
Amplitudes, Wilson Loops, 
Symbols and Coproducts

Vittorio Del Duca

INFN  LNF

Roma La Sapienza                                      14 January 2013

Monday, January 14, 13



Motivation
in gauge field theories, one-loop calculations are in general quite involved

over 30 years since first non trivial computations K. Ellis Ross Terrano 81

progress has been very slow 
(adding one more parton would take ~10 years) 

yet, in the last ~5 years, one-loop calculations have undergone 
tremendous progress, so-called NLO revolution 

various causes:
- generalised unitarity
- on-shell recursion relations
- OPP method 

Bern Dixon Dunbar Kosower 94
Britto Cachazo Feng Witten 04
Ossola Papadopoulos Pittau 06

two-loop calculations are much younger
obviously they are much more difficult

Smirnov Tausk 99-00

can we envisage a similar leap forward ?
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Two-loop matrix elements

Higgs production
Harlander Kilgore;  Anastasiou Melnikov 2002

gg → H (in the                limit)mt → ∞

Drell-Yan     productionV

Hamberg van Neerven Matsuura 1991

qq̄ → V

2 → 1 processes

Higgs production with a heavy-quark loop
Spira Djouadi Graudenz Zerwas 1995
Aglietti Bonciani Degrassi Vicini 2006
Anastasiou Beerli Bucherer Daleo Kunszt 2007

Higgs production with EW corrections and a light-quark loop
Aglietti Bonciani Degrassi Vicini 2004
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Two-loop matrix elements

two-jet production qq
′
→ qq

′
, qq̄ → qq̄, qq̄ → gg, gg → gg

Anastasiou Glover Oleari Tejeda-Yeomans 2000-01;  Bern De Freitas Dixon 2002

2 → 2 processes

photon-pair production qq̄ → γγ, gg → γγ

Anastasiou Glover Tejeda-Yeomans; Bern De Freitas Dixon 2002
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Two-loop matrix elements

two-jet production qq
′
→ qq

′
, qq̄ → qq̄, qq̄ → gg, gg → gg

Anastasiou Glover Oleari Tejeda-Yeomans 2000-01;  Bern De Freitas Dixon 2002

2 → 2 processes

photon-pair production qq̄ → γγ, gg → γγ

Anastasiou Glover Tejeda-Yeomans; Bern De Freitas Dixon 2002

e
+
e
−

→ 3 jets
Garland Gehrmann Glover Koukoutsakis Remiddi 2001

γ
∗
→ qq̄g

H → 3 partons (in the                limit)
Gehrmann Jaquier Glover Koukoutsakis 2011;  Duhr 2012

mt → ∞
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Two-loop matrix elements

two-jet production qq
′
→ qq

′
, qq̄ → qq̄, qq̄ → gg, gg → gg

Anastasiou Glover Oleari Tejeda-Yeomans 2000-01;  Bern De Freitas Dixon 2002

2 → 2 processes

photon-pair production qq̄ → γγ, gg → γγ

Anastasiou Glover Tejeda-Yeomans; Bern De Freitas Dixon 2002

e
+
e
−

→ 3 jets
Garland Gehrmann Glover Koukoutsakis Remiddi 2001

γ
∗
→ qq̄g

e+e� ! e+e�Bhabha scattering
Bonciani Ferroglia Mastrolia Remiddi van der Bji 2003
Czakon Gluza Riemann 2004
Bonciani Ferroglia Penin 2008

(still incomplete, even in QED)

H → 3 partons (in the                limit)
Gehrmann Jaquier Glover Koukoutsakis 2011;  Duhr 2012

mt → ∞
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Two-loop matrix elements

two-jet production qq
′
→ qq

′
, qq̄ → qq̄, qq̄ → gg, gg → gg

Anastasiou Glover Oleari Tejeda-Yeomans 2000-01;  Bern De Freitas Dixon 2002

2 → 2 processes

photon-pair production qq̄ → γγ, gg → γγ

Anastasiou Glover Tejeda-Yeomans; Bern De Freitas Dixon 2002

e
+
e
−

→ 3 jets
Garland Gehrmann Glover Koukoutsakis Remiddi 2001

γ
∗
→ qq̄g

e+e� ! e+e�Bhabha scattering
Bonciani Ferroglia Mastrolia Remiddi van der Bji 2003
Czakon Gluza Riemann 2004
Bonciani Ferroglia Penin 2008

(still incomplete, even in QED)

ttbar production
Czakon 2008   (only numeric)
Bonciani Ferroglia Gehrmann Maitre Studerus 2008-09 (analytic, incomplete)

qq̄ ! QQ̄

qg ! QQ̄ Czakon Mitov 2012  (only numeric)

gg ! QQ̄ Bonciani Ferroglia Gehrmann von Manteuffel Studerus 2010 (analytic, incomplete)

H → 3 partons (in the                limit)
Gehrmann Jaquier Glover Koukoutsakis 2011;  Duhr 2012

mt → ∞
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N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars
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N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

Monday, January 14, 13



N=4 Super Yang-Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)
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use N=4 Super Yang-Mills as a computational lab:

to learn techniques and tools to be used in Standard Model
two-loop calculations 

to learn about the bases of special functions which may occur
in the processes at hand 

amplitudes in N=4 Super Yang-Mills are much simpler
than in Standard Model processes 
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MHV amplitudes in planar N=4 SYM
at any order in the coupling, colour-ordered MHV amplitudes
in planar N=4 SYM can be written as the tree-level amplitude times
a momentum dependent loop coefficient M (L)

n = M (0)
n m(L)

n

m(1)
n =

�

pq

F 2me(p, q, P, Q)

at 1 loop

n � 6

Bern Dixon Dunbar Kosower 94
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MHV amplitudes in planar N=4 SYM
at any order in the coupling, colour-ordered MHV amplitudes
in planar N=4 SYM can be written as the tree-level amplitude times
a momentum dependent loop coefficient

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (�) =

1
2

�
m(1)

n (�)
⇥2

+ f (2)(�) m(1)
n (2�) + Const(2) + R

M (L)
n = M (0)

n m(L)
n

m(1)
n =

�

pq

F 2me(p, q, P, Q)

at 1 loop

n � 6

Bern Dixon Dunbar Kosower 94
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m(2)
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�
m(1)

n (�)
⇥2

+ f (2)(�) m(1)
n (2�) + Const(2) + R

at all loops, ansatz for a resummed exponent

Bern Dixon Smirnov 05

m(L)
n = exp

⇤ �⇧

l=1

al
�
f (l)(�) m(1)

n (l�) + Const(l) + E(l)
n (�)

⇥⌅
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+ R

remainder
function

M (L)
n = M (0)

n m(L)
n

m(1)
n =

�

pq

F 2me(p, q, P, Q)

at 1 loop

n � 6
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ansatz for MHV amplitudes in planar N=4 SYM
Bern Dixon Smirnov 05

cusp anomalous dimension, known to all orders of a

collinear anomalous dimension, known through O(a4) 

Korchemsky Radyuskin 86 
Beisert Eden Staudacher 06 

Bern Dixon Smirnov 05 
Cachazo Spradlin Volovich 07

‘t Hooft parameter coupling a =
�

8⇥2
(4⇥e��)⇥ � = g2N

f (l)(⇥) =
�̂(l)

K

4
+ ⇥

l

2
Ĝ(l) + ⇥2 f (l)

