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Conclusions

& the dipole formula allows us to examine the infrared structure of amplitudes
in the high-energy limit, and to make contact with the Regge-pole picture

& from the dipole formula we can derive an operator which generates
all the logarithms in s/t which accompany the infrared poles,
to leading power accuracy in s/t

& thus one can show that the Regge-pole picture breaks down at
next-to-next-to-leading-logarithmic accuracy

@  at LL accuracy, the solution of the BFKL resummation can be expressed

in terms of real-analytic functions, more specifically in terms of single-valued
harmonic polylogarithms

&  we are able to compute differential distributions through 6 loops,
and the Mueller-Navelet cross section through |3 loops
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Back-up slides
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Resummation: Sudakov form factor

@  Sudakov (quark) form factor as matrix element of EM current

_ @
Flu(plapZ;:uQ?E) =< O|JM(O)|plap2 > = /U(pQ)fYMu(pl)F <F7a8(:u2)76

obeys evolution equation

0 1, [F (522?%(“2)76)] _ % [K (as(?),€) + G (3—22,043(#2)»6)]

0Q?

K is a counterterm; G is finiteas €— 0
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Resummation: Sudakov form factor

@  Sudakov (quark) form factor as matrix element of EM current

_ @
Fﬂ(p17p2;:u27€) =< O|JM(O)|plap2 > = /U(pQ)fYMu(pl)F <?7a8(:u2)76

obeys evolution equation

Q2aTg2m [F (3227048(“2),6)] _ % [K (as(?),€) + G (3—22,@8(#2)#)]

K is a counterterm; G is finiteas €— 0

@  RG invariance requires
dG dK
b o= i (s (7))
weoo H Korchemsky Radyushkin 1987

Yk is the cusp anomalous dimension

the solution is

I (Q? €) = exp {; /O_QQ dg [G (—Las(& e).€) - %WK (a5(€7,€)) In (_;222)] }
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cusp anomalous dimension

@ loop expansion of the cusp anomalous dimension

, 2 24 \ 2
7%):207; Oés(M)JFKCi (Oés(,u )) N

s s

with

67 10
K=——0(|Cs— =TrN

Wednesday, June 25, 14



Jet definition

- introduce auxiliary vector n; (n? # 0) to separate collinear region
- define a jet using a Wilson line along n;

partonic jet u(p) J ((Qp )’ , e> = < p|Y(0)®,,(0, —00)|0 >

A2
Wilson line D, (A2, A1) = Pexp z'g/ dAn - A(An)
)

1

23 - n)? _
eikonal jet j( (ﬁ n) 7€> :<O’(I)5(OO,O)(I)7L(O,—OO)|O>

Wednesday, June 25, 14



Eikonal jet & cusp anomalous dimension

Q@  eikonal jets are Wilson line correlators, introduced to avoid double counting
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Eikonal jet & cusp anomalous dimension

Q@  eikonal jets are Wilson line correlators, introduced to avoid double counting

@ Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities

Q functional dependence on n; constrained by classical invariance
of Wilson lines under rescaling n; » i n;
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities

Q functional dependence on n; constrained by classical invariance
of Wilson lines under rescaling n; » i n;

@  single poles carry (3 - n)? /n* dependence
thus violate classical rescaling symmetry wrt B = cusp anomalous dim
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Eikonal jet & cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg
IR poles <> UV singularities

Q functional dependence on n; constrained by classical invariance
of Wilson lines under rescaling n; » i n;

@  single poles carry (3 - n)? /n* dependence
thus violate classical rescaling symmetry wrt B = cusp anomalous dim

@ double poles and kinematic dependence of single poles are controlled by cusp Yk,
like in the quark form factor

(B e [ i ) e (252

n

Oj is a constant
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Soft function S

Q soft function is a matrix which mixes the colour representations

(en)ijriSNL (Ba - Bp, s (1), €)

= ) < 0% (0,00)05 (00,0)®% (0, 00) 0% (00,0)[0 > (cp)irjnnr
,L‘/j/k/l/
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Soft function S

Q soft function is a matrix which mixes the colour representations
(en)ijriSNL (Ba - Bp, s (1), €)

— Z < O|<I>li’§2 (0, oo)CIfLBi’ (oo,())@%’gj (O,oo)CI)l_’lB4(oo,O)|O > (cp)irjrkn
,I:/j/k/l/

@ matrix evolution equation

d
H@SJL (Ba + Bb, O‘s(lﬂ)a 6)

— _Z [FS]JN (ﬁa ‘ 5b7a5(ﬂ2>7€) SNL (ﬁ“ ' 61)’&5(“2)’6)

['s soft anomalous dimension,
singular due to the UV and collinear poles
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Soft function S

Q soft function is a matrix which mixes the colour representations

(en)ijriSNL (Ba - Bp, s (1), €)

— Z < O|<I>]i’§2 (0, oo)CIfLBi’ (oo,O)CI)%’Sj (O,oo)CI)l_’lB4(oo,O)|O > (cp)irjrkn
,L'/j/k/l/

@ matrix evolution equation

d
M@SJL (Ba . Bba as(MQ)a 6)

— _Z [FS]JN (@1 ‘ 5b7048(:“2>7€) SNL (6‘1 ' 61”&5(“2)’6)

['s soft anomalous dimension,
singular due to the UV and collinear poles

@ in DimReg the solution is

)\2

©.@) . as 2 n
Ls=> T (—ET“ )>
n=1

p? d\2 \
S (Ba - By, as(n?), €) = Pexp {; /O ~Ts (Ba - By as(pi?), e)} ~_ 7
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Reduced soft function

Q Ssr (pij, €) = Sy (Bi- B €) Dixon Magnea Sterman 2008

fla (52

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities = must respect rescaling Bi = Ki B

» 8 depends Onl)' on Pij = 2(5 . 725)12 QBZ% . ?1')2
) 7 J J
TR
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Reduced soft function

Q Ssr (pij, €) = Syr(Bi - Fi, ) Dixon Magnea Sterman 2008

fla (52

the reduced soft function is made such that the double poles cancel.
It does not have cusp singularities = must respect rescaling Bi = Ki B

» 8 depends Onl)' on Pij = 2(6 . 7(7/5)12 QBZ% . n,)Q
) 7 J J
TR

Q the factorisation becomes

2’L 2@ nf[, 2’1, nlz
M (pi/p,€) ZSNL Pijs € )HL( = 2p37 P )HJ ( Di i) ,€>

0

S has only single poles due to large-angle soft emissions

Wednesday, June 25, 14



