A SMUGGLED TECHNICAL NOTE ON MUELLER NAVELET JETS FROM THE FELLOWS' GARDEN

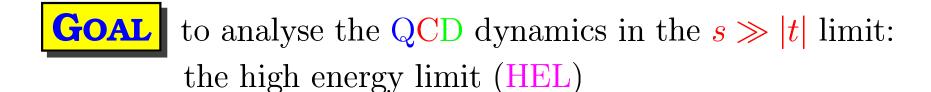
VITTORIO DEL DUCA

I.N.F.N. TORINO

GOAL to analyse the QCD dynamics in the $s \gg |t|$ limit: the high energy limit (HEL)

in HEL the scattering processes are dominated by sub-processes with gluon exchange in the t channel

theory resums multiple gluon radiation out of the gluon exchanged in the t channel



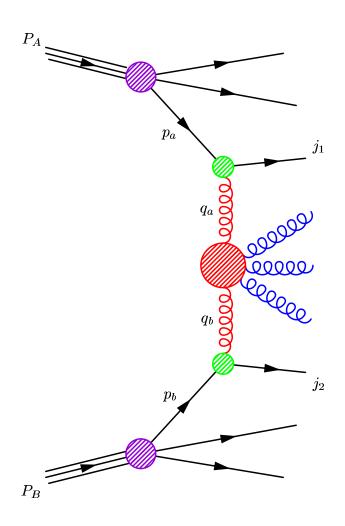
FACT in HEL the scattering processes are dominated by sub-processes with gluon exchange in the t channel

BFKL theory resums multiple gluon radiation out of the gluon exchanged in the t channel

PHENOM. Process-dependent questions:

- * does a fixed-order expansion in α_s suffice to describe the data?
- * can the data be described in terms of other, e.g. Sudakov, resummations?
- * in phase space, where do sub-processes with gluon exchange in the t channel dominate over the other sub-processes?

DIJET PRODUCTION IN PP COLLISIONS



KINEMATICS

 $p_a = x_a P_A$ $p_b = x_b P_B$:
incoming parton momenta

S: hadron c.m. energy

 $s = x_a x_b S$: parton c.m. energy

 $E_{j_{1,2\perp}}$: jet transverse energy

 $Q^2 = -t$: typical momentum transfer \hat{O} $Q^2 \sim E_{i}^2$

 $\Delta y = |y_{j_1} - y_{j_2}|:$

rapidity difference between the jets

k
$$\ln \frac{S}{Q^2} = \ln \frac{1}{x_a} + \ln \frac{s}{Q^2} + \ln \frac{1}{x_b}$$

k $x_{a,b} = \mathcal{O}(1)$ $\ln \frac{s}{Q^2} \simeq \Delta y \gg 1$

Ô physics of large rapidity intervals, and not small-x physics

DIJET PRODUCTION IN HEL

the cross section for dijet production in HEL:

$$\frac{d\sigma}{d^2 p_{j_1 \perp} d^2 p_{j_2 \perp} dy_{j_1} dy_{j_2}} = x_a^0 f_{\text{eff}}(x_a^0, \mu_F^2) \, x_b^0 f_{\text{eff}}(x_b^0, \mu_F^2) \, \frac{d\hat{\sigma}_{gg}}{d^2 p_{j_1 \perp} d^2 p_{j_2 \perp}}$$

the parton momentum fractions in HEL:

$$x_a^0 = \frac{|p_{j_{1\perp}}|}{\sqrt{S}} e^{y_{j_{1\perp}}}, \qquad x_b^0 = \frac{|p_{j_{2\perp}}|}{\sqrt{S}} e^{-y_{j_{2\perp}}}$$

the effective p.d.f.

$$f_{\text{eff}}(x,\mu_F^2) = G(x,\mu_F^2) + \frac{4}{9} \sum_f \left[Q_f(x,\mu_F^2) + \bar{Q}_f(x,\mu_F^2) \right]$$

DIJET PRODUCTION IN HEL

the cross section for dijet production in HEL:

$$\frac{d\sigma}{d^2 p_{j_1 \perp} d^2 p_{j_2 \perp} dy_{j_1} dy_{j_2}} = x_a^0 f_{\text{eff}}(x_a^0, \mu_F^2) \, x_b^0 f_{\text{eff}}(x_b^0, \mu_F^2) \, \frac{d\hat{\sigma}_{gg}}{d^2 p_{j_1 \perp} d^2 p_{j_2 \perp}}$$

the parton momentum fractions in HEL:

$$x_a^0 = \frac{|p_{j_{1\perp}}|}{\sqrt{S}} e^{y_{j_{1\perp}}}, \qquad x_b^0 = \frac{|p_{j_{2\perp}}|}{\sqrt{S}} e^{-y_{j_{2\perp}}}$$

the effective p.d.f.