2

�̂(l)
K

Ĝ(l)

E(l)
n (�) = O(�)

Mn = M (0)
n

⇤
1 +

�⇧

L=1

aLm(L)
n (�)

⌅

= M (0)
n exp

⇤ �⇧

l=1

al
�
f (l)(�)m(1)

n (l�) + Const(l) + E(l)
n (�)

⇥⌅
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Factorisation of a multi-leg amplitude in QCD

Mueller 1981
Sen 1983
Botts Sterman 1987
Kidonakis Oderda Sterman 1998
Catani 1998
Tejeda-Yeomans Sterman 2002
Kosower 2003
Aybat Dixon Sterman 2006
Becher Neubert 2009
Gardi Magnea 2009

to avoid double counting of soft-collinear region (IR double poles), 
Ji removes eikonal part from Ji, which is already in S
Ji/Ji contains only single collinear poles

MN (pi/µ, ⇥) =
⇤

L

SNL(�i · �j , ⇥) HL

�
2pi · pj

µ2
,
(2pi · ni)2

n2
i µ

2

⇥ ⌅

i

Ji

�
(2pi · ni)2

n2
i µ

2
, ⇥

⇥

Ji

�
2(�i · ni)2

n2
i

, ⇥

⇥

pi = �iQ0/
�

2 value of Q0  is immaterial in S, J
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N = 4 SYM in the planar limit

colour-wise, the planar limit is trivial:
can absorb S into Ji

each slice is square root
of Sudakov form factor

Mn =
n⇧

i=1

⇤
M[gg�1]

�
si,i+1

µ2
, �s, ⇥

⇥⌅1/2

hn({pi}, µ2, �s, ⇥)

β fn = 0 ⇒ coupling runs only through dimension

ln
⇤
�

�
Q2

µ2
, �s(µ2), ⇤

⇥⌅
= �1

2

⇥⌥

n=1

�
�s(µ2)

⇧

⇥n �
�Q2

µ2

⇥�n�
⇧

⇥(n)
K

2n2⇤2
+

G(n)(⇤)
n⇤

⌃

⇒ IR structure of planar N = 4 SYM amplitudes

Sudakov form factor has simple solution

�̄s(µ2)µ2� = �̄s(⇥2)⇥2�

Magnea Sterman 90
Bern Dixon Smirnov 05
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the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

the ansatz fails on 2-loop 6-pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

for n = 4, 5,  R is a constant
for n ≥ 6,    R is a function of conformally invariant cross ratios

R(2)
n = m(2)

n (�)� 1
2

�
m(1)

n (�)
⇥2
� f (2)(�) m(1)

n (2�)� Const(2)

at 2 loops, the remainder function characterises the deviation from the ansatz
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the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 

Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

for n = 6, the conformally invariant cross ratios are

thus x2
k,k+r = (pk + . . . + pk+r�1)2

u1 =
x2

13x
2
46

x2
14x

2
36

u2 =
x2

24x
2
15

x2
25x

2
14

u3 =
x2

35x
2
26

x2
36x

2
25

1

2

6

3

4

5

pi = xi � xi+1xi are variables in a dual space s.t.
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the ansatz checked for the 3-loop 4-pt amplitude
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 
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the ansatz fails on 2-loop 6-pt amplitude Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
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for n = 4, 5,  R is a constant
for n ≥ 6,    R is a function of conformally invariant cross ratios

R(2)
n = m(2)

n (�)� 1
2

�
m(1)

n (�)
⇥2
� f (2)(�) m(1)

n (2�)� Const(2)

at 2 loops, the remainder function characterises the deviation from the ansatz

R(2)
6 known

Duhr Smirnov VDD 09

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Drummond Henn Korchemsky Sokatchev 08
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

analytically

numerically
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AdS/CFT duality, amplitudes & Wilson loops

planar N=4 SYM scattering amplitude at strong coupling

Alday Maldacena 07

area of string world-sheet classical solution
neglect O(1/√λ) corrections( )

M � exp

�
i

⇤
�

2⇥
(Area)cl

⇥
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AdS/CFT duality, amplitudes & Wilson loops

planar N=4 SYM scattering amplitude at strong coupling

Alday Maldacena 07

area of string world-sheet classical solution
neglect O(1/√λ) corrections( )

M � exp

�
i

⇤
�

2⇥
(Area)cl

⇥

amplitude has same form as ansatz for MHV amplitudes at weak coupling

Mn = M (0)
n exp

⇤ �⇧

l=1

al
�
f (l)(�) m(1)

n (l�) + Const(l) + E(l)
n (�)

⇥⌅
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AdS/CFT duality, amplitudes & Wilson loops

computation ``formally the same as ... the expectation value of a Wilson loop
given by a sequence of light-like segments’’

planar N=4 SYM scattering amplitude at strong coupling

Alday Maldacena 07

area of string world-sheet classical solution
neglect O(1/√λ) corrections( )

M � exp

�
i

⇤
�

2⇥
(Area)cl

⇥

amplitude has same form as ansatz for MHV amplitudes at weak coupling

Mn = M (0)
n exp

⇤ �⇧

l=1

al
�
f (l)(�) m(1)

n (l�) + Const(l) + E(l)
n (�)

⇥⌅
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Wilson loops

W [Cn] = Tr P exp
�
ig

⇤
d� ẋµ(�)Aµ(x(�))

⇥

closed contour       made by light-like external momentaCn
pi = xi � xi+1

Alday Maldacena 07
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Wilson loops

W [Cn] = Tr P exp
�
ig

⇤
d� ẋµ(�)Aµ(x(�))

⇥

closed contour       made by light-like external momentaCn
pi = xi � xi+1

non-Abelian exponentiation theorem: vev of Wilson loop as an exponential,
allows us to compute the log of W

⇥W [Cn]⇤ = 1 +
��

L=1

aLW (L)
n = exp

��

L=1

aLw(L)
n

Gatheral 83
Frenkel Taylor 84

through 2 loops w(1)
n = W (1)

n w(2)
n = W (2)

n � 1
2

�
W (1)

n

⇥2

Alday Maldacena 07
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Wilson loops

W [Cn] = Tr P exp
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⇤
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pi = xi � xi+1

non-Abelian exponentiation theorem: vev of Wilson loop as an exponential,
allows us to compute the log of W

⇥W [Cn]⇤ = 1 +
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L=1

aLW (L)
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Gatheral 83
Frenkel Taylor 84

through 2 loops w(1)
n = W (1)

n w(2)
n = W (2)

n � 1
2

�
W (1)

n

⇥2

Alday Maldacena 07

relation between planar N=4 SYM 1 loop MHV amplitudes & Wilson loops

w(1)
n =

�(1� 2�)
�2(1� �)

m(1)
n = m(1)

n � n
⇥2

2
+O(�) Brandhuber Heslop Travaglini 07

(aka weak-weak duality)
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Wilson loops & Ward identities
planar N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts 
is given by the finite parts of the BDS ansatz + R

Drummond Henn Korchemsky Sokatchev 07

w(2)
n (�) = f (2)

WL(�) w(1)
n (2�) + C(2)

WL + R(2)
n,WL +O(�)

at 2 loops

f (2)
WL(�) = �⇥2 + 7⇥3�� 5⇥4�

2with

(to be compared with f (2)(�) = �⇥2 � ⇥3�� ⇥4�
2 for the amplitudes)
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Wilson loops & Ward identities
planar N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts 
is given by the finite parts of the BDS ansatz + R
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w(2)
n (�) = f (2)

WL(�) w(1)
n (2�) + C(2)

WL + R(2)
n,WL +O(�)

at 2 loops

f (2)
WL(�) = �⇥2 + 7⇥3�� 5⇥4�

2with

(to be compared with f (2)(�) = �⇥2 � ⇥3�� ⇥4�
2 for the amplitudes)

arbitrary function of conformally invariant cross ratios

with x2
k,k+r = (pk + . . . + pk+r�1)2

R(2)
n,WL

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1
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Wilson loops & Ward identities
planar N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts 
is given by the finite parts of the BDS ansatz + R

Drummond Henn Korchemsky Sokatchev 07
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2 for the amplitudes)
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with x2
k,k+r = (pk + . . . + pk+r�1)2

R(2)
n,WL

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

duality Wilson loop ⇔ MHV amplitude is expressed by

R(2)
n,WL = R(2)

n
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MHV amplitudes ⇔  Wilson loops
agreement between n-edged Wilson loop and n-point MHV amplitude
at weak coupling (aka weak-weak duality)

Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Brandhuber Heslop Travaglini 07verified for n-edged 1-loop Wilson loop
up to 6-edged 2-loop Wilson loop

n-edged 2-loop Wilson loops computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

no amplitudes are known beyond the 6-point 2-loop amplitude!
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Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

Diagrams of 2-loop Wilson loops

each diagram yields an integral,
similar to a Feynman-parameter integral

cross diagram

hard diagram

Y diagram

curtain diagram

factorised cross diagram
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Computing 2-loop Wilson loops

cusp diagrams are given by cross and Y diagrams with gluons attaching to consecutive sides
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Computing 2-loop Wilson loops

cusp diagrams are given by cross and Y diagrams with gluons attaching to consecutive sides

most difficult diagrams to compute are hard diagrams

fH has 1/ε2 singularities if Q1 = Q2 = 0, Q3 ≠ 0
it has 1/ε singularities if Q1 = 0, Q2, Q3 ≠ 0
it is finite if Q1, Q2, Q3 ≠ 0

e.g. for n=6, the most difficult diagram is

fH(p1, p3, p5; p4, p6, p2) which is finite
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Computing 2-loop Wilson loops

cusp diagrams are given by cross and Y diagrams with gluons attaching to consecutive sides

most general hard diagram has Q1
2, Q2

2, Q3
2 ≠ 0; it occurs for n ≥ 9

most difficult diagrams to compute are hard diagrams

fH has 1/ε2 singularities if Q1 = Q2 = 0, Q3 ≠ 0
it has 1/ε singularities if Q1 = 0, Q2, Q3 ≠ 0
it is finite if Q1, Q2, Q3 ≠ 0

e.g. for n=6, the most difficult diagram is

fH(p1, p3, p5; p4, p6, p2) which is finite
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Quasi-multi-Regge limit of hexagon Wilson loop

the conformally invariant cross ratios are

p1

p2

p6

q2

p3

q1

p4

p5

y3 � y4 ⇥ y5 � y6; |p3�| ⇥ |p4�| ⇥| p5�| ⇥| p6�|

6-pt amplitude in the qmR limit of a pair along the ladder

the cross ratios are all O(1) 
→ R6 does not change its functional dependence on the u’s

u36 =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345

u14 =
x2

24x
2
15

x2
25x

2
14

=
s23s56

s234s123

u25 =
x2

35x
2
26

x2
36x

2
25

=
s34s61

s234s345

 R6 is invariant under the qmR limit of a pair along the ladder
Duhr Glover Smirnov VDD 08
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p1

p2

p7

q2

p3

q1

p4

p5

p6

Quasi-multi-Regge limit of n-sided Wilson loop

7-pt amplitude in the qmR limit of a triple along the ladder

y3 � y4 ⇥ y5 ⇥ y6 � y7; |p3�| ⇥| p4�| ⇥ |p5�| ⇥| p6�| ⇥| p7�|

7 cross ratios, which are all O(1) 
R7 is invariant under the qmR limit
of a triple along the ladder
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p1

p2

p7

q2

p3

q1

p4

p5

p6

Quasi-multi-Regge limit of n-sided Wilson loop

7-pt amplitude in the qmR limit of a triple along the ladder

y3 � y4 ⇥ y5 ⇥ y6 � y7; |p3�| ⇥| p4�| ⇥ |p5�| ⇥| p6�| ⇥| p7�|

7 cross ratios, which are all O(1) 
R7 is invariant under the qmR limit
of a triple along the ladder

can be generalised to the n-pt amplitude
in the qmR limit of a (n-4)-ple along the ladder

y3 � y4 ⇥ . . . ⇥ yn�1 � yn; |p3⇥| ⇥ . . . ⇥ |pn⇥|

Duhr Smirnov VDD 09
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Quasi-multi-Regge limit of  Wilson loops
L-loop Wilson loops are Regge exact

w(L)
n (�) = f (L)

WL(�) w(1)
n (L�) + C(L)

WL + R(L)
n,WL(uij) +O(�)

Drummond Korchemsky Sokatchev 07
Duhr Smirnov VDD 09
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m(1)
n
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w(1)
n =
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n

ln(sij) + Li2(1� uij)

u‘s are invariant in the qmRk
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Quasi-multi-Regge limit of  Wilson loops
L-loop Wilson loops are Regge exact

w(L)
n (�) = f (L)

WL(�) w(1)
n (L�) + C(L)

WL + R(L)
n,WL(uij) +O(�)

w(1)
n =

�(1� 2�)
�2(1� �)

m(1)
n

ln(sij) + Li2(1� uij)

u‘s are invariant in the qmRk

log’s are not power suppressed

we may compute the Wilson loop in qmRk
the result will be correct in general kinematics !!!

Drummond Korchemsky Sokatchev 07
Duhr Smirnov VDD 09
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2-loop 6-edged remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent 

on the cross ratios u1, u2, u3

it is symmetric in all its arguments
(for n > 6, it is symmetric under cyclic permutations and reflections)

it vanishes under collinear and multi-Regge limits (in Euclidean space)

Duhr Smirnov VDD 09

it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

it is of uniform transcendental weight 4

transcendental weights:  w(ln x) = w(π) = 1      w(Li2(x)) = w(π2) = 2
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qmR kinematics make it technically feasible
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2-loop 6-edged remainder function R6
(2)

the remainder function R6
(2) is explicitly dependent 

on the cross ratios u1, u2, u3

it is symmetric in all its arguments
(for n > 6, it is symmetric under cyclic permutations and reflections)

it vanishes under collinear and multi-Regge limits (in Euclidean space)

Duhr Smirnov VDD 09

it is in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

straightforward computation
qmR kinematics make it technically feasible

finite answer, but in intermediate steps many divergences
output is punishingly long

it is of uniform transcendental weight 4

transcendental weights:  w(ln x) = w(π) = 1      w(Li2(x)) = w(π2) = 2
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Wilson loops: analytic calc

1.  Use Mellin-Barnes (MB) representation of the Feynman-parameter integrals:
    replace each denominator by a contour integral

1
(A + B)�

=
1

�(�)
1

2⇥i

� +i⇥

�i⇥
dz �(�z) �(� + z)

Az

B�+z

integral turns into a sum of residues

Resz=�n�(z) =
(�1)n

n!
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Wilson loops: analytic calc

1.  Use Mellin-Barnes (MB) representation of the Feynman-parameter integrals:
    replace each denominator by a contour integral

1
(A + B)�

=
1

�(�)
1

2⇥i

� +i⇥

�i⇥
dz �(�z) �(� + z)

Az

B�+z

integral turns into a sum of residues

Resz=�n�(z) =
(�1)n

n!