$$f_{\text{eff}}(x,\mu_F^2) = G(x,\mu_F^2) + \frac{4}{9} \sum_f \left[Q_f(x,\mu_F^2) + \bar{Q}_f(x,\mu_F^2) \right]$$

parton cross section in terms of BFKL ladder f and impact factors:

$$rac{d\hat{\sigma}_{gg}}{d^{2}p_{j_{1\perp}}d^{2}p_{j_{2\perp}}} \ = \ \left[rac{C_{A}lpha_{s}}{|p_{j_{1\perp}}|^{2}}
ight]f(q_{a_{\perp}},q_{b_{\perp}},\Delta y)\left[rac{C_{A}lpha_{s}}{|p_{j_{2\perp}}|^{2}}
ight]$$

asymptotically, the LL BFKL ladder is:

$$\lim_{\Delta y \gg 1} f(q_{a_\perp}, q_{b_\perp}, \Delta y) \sim rac{e^{4C_A \ln 2lpha_S \Delta y/\pi}}{\sqrt{7\zeta_3 C_A lpha_S \Delta y/2}}$$

BFKL MONTE CARLO

DRAWBACKS OF THE BFKL LADDER

- k the (N)LL BFKL resummation is performed at fixed α_s Ô any variation in the scale of α_s occurs in the (N)NLL terms
- k energy and longitudinal momentum are not conserved: in dijet production, the exact x's are

$$x_{a} = \frac{e^{y_{j_{1}}}}{\sqrt{S}} \left(|p_{j_{1\perp}}| + |p_{j_{2\perp}}| e^{-\Delta y} + \sum_{i=1}^{n} p_{i\perp} e^{y_{i}} - y_{j_{1}} \right)$$

$$x_{b} = \frac{e^{-y_{j_{2}}}}{\sqrt{S}} \left(|p_{j_{2\perp}}| + |p_{j_{1\perp}}| e^{-\Delta y} + \sum_{i=1}^{n} p_{i\perp} e^{-y_{i}} + y_{j_{2}} \right)$$

BFKL MONTE CARLO

DRAWBACKS OF THE BFKL LADDER

- k the (N)LL BFKL resummation is performed at fixed α_s Ô any variation in the scale of α_s occurs in the (N)NLL terms
- k energy and longitudinal momentum are not conserved: in dijet production, the exact x's are

$$x_{a} = \frac{e^{y_{j_{1}}}}{\sqrt{S}} \left(|p_{j_{1\perp}}| + |p_{j_{2\perp}}| e^{-\Delta y} + \sum_{i=1}^{n} p_{i\perp} e^{y_{i}} - y_{j_{1}} \right)$$

$$x_{b} = \frac{e^{-y_{j_{2}}}}{\sqrt{S}} \left(|p_{j_{2\perp}}| + |p_{j_{1\perp}}| e^{-\Delta y} + \sum_{i=1}^{n} p_{i\perp} e^{-y_{i}} + y_{j_{2}} \right)$$

- * a Monte Carlo solution of the BFKL equation can account for
- \hat{O} running of α_s
- Ô energy and longitudinal momentum conservation

DIJET PRODUCTION IN HEL

k in an event with two or more jets, tag the most forward and the most backward jets

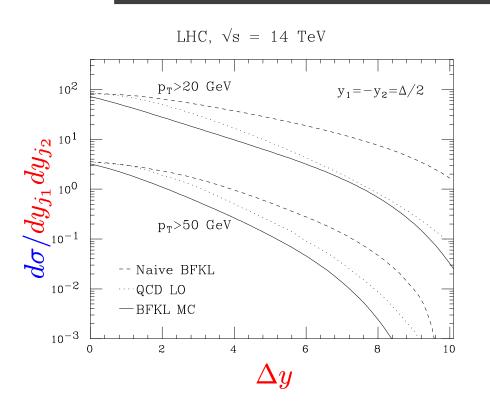
$$\Delta y = |y_{j_1} - y_{j_2}| \simeq \ln \frac{x_a x_b S}{E_{j_{1\perp}} E_{j_{2\perp}}}$$