2.  Use Regge exactness in the qmR limit:
    retain only leading behaviour 
    (i.e. leading residues) of the integral

leading residue
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3.  Use Regge exactness again: iterate the qmR limit n times,
    by taking the n cyclic permutations of the external legs

Wilson loops: analytic calc
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3.  Use Regge exactness again: iterate the qmR limit n times,
    by taking the n cyclic permutations of the external legs

leading residue in step 2

leading residue in step 3
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3.  Use Regge exactness again: iterate the qmR limit n times,
    by taking the n cyclic permutations of the external legs

leading residue in step 2

leading residue in step 3

4.  Sum remaining towers of residues

��

n=1

un

n
= � ln(1� u)

��

n=1

un

nk
= Lik(u)

Wilson loops: analytic calc
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3.  Use Regge exactness again: iterate the qmR limit n times,
    by taking the n cyclic permutations of the external legs

leading residue in step 2

leading residue in step 3

4.  Sum remaining towers of residues

��

n=1

un

n
= � ln(1� u)

��

n=1

un

nk
= Lik(u)

in general, get nested harmonic sums → multiple polylogarithms

⇥⇧

n1=1

un1
1

nm1
1

n1�1⇧

n2=1

. . .

nk�1�1⇧

nk=1

unk
k

nmk
k

= (�1)k G

�

⇤0, . . . , 0� ⌥⌃  
m1�1

,
1
u1

, . . . , 0, . . . , 0� ⌥⌃  
mk�1

,
1

u1 . . . uk
; 1

⇥

⌅

Wilson loops: analytic calc
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Analytic 2-loop 6-edged Wilson loop
in MB representation of the integrals in general kinematics,
get up to 8-fold integrals
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Analytic 2-loop 6-edged Wilson loop
in MB representation of the integrals in general kinematics,
get up to 8-fold integrals

after procedure in qmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes from fH(p1, p3, p5; p4, p6, p2)

� +i⇥

�i⇥

� +i⇥

�i⇥

� +i⇥

�i⇥

dz1

2�i

dz2

2�i

dz3

2�i
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

⇥� (�z1)
2 � (�z2)

2 � (�z3)
2 � (z1 + z2) � (z2 + z3) � (z3 + z1)
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Analytic 2-loop 6-edged Wilson loop
in MB representation of the integrals in general kinematics,
get up to 8-fold integrals

after procedure in qmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes from fH(p1, p3, p5; p4, p6, p2)

� +i⇥

�i⇥

� +i⇥

�i⇥

� +i⇥

�i⇥

dz1

2�i

dz2

2�i

dz3

2�i
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

⇥� (�z1)
2 � (�z2)

2 � (�z3)
2 � (z1 + z2) � (z2 + z3) � (z3 + z1)

the result is in terms of multiple polylogarithms

G(a, ⌥w; z) =
⇤ z

0

dt

t� a
G(⌥w; t) , G(a; z) = ln

�
1� z

a

⇥ Goncharov

Monday, January 14, 13



Analytic 2-loop 6-edged Wilson loop
in MB representation of the integrals in general kinematics,
get up to 8-fold integrals

after procedure in qmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes from fH(p1, p3, p5; p4, p6, p2)

� +i⇥

�i⇥

� +i⇥

�i⇥

� +i⇥

�i⇥

dz1

2�i

dz2

2�i

dz3

2�i
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

⇥� (�z1)
2 � (�z2)

2 � (�z3)
2 � (z1 + z2) � (z2 + z3) � (z3 + z1)

the remainder function R6
(2) is given in terms of 

O(103) multiple polylogarithms G(u1, u2, u3) Duhr Smirnov VDD 09

the result is in terms of multiple polylogarithms

G(a, ⌥w; z) =
⇤ z

0

dt

t� a
G(⌥w; t) , G(a; z) = ln

�
1� z

a

⇥ Goncharov
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 Zn symmetric regular hexagons

1

2

6

3

4

5

regular hexagons are characterised by

u36 =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345

u14 =
x2

24x
2
15

x2
25x

2
14

=
s23s56

s234s123

u25 =
x2

35x
2
26

x2
36x

2
25

=
s34s61

s234s345

x2
13 = x2

24 = x2
35 = x2

46 = x2
51 = x2

62; x2
14 = x2

25 = x2
36

u14 = u25 = u36 = u
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u36 =
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2
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25

=
s34s61

s234s345

x2
13 = x2

24 = x2
35 = x2

46 = x2
51 = x2

62; x2
14 = x2

25 = x2
36

u14 = u25 = u36 = u

At strong coupling, remainder function is obtained from ``minimal area surfaces in AdS5 which 
end on a null polygonal contour at the boundary’’. One gets ``integral equations which 
determine the area as a function of the shape of the polygon. The equations are identical to 
those of the Thermodynamics Bethe Ansatz. The area is given by the free energy of the TBA 
system. The high temperature limit of the TBA system can be exactly solved’’

Rstrong
6 (u, u, u) =

�

6
� 1

3�
⇥2 � 3

8
�
ln2(u) + 2 Li2(1� u)

⇥

Alday Gaiotto Maldacena 09

u =
1

4 cos2(�/3)
(

free energy

(
BDS - BDSlike
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Remainder function at weak and strong coupling

Rstrong
6 (u, u, u) = c1

⇤
�

6
� 1

3�
⇥2

⌅
+ c2

⇤
3
8

�
ln2(u) + 2 Li2(1� u)

⇥⌅
+ c3

compare remainder functions at weak and strong coupling introducing 
coefficients in the strong coupling result and try to curve fit the 2 results

Alday Gaiotto Maldacena 09
Brandhuber Heslop Khoze Travaglini 09

c1 = 0.263�3 c2 = 0.860�2 c3 = ��2

12
c2
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Remainder function at weak and strong coupling

Rstrong
6 (u, u, u) = c1

⇤
�

6
� 1

3�
⇥2

⌅
+ c2

⇤
3
8

�
ln2(u) + 2 Li2(1� u)

⇥⌅
+ c3

compare remainder functions at weak and strong coupling introducing 
coefficients in the strong coupling result and try to curve fit the 2 results

the 2 curves are strikingly similar

Alday Gaiotto Maldacena 09
Brandhuber Heslop Khoze Travaglini 09

c1 = 0.263�3 c2 = 0.860�2 c3 = ��2

12
c2
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Goncharov Spradlin Vergu Volovich 10

R(2)
6,WL(u1, u2, u3) =

3⇧

i=1

�
L4(x+

i , x�i )� 1
2
Li4(1� 1/ui)

⇥

� 1
8

⇤
3⇧

i=1

Li2(1� 1/ui)