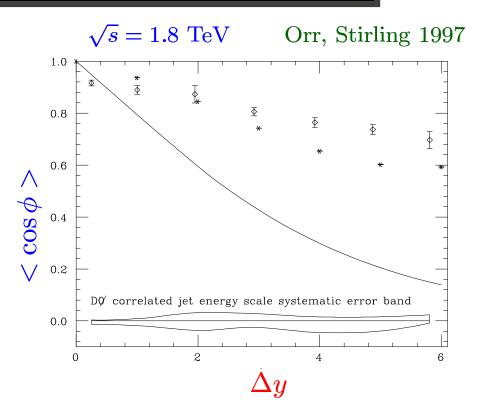
k minimise the jet transverse energy

- k maximise $s = x_a x_b S$
 - ¶ in a collider with ramping-up energy S, fix = $x_{a,b}$ analyse $\frac{d\sigma}{dx_a dx_b}$ for different values of S Mueller, Navelet 1987
 - in a fixed energy S collider, increase = $x_{a,b}$

analyse
$$\begin{cases} \frac{d\sigma}{d\Delta y} & \text{for different values of } \Delta y \\ \frac{d\sigma}{d\Delta y\,d\phi} & \phi: \text{ azimuthal angle between tagged jets} \end{cases}$$
Schmidt, VDD; Stirling 1993-95

DIJET PRODUCTION - PHENOMENOLOGY





- \hat{O} in $\frac{d\sigma}{dy_{j_1}dy_{j_2}}$ the BFKL Monte Carlo yields a depletion rather than an enhancement, both for Tevatron & LHC, due to the falling parton luminosities
- $\hat{O} < \cos \phi >$ shows too much azimuthal decorrelation wrt Tevatron D0 data, while it is well described by a parton-shower Monte Carlo (HERWIG)

CAVEAT

 $\langle \cos \phi \rangle$ is dominated by soft gluon (Sudakov) effects

MUELLER-NAVELET JETS

Mueller-Navelet proposal for colliders with ramping-up energy S:

k take the cross section for dijet production in HEL at fixed x's:

$$rac{d\sigma}{dx_a^0 dx_b^0} = \int d^2 p_{j_1\perp} d^2 p_{j_2\perp} f_{ ext{eff}}(x_a^0, \mu_F^2) \, f_{ ext{eff}}(x_b^0, \mu_F^2) \, rac{d\hat{\sigma}_{gg}}{d^2 p_{j_1\perp} d^2 p_{j_2\perp}}$$

- k use approximate x's: $x_a^{MN} = \frac{E_\perp}{\sqrt{S}} e^{y_{j_{1\perp}}}$ $x_b^{MN} = \frac{E_\perp}{\sqrt{S}} e^{-y_{j_{2\perp}}}$
 - \hat{O} the x's are in a one-to-one correspondence with the rapidities
 - Ô Δy is fixed at its max: $\Delta y = \ln \frac{x_a^{MN} x_b^{MN} S}{E_{\perp}^2}$
- k integrate out transverse energies above a threshold E_{\perp} : $|p_{j_{1,2\perp}}| \geq E_{\perp}$ Ô the Mueller-Navelet gluon-gluon cross section is

$$\hat{\sigma}_{gg} = \frac{9\pi\alpha_S^2}{2E_\perp^2} \frac{e^{4C_A \ln 2\alpha_S \Delta y/\pi}}{\sqrt{7\zeta_3 C_A \alpha_S \Delta y/2}}$$

k compute the cross section at different c.m. energies S

MUELLER-NAVELET JETS - DO ANALYSIS

D0 implementation of Mueller-Navelet:

D0 Collaboration 1999

* exact LO x's:
$$\begin{cases} x_1 = \frac{2|p_{j_1\perp}|}{\sqrt{S}} e^{\bar{y}} \cosh \frac{\Delta y}{2} \\ x_2 = \frac{2|p_{j_2\perp}|}{\sqrt{S}} e^{-\bar{y}} \cosh \frac{\Delta y}{2} \end{cases}$$

$$\bar{y} = \frac{y_{j_{1\perp}} + y_{j_{2\perp}}}{2}$$

* acceptance cuts:

$$\begin{cases} |p_{j_{1,2\perp}}| \ge 20 \text{ GeV} \qquad Q^2 = |p_{j_{1\perp}}p_{j_{2\perp}}| \le Q_{_{MAX}}^2 = 1000 \text{ GeV}^2 \\ |y_{j_{1,2\perp}}| \le 3 \qquad \Delta y \ge 2 \end{cases}$$

- * measure the cross section at $\sqrt{S_A} = 1800 \text{ GeV}$ and $\sqrt{S_B} = 630 \text{ GeV}$ in $6 (x_1, x_2)$ bins, with $0.06 \le x_1, x_2 \le 0.22$
- * using the Mueller-Navelet cross section, compute the ratio $R = \frac{\sigma(S_A)}{\sigma(S_B)}$
- O get the BFKL intercept

$$\alpha_{BFKL} = 1.65 \pm 0.07$$

OUR MUELLER-NAVELET/DO ANALYSIS

- * D0 uses an upper bound on Q^2 , such that $E_{\perp}^2/Q_{MAX}^2 = 0.4$
- * in HEL $\begin{cases} x_1 \to x_a^0 \neq x_a^{MN} \\ x_2 \to x_b^0 \neq x_b^{MN} \end{cases}$