⌅2

+
J4

24
+

�2

12
J2 +

�4

72

the remainder R6
(2) has been simplified and given in terms of polylogarithms 
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x±i = uix
±

where

x± =
u1 + u2 + u3 � 1±

⇤
�

2u1u2u3

� =( u1 + u2 + u3 � 1)2 � 4u1u2u3

L4(x+, x�) =
3�

m=0

(�1)m

(2m)!!
log(x+x�)m(⇤4�m(x+) + ⇤4�m(x�)) +

1
8!!

log(x+x�)4

⇥n(x) =
1
2

(Lin(x)� (�1)nLin(1/x)) J =
3�

i=1

(⇥1(x+
i )� ⇥1(x�i ))
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(2) has been simplified and given in terms of polylogarithms 

not a new, independent, computation
just a manipulation of our result

Monday, January 14, 13



Goncharov Spradlin Vergu Volovich 10

x±i = uix
±

where

x± =
u1 + u2 + u3 � 1±

⇤
�

2u1u2u3

� =( u1 + u2 + u3 � 1)2 � 4u1u2u3

L4(x+, x�) =
3�

m=0

(�1)m

(2m)!!
log(x+x�)m(⇤4�m(x+) + ⇤4�m(x�)) +

1
8!!

log(x+x�)4

⇥n(x) =
1
2

(Lin(x)� (�1)nLin(1/x)) J =
3�

i=1

(⇥1(x+
i )� ⇥1(x�i ))

R(2)
6,WL(u1, u2, u3) =

3⇧

i=1

�
L4(x+

i , x�i )� 1
2
Li4(1� 1/ui)

⇥

� 1
8

⇤
3⇧

i=1

Li2(1� 1/ui)

⌅2

+
J4

24
+

�2

12
J2 +

�4

72

the remainder R6
(2) has been simplified and given in terms of polylogarithms 

not a new, independent, computation
just a manipulation of our result

answer is short and simple
introduces symbols in TH physics
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Symbols
take a function defined as an iterated integral of logarithms of rational functions Ri

T (k) =

Z b

a
d lnR1 � · · · � d lnRk =

Z b

a

✓Z t

a
d lnR1 � · · · � d lnRk�1

◆
d lnRk(t)

then the total differential can be written as

d T (k) =
X

i

T (k�1)
i d lnRi
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Symbols
take a function defined as an iterated integral of logarithms of rational functions Ri

T (k) =

Z b

a
d lnR1 � · · · � d lnRk =

Z b

a

✓Z t

a
d lnR1 � · · · � d lnRk�1

◆
d lnRk(t)

then the total differential can be written as

d T (k) =
X

i

T (k�1)
i d lnRi

as such, the symbol is defined on the tensor product
of the group of rational functions, modulo constants

the symbol is defined recursively as
Goncharov

Sym[T (k)] =
X

i

Sym[T (k�1)
i ]⌦Ri

· · ·⌦R1R2 ⌦ · · · = · · ·⌦R1 ⌦ · · ·+ · · ·⌦R2 ⌦ · · ·
· · ·⌦ (cR1)⌦ · · · = · · ·⌦R1 ⌦ · · ·
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Symbols
take a function defined as an iterated integral of logarithms of rational functions Ri

T (k) =

Z b

a
d lnR1 � · · · � d lnRk =

Z b

a

✓Z t

a
d lnR1 � · · · � d lnRk�1

◆
d lnRk(t)

then the total differential can be written as

d T (k) =
X

i

T (k�1)
i d lnRi

as such, the symbol is defined on the tensor product
of the group of rational functions, modulo constants

the symbol is defined recursively as
Goncharov

Sym[T (k)] =
X

i

Sym[T (k�1)
i ]⌦Ri

· · ·⌦R1R2 ⌦ · · · = · · ·⌦R1 ⌦ · · ·+ · · ·⌦R2 ⌦ · · ·
· · ·⌦ (cR1)⌦ · · · = · · ·⌦R1 ⌦ · · ·

if T is a multiple polylogarithm G, then

dG(an�1, . . . , a1; an) =
n�1X

i=1

G(an�1, . . . , âi, . . . , a1; an)d ln

✓
ai � ai+1

ai � ai�1

◆

the symbol is
Sym (G(an�1, . . . , a1; an)) =

n�1X

i=1

Sym (G(an�1, . . . , âi, . . . , a1; an))⌦
✓
ai � ai+1

ai � ai�1

◆
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Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

G(�0n;x) =
1

n!
lnn x G(�an;x) =

1

n!
lnn

�
1� x

a

⇥

G(�0n�1, a;x) = �Lin
�x
a

⇥
G(�0n,�am;x) = (�1)m Sn,m

�x
a

⇥
Sn�1,1(x) = Lin(x)
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Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

G(�0n;x) =
1

n!
lnn x G(�an;x) =

1

n!
lnn

�
1� x

a

⇥

G(�0n�1, a;x) = �Lin
�x
a

⇥
G(�0n,�am;x) = (�1)m Sn,m

�x
a

⇥
Sn�1,1(x) = Lin(x)

when the root equals +1,-1,0 multiple polylogarithms become harmonic polylogarithms (HPLs)

H(a, �w; z) =

� z

0
dt f(a; t)H(�w; t)

Lin(x) = H(�0n�1, 1;x)

f(�1; t) =
1

1 + t
, f(0; t) =

1

t
, f(1; t) =

1

1� t

{a, �w} ⇥ {�1, 0, 1}with

Sn,m(x) = H(�0n,�1m;x)

Remiddi Vermaseren

when the root equals +1,0 HPLs reduce to Euler and Nielsen polylogarithms
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Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

G(�0n;x) =
1

n!
lnn x G(�an;x) =

1

n!
lnn

�
1� x

a

⇥

G(�0n�1, a;x) = �Lin
�x
a

⇥
G(�0n,�am;x) = (�1)m Sn,m

�x
a

⇥
Sn�1,1(x) = Lin(x)

... on to symbols

Sym

�
1

n!
lnn x

⇥
= x� · · ·� x⇧ ⌅⇤ ⌃ ⇥ x�nSym[lnx] = x

Sym[Lin(x)] = �(1� x)⇥ x⇥(n�1)

Sym[Sn,m(x)] = (�1)m(1� x)�m ⇥ x�n

Sym[H(a1, . . . , an;x)] = (�1)k(an � x)⇥ · · ·⇥ (a1 � x) {ai} �{ 0, 1}
k is the number of a’s equal to 1

when the root equals +1,-1,0 multiple polylogarithms become harmonic polylogarithms (HPLs)

H(a, �w; z) =

� z

0
dt f(a; t)H(�w; t)

Lin(x) = H(�0n�1, 1;x)

f(�1; t) =
1

1 + t
, f(0; t) =

1

t
, f(1; t) =

1

1� t

{a, �w} ⇥ {�1, 0, 1}with

Sn,m(x) = H(�0n,�1m;x)

Remiddi Vermaseren

when the root equals +1,0 HPLs reduce to Euler and Nielsen polylogarithms
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using symbols, one can reduce the HPLs to a minimal set Buehler Duhr 11

B(1)
1 (x) = lnx , B(2)

1 (x) = ln(1� x) , B(3)
1 (x) = ln(1 + x)weight 1:

weight 2: B(1)
2 (x) = Li2(x) , B(2)