 $x_{a,b}^{MN}$ are not good approximations to $x_{1,2}$

* the rapidity interval can be written as

$$egin{aligned} \Delta y &= Y + \ln rac{E_\perp^2}{p_{j_{1\perp}} p_{j_{2\perp}}} \quad ext{with} \quad Y = \ln rac{x_a^0 x_b^0 S}{E_\perp^2} \ \Delta y &\geq 2 \quad \hat{ ext{O}} \quad Q_{_{MAX}}^2 = E_\perp^2 e^{(Y-2)} \end{aligned}$$

Ô an effective maximum momentum transfer

$$Q_{MAX}^2 = \min(1000 \,\text{GeV}^2, E_{\perp}^2 e^{(Y-2)})$$

OUR MUELLER-NAVELET/DO ANALYSIS

* D0 uses an upper bound on Q^2 , such that $E_{\perp}^2/Q_{MAX}^2 = 0.4$

* in HEL
$$\begin{cases} x_1 \to x_a^0 \neq x_a^{MN} \\ x_2 \to x_b^0 \neq x_b^{MN} \end{cases}$$

 $x_{a,b}^{MN}$ are not good approximations to $x_{1,2}$

* the rapidity interval can be written as

$$egin{aligned} \Delta y &= Y + \ln rac{E_\perp^2}{p_{j_{1\perp}} p_{j_{2\perp}}} \quad ext{with} \quad Y &= \ln rac{x_a^0 x_b^0 S}{E_\perp^2} \ \Delta y &\geq 2 \quad \hat{\mathsf{O}} \quad Q_{_{MAX}}^2 = E_\perp^2 e^{(Y-2)} \end{aligned}$$

Ô an effective maximum momentum transfer $Q_{MAX}^2 = \min(1000 \, \text{GeV}^2, E_{\perp}^2 e^{(Y-2)})$

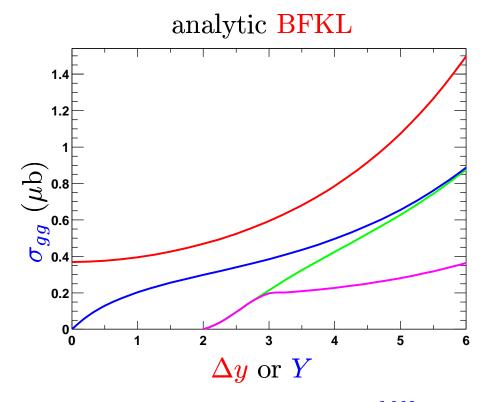
we analysed Mueller-Navelet/D0 with

k analytic BFKL

Andersen, Frixione, Schmidt, Stirling, VDD 2001

- k BFKL Monte Carlo
- k general-purpose NLO partonic Monte Carlo

OUR MUELLER-NAVELET/DO ANALYSIS



red: Mueller-Navelet (at fixed $x_{a,b}^{MN}$)

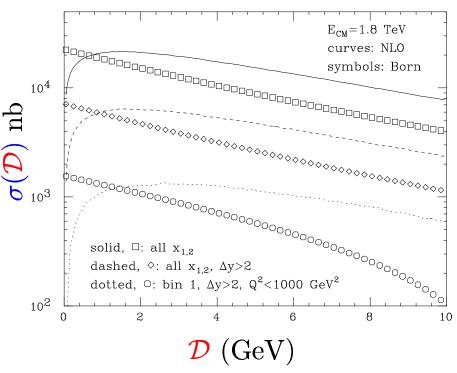
blue: at fixed $x_{a,b}^0$

green: at fixed $x_{a,b}^0$ with $\Delta y \geq 2$

magenta: green + $p_{j_1\perp}p_{j_2\perp} \le 1000 \,\mathrm{GeV^2}$

k in σ_{gg} all curves have asymptotically the same shape \hat{O} sub-leading terms are important

NLO partonic Monte Carlo



 $\mathcal{D} = |\min(p_{j_{1\perp}}) - \min(p_{j_{2\perp}})|$

symbols: LO

curves: NLO

soft gluon effects at $\mathcal{D}=0$

CONCLUSIONS

- * AZIMUTHAL DECORRELATION No evidence of BFKL radiation has been found. Data are described well by parton shower generators (HERWIG)
- * **MUELLER-NAVELET JETS** Sub-leading effects forbid the extraction of the BFKL intercept
- * Caveat Both analyses above are contaminated by soft gluon (Sudakov) effects