2 (x) = Li2(�x) , B(3)
2 (x) = Li2

�
1� x

2

⇥

weight 3:

weight 4:

polylogarithms of type Li3 of various arguments

polylogarithms of type Li4 of various arguments,
plus a few polylogarithms of type Li2,2, like Li2,2(-1, x) etc.
Alternatively, the polylogarithms of type Li2,2 can be replaced
by the HPLs:  H(0,1,0,-1; x) and H(0,1,1,-1; x)

if needed numerically, any combination of HPLs up to weight 4 
can be evaluated in terms of a minimal set of numerical routines
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multiple polylogarithms are also defined through nested harmonic sums

Gm1,...,mk(u1, . . . , uk) = G

�

⇤0, . . . , 0⌥ ⌃⇧ �
m1�1

, u1, . . . , 0, . . . , 0⌥ ⌃⇧ �
mk�1

, uk; 1

⇥

⌅

Lim1,...,mk(u1, . . . , uk) =
1X

nk=1

unk
k

nmk
k

nk�1X

nk�1=1

. . .
n2�1X

n1=1

un1
1

nm1
1

= (�1)kGmk,...,m1

✓
1

uk
, . . . ,

1

u1 · · ·uk

◆
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also multiple polylogarithms can be reduced to a minimal set

weight 1:  one needs functions of type ln x

weight 2:

Li3(x)

Li2(x)

weight 3:

weight 4: Li4(x), Li2,2(x,y)

weight 5: Li5(x), Li2,3(x,y)
weight 6: Li6(x), Li2,4(x,y), Li3,3(x,y), Li2,2,2(x,y,z)

Duhr Gangl Rhodes 11

multiple polylogarithms are also defined through nested harmonic sums

Gm1,...,mk(u1, . . . , uk) = G

�

⇤0, . . . , 0⌥ ⌃⇧ �
m1�1

, u1, . . . , 0, . . . , 0⌥ ⌃⇧ �
mk�1

, uk; 1

⇥

⌅

Lim1,...,mk(u1, . . . , uk) =
1X

nk=1

unk
k

nmk
k

nk�1X

nk�1=1

. . .
n2�1X

n1=1

un1
1

nm1
1

= (�1)kGmk,...,m1

✓
1

uk
, . . . ,

1

u1 · · ·uk

◆
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Sym[DiscR1(T
(k))] = R2 ⌦ · · ·⌦Rk

then T has a branch cut at R1 = 0, and the symbol of the discontinuity is
Sym[T (k)] = R1 ⌦ · · ·⌦Rk

the symbol knows about the discontinuities of T; if

Monday, January 14, 13



Sym[lnx ln y] = x� y + y � x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

Sym[DiscR1(T
(k))] = R2 ⌦ · · ·⌦Rk

then T has a branch cut at R1 = 0, and the symbol of the discontinuity is
Sym[T (k)] = R1 ⌦ · · ·⌦Rk

the symbol knows about the discontinuities of T; if
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Sym[lnx ln y] = x� y + y � x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

Sym[DiscR1(T
(k))] = R2 ⌦ · · ·⌦Rk

then T has a branch cut at R1 = 0, and the symbol of the discontinuity is
Sym[T (k)] = R1 ⌦ · · ·⌦Rk

the symbol knows about the discontinuities of T; if

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f ] = �n
i=1Ri

then Sym[fg] =
�

�

�n
i=1R�(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = �m
i=n+1Ri

e.g. Sym[g] = R3 �R4Sym[f ] = R1 �R2

Sym[fg] = R1 ⌦R2 ⌦R3 ⌦R4 +R1 ⌦R3 ⌦R2 ⌦R4 +R1 ⌦R3 ⌦R4 ⌦R2

+ R3 ⌦R1 ⌦R2 ⌦R4 +R3 ⌦R1 ⌦R4 ⌦R2 +R3 ⌦R4 ⌦R1 ⌦R2
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Sym[lnx ln y] = x� y + y � x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

symbols form a shuffle algebra, i.e. a vector space with a shuffle product
(also iterated integrals and multiple polylogarithms form shuffle algebras)

Sym[DiscR1(T
(k))] = R2 ⌦ · · ·⌦Rk

then T has a branch cut at R1 = 0, and the symbol of the discontinuity is
Sym[T (k)] = R1 ⌦ · · ·⌦Rk

the symbol knows about the discontinuities of T; if

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f ] = �n
i=1Ri

then Sym[fg] =
�

�

�n
i=1R�(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = �m
i=n+1Ri

e.g. Sym[g] = R3 �R4Sym[f ] = R1 �R2

Sym[fg] = R1 ⌦R2 ⌦R3 ⌦R4 +R1 ⌦R3 ⌦R2 ⌦R4 +R1 ⌦R3 ⌦R4 ⌦R2

+ R3 ⌦R1 ⌦R2 ⌦R4 +R3 ⌦R1 ⌦R4 ⌦R2 +R3 ⌦R4 ⌦R1 ⌦R2
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polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

let us prove the identity Li2(1� x) = �Li2(x)� lnx ln(1� x) +
�2

6

Monday, January 14, 13



polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

let us prove the identity Li2(1� x) = �Li2(x)� lnx ln(1� x) +
�2

6

Sym[Li2(1� x)] = �x⇥ (1� x)Sym[Li2(x)] = �(1� x)⇥ xproof

Sym[lnx ln(1� x)] = x⇥ (1� x) + (1� x)⇥ x

Sym[Li2(1� x)] = Sym[�Li2(x)� lnx ln(1� x)]thus

Li2(1� x) = �Li2(x)� lnx ln(1� x) + c�2 + i� (c� lnx+ c�� ln(1� x))

which determines the function up to functions of lesser degree
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polylogarithm identities satisfied by the function f
become algebraic identities satisfied by its symbol

let us prove the identity Li2(1� x) = �Li2(x)� lnx ln(1� x) +
�2

6

but the equation is real for 0 <  x < 1, so c’=c’’=0

at x = 1 0 = ��2

6
� 0 + c�2 c =

1

6

Sym[Li2(1� x)] = �x⇥ (1� x)Sym[Li2(x)] = �(1� x)⇥ xproof

Sym[lnx ln(1� x)] = x⇥ (1� x) + (1� x)⇥ x

Sym[Li2(1� x)] = Sym[�Li2(x)� lnx ln(1� x)]thus

Li2(1� x) = �Li2(x)� lnx ln(1� x) + c�2 + i� (c� lnx+ c�� ln(1� x))

which determines the function up to functions of lesser degree
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let us prove the identity Li2

�
1� 1

x

⇥
= �Li2(1� x)� 1

2
ln2 x

proof Sym[Li2(1� x)] = �x⇥ (1� x)

Sym

⇤
Li2

�
1� 1

x

⇥⌅
= � 1

x
⇥

�
1� 1

x

⇥

= x⇥ x� 1

x
= x⇥ (1� x)� x⇥ x

Sym[ln2 x] = 2x� x

Sym

⇤
�Li2(1� x)� 1

2
ln2 x

⌅
= x⇥ (1� x)� 1

2
2x⇥ x = Sym

⇤
Li2

�
1� 1

x

⇥⌅
thus

which determines the function up to functions of lesser degree

Li2

�
1� 1

x

⇥
= �Li2(1� x)� 1

2
ln2 x+ c�2

at x = 1 0 = �0� 0 + c�2 c = 0

Monday, January 14, 13



take f, g with w(f) = w(g) = n and Sym[f] = Sym[g]
then f-g = h with w(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol
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take f, g with w(f) = w(g) = n and Sym[f] = Sym[g]
then f-g = h with w(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1,  w(Lik(x)) = k,  w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser weight
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take f, g with w(f) = w(g) = n and Sym[f] = Sym[g]
then f-g = h with w(h) = n -1
the symbol does not know about h
info on the degree n-1 is lost by taking the symbol

in N=4 SYM, polynomials exhibit a uniform weight
w(ln x) = 1,  w(Lik(x)) = k,  w(π) = 1
➙ symbols fix polynomials up to factors of π times functions of lesser weight

Thus, we have a procedure to simplify a generic function of polylogarithms:

find suitable variables (through momentum twistors or else) such that 
the arguments of the multiple polylogarithms become rational functions 

determine the symbol of the function

through some symbol-processing procedure,
find a simpler form of the integral in terms of multiple polylogarithms

Duhr Gangl Rhodes 11
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Recent results on symbols

symbol of n-point 2-loop MHV amplitudes/Wilson loops
(in principle one can get the n-point 2-loop Wilson loop,
but the symbol is complicated)

Caron-Huot 11

symbol of 6-point 3-loop MHV amplitude
(and function in the multi-Regge limit)

Dixon Drummond Henn 11
Caron-Huot He 11

symbol of 6-point 2-loop NMHV amplitude
(and function up to a 1-dim integral) Dixon Drummond Henn 11

symbol of non-planar massive double box (to be used in qq, gg → ttbar)
von Manteuffel  presented at ACAT2011

symbol of 3-gluon 2-loop form factor Brandhuber Travaglini Yang 12
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6-dim one-loop 6-point integrals
2n-dim one-loop 2n-pt integrals (n > 2) are finite and conformal invariant

For n=3, its symbol contributes to the symbol of two-loop Wilson loop
Caron-Huot 11
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6-dim one-loop 6-point integrals
2n-dim one-loop 2n-pt integrals (n > 2) are finite and conformal invariant

explicit expression of massless one-loop 6-pt integral
is reminiscent of 2-loop 6-edged Wilson loop, but it has weight 3 

I6(u1, u2, u3) =
1⇥
�

⇤
� 2

3⇧

i=1

L3(x
+
i , x

�
i )

+
1

3

�
3⇧

i=1

⇤1(x
+
i )� ⇤1(x

�
i )

⇥3

+
�2

3
⇥

3⇧

i=1

(⇤1(x
+
i )� ⇤1(x

�
i ))

⌅

L3(x
+ , x�) =

2⇤

k = 0

(�1)k

(2k)!!
lnk(x + x�)

�
�3�k(x

+ )� �3�k(x
�)

⇥

Duhr Smirnov VDD 11
Dixon Drummond Henn 11

For n=3, its symbol contributes to the symbol of two-loop Wilson loop
Caron-Huot 11
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6-dim 3-mass easy one-loop 6-pt integral

the cross ratios are

u1 =
x2
25x

2
17

x2
15x

2
27

, u2 =
x2
58x

2
41

x2
48x

2
15

, u3 =
x2
82x

2
74

x2
27x

2
48

,

u4 =
x2
24x

2
15

x2
14x

2
25

, u5 =
x2
57x

2
48

x2
47x

2
58

, u6 =
x2
81x

2
72

x2
82x

2
17

hexagon with 3 massive sides, x24, x57, x81

in the massless limit, u4, u5, u6 → 0

 D3 ≅S3 symmetry made of cyclic rotations c and reflections r

u1
c�⇤ u2

c�⇤ u3
c�⇤ u1 ,u4

c�⇤ u5
c�⇤ u6

c�⇤ u4 ,

u1
r⇥⇤ u3 ,u4

r⇥⇤ u5 ,

u2
r⇥⇤ u2 ,u6

r⇥⇤ u6 . Dixon Drummond Duhr Henn Smirnov VDD 11
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6-dim 3-mass easy one-loop 6-pt integral

the cross ratios are

u1 =
x2
25x

2
17

x2
15x

2
27

, u2 =
x2
58x

2
41

x2
48x

2
15

, u3 =
x2
82x

2
74

x2
27x

2
48

,

u4 =
x2
24x

2
15

x2
14x

2
25

, u5 =
x2
57x

2
48

x2
47x

2
58

, u6 =
x2
81x

2
72

x2
82x

2
17

hexagon with 3 massive sides, x24, x57, x81

in the massless limit, u4, u5, u6 → 0

 D3 ≅S3 symmetry made of cyclic rotations c and reflections r

u1
c�⇤ u2

c�⇤ u3
c�⇤ u1 ,u4

c�⇤ u5
c�⇤ u6

c�⇤ u4 ,

u1
r⇥⇤ u3 ,u4

r⇥⇤ u5 ,

u2
r⇥⇤ u2 ,u6

r⇥⇤ u6 . Dixon Drummond Duhr Henn Smirnov VDD 11

L3(x
+, x�) =

1

18

�
�1(x

+)� �1(x
�)

⇥3
+ L3(x

+, x�)

after using diff. eqs, the symbol map and momentum twistors, the integral is

⇥9(u1, . . . , u6) =
1�
�9

4�

i=1

�

g⇥S3

�(g)L3(x
+
i,g, x

�
i,g) σ(g) = { +1 for {1,c,c2}

-1 for {r,rc,rc2}

�9 = (1� u1 � u2 � u3 + u4u1u2 + u5u2u3 + u6u3u1 � u1u2u3u4u5u6)
2 � 4u1u2u3(1� u4)(1� u5)(1� u6)

x±
i,g = g(x±

i ) x±
i = x±

i (u1, u2, u3, u4, u5, u6)

reduces to Δ in the massless limit
Monday, January 14, 13



Coproducts

symbols miss transcendental constants

look for something with more structure

Duhr 12
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Coproducts

symbols miss transcendental constants

look for something with more structure

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov

Duhr 12
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Coproducts

symbols miss transcendental constants

look for something with more structure

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

Duhr 12
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Coproducts

symbols miss transcendental constants

look for something with more structure

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

coalgebra is a vector space with a coproduct  Δ:  B → B ⊗ B
that is coassociative  B → B ⊗ B → B ⊗ B ⊗ B �(a) =

X

i

a(1)i ⌦ a(2)i

Duhr 12
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Coproducts

symbols miss transcendental constants

look for something with more structure

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

μ puts together; Δ decomposes

coalgebra is a vector space with a coproduct  Δ:  B → B ⊗ B
that is coassociative  B → B ⊗ B → B ⊗ B ⊗ B �(a) =

X

i

a(1)i ⌦ a(2)i

Duhr 12
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Coproducts

symbols miss transcendental constants

look for something with more structure

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

μ puts together; Δ decomposes

take a word, sum over ways to split it into two: deconcatenation

T = w xy z

�(T ) = w xy z ⌦ 1 + w xy ⌦ z + w x⌦ y z + w ⌦ x y z + 1⌦ w xy z

coalgebra is a vector space with a coproduct  Δ:  B → B ⊗ B
that is coassociative  B → B ⊗ B → B ⊗ B ⊗ B �(a) =

X

i

a(1)i ⌦ a(2)i

Duhr 12
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Coproducts

symbols miss transcendental constants

look for something with more structure

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

μ puts together; Δ decomposes

take a word, sum over ways to split it into two: deconcatenation

T = w xy z

�(T ) = w xy z ⌦ 1 + w xy ⌦ z + w x⌦ y z + w ⌦ x y z + 1⌦ w xy z

w x⌦ y z ! (w ⌦ x)⌦ y z

w x⌦ y z ! w x⌦ (y ⌦ z)

iterate: sum over ways to split it into three

if sum over all possibilities,
get to the same result

coalgebra is a vector space with a coproduct  Δ:  B → B ⊗ B
that is coassociative  B → B ⊗ B → B ⊗ B ⊗ B �(a) =

X

i

a(1)i ⌦ a(2)i

Duhr 12
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

multiple polylogarithms form a Hopf algebra with a coproduct

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

Goncharov
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

let’s see how it works on the classical polylogarithms
�(ln z) = 1⌦ ln z + ln z ⌦ 1

�(ln y ln z) = �(ln y) ·�(ln z)

= (1⌦ ln y + ln y ⌦ 1) · (1⌦ ln z + ln z ⌦ 1)

= 1⌦ ln y ln z + ln y ⌦ ln z + ln z ⌦ ln y + ln y ln z ⌦ 1

multiple polylogarithms form a Hopf algebra with a coproduct

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

Goncharov
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

let’s see how it works on the classical polylogarithms
�(ln z) = 1⌦ ln z + ln z ⌦ 1

�(ln y ln z) = �(ln y) ·�(ln z)

= (1⌦ ln y + ln y ⌦ 1) · (1⌦ ln z + ln z ⌦ 1)

= 1⌦ ln y ln z + ln y ⌦ ln z + ln z ⌦ ln y + ln y ln z ⌦ 1

multiple polylogarithms form a Hopf algebra with a coproduct

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

Goncharov

Sym[ln y ln z] = y ⌦ z + z ⌦ y
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

let’s see how it works on the classical polylogarithms
�(ln z) = 1⌦ ln z + ln z ⌦ 1

�(ln y ln z) = �(ln y) ·�(ln z)

= (1⌦ ln y + ln y ⌦ 1) · (1⌦ ln z + ln z ⌦ 1)

= 1⌦ ln y ln z + ln y ⌦ ln z + ln z ⌦ ln y + ln y ln z ⌦ 1

multiple polylogarithms form a Hopf algebra with a coproduct

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

Goncharov

�
�
Li2(z)

�
= 1⌦ Li2(z) + Li2(z)⌦ 1� ln(1� z)⌦ ln z

Sym[ln y ln z] = y ⌦ z + z ⌦ y
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

let’s see how it works on the classical polylogarithms
�(ln z) = 1⌦ ln z + ln z ⌦ 1

�(ln y ln z) = �(ln y) ·�(ln z)

= (1⌦ ln y + ln y ⌦ 1) · (1⌦ ln z + ln z ⌦ 1)

= 1⌦ ln y ln z + ln y ⌦ ln z + ln z ⌦ ln y + ln y ln z ⌦ 1

multiple polylogarithms form a Hopf algebra with a coproduct

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

Goncharov

�
�
Li2(z)

�
= 1⌦ Li2(z) + Li2(z)⌦ 1� ln(1� z)⌦ ln z

Sym[Li2(z)] = �(1� z)⌦ z

Sym[ln y ln z] = y ⌦ z + z ⌦ y
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Hopf algebra
a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

let’s see how it works on the classical polylogarithms
�(ln z) = 1⌦ ln z + ln z ⌦ 1

�(ln y ln z) = �(ln y) ·�(ln z)

= (1⌦ ln y + ln y ⌦ 1) · (1⌦ ln z + ln z ⌦ 1)

= 1⌦ ln y ln z + ln y ⌦ ln z + ln z ⌦ ln y + ln y ln z ⌦ 1

multiple polylogarithms form a Hopf algebra with a coproduct

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

Goncharov

�
�
Li2(z)

�
= 1⌦ Li2(z) + Li2(z)⌦ 1� ln(1� z)⌦ ln z

�
�
Lin(z)

�
= 1⌦ Lin(z) + Lin(z)⌦ 1 +

n�1X

k=1

Lin�k(z)⌦
lnk z

k!
in general

Sym[Li2(z)] = �(1� z)⌦ z

Sym[ln y ln z] = y ⌦ z + z ⌦ y
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Sym[Li2(z)] = �(1� z)⌦ z

n-1

�n�1,1

�
Lin(z)

�
= Lin�1(z)⌦ ln z

iterating �1,...,1

�
Lin(z)

�
= � ln(1� z)⌦ ln z ⌦ · · ·⌦ ln z| {z }

Sym[Lin(z)] = �(1� z)⌦
z }| {
z ⌦ · · ·⌦ z

Sym[ln y ln z] = y ⌦ z + z ⌦ y
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a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)
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in general
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n-1
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iterating �1,...,1
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primitive element
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Duhr 12

example on a function of weight 4

symbols lie within the maximal iteration of a coproduct
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put z = 1 in 

... but there is a problem

�
�
Lin(z)

�
= 1⌦ Lin(z) + Lin(z)⌦ 1 +

n�1X

k=1

Lin�k(z)⌦
lnk z

k!

�(⇣n) = 1⌦ ⇣n + ⇣n ⌦ 1get

better than symbols Sym[⇣n] = 0

however 

�(⇣4) =
1

15
�(⇣2)

2 =
1

15
(1⌦ ⇣2 + ⇣2 ⌦ 1)2 =

1

15
(1⌦ ⇣22 + ⇣22 ⌦ 1 + 2⇣2 ⌦ ⇣2)

⇣4 =
1

15
⇣22

contradiction!

this allows us to account consistently for ζ, iπ terms (which the symbol misses)
so the coproduct fixes all but the primitive elements

define �(⇣2n) = ⇣2n ⌦ 1 Francis Brown 11

�(⇣4) =
1

15
�(⇣2)

2 =
1

15
(⇣2 ⌦ 1)2 =

1

15
⇣22 ⌦ 1 = ⇣4 ⌦ 1so

Duhr 12define also �(⇡) = ⇡ ⌦ 1
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Coproducts and inverse relations

Li1(
1

z
) = � ln(1� 1

z
) = � ln(1� z) + ln(�z) = � ln(1� z) + ln z � i⇡weight 1
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Coproducts and inverse relations

Li1(
1

z
) = � ln(1� 1

z
) = � ln(1� z) + ln(�z) = � ln(1� z) + ln z � i⇡weight 1

weight 2 �1,1

✓
Li2

✓
1

z

◆◆
= � ln

✓
1� 1

z

◆
⌦ ln

✓
1

z

◆

= ln(1� z)⌦ ln z � ln z ⌦ ln z + i⇡ ⌦ ln z

= �1,1

✓
�Li2(z)�

1

2
ln2 z + i⇡ ln z

◆

Li2

✓
1

z

◆
= �Li2(z)�

1

2
ln2 z + i⇡ ln z + c⇡2 z = 1 ! c =

1

3
so

iπ more than 
the symbol
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◆
= �Li2(z)�

1

2
ln2 z + i⇡ ln z + c⇡2 z = 1 ! c =

1

3
so

iπ more than 
the symbol

weight 3
�1,1,1

✓
Li3

✓
1

z

◆◆
= � ln

✓
1� 1

z

◆
⌦ ln

✓
1

z

◆
⌦ ln

✓
1

z

◆

= � ln(1� z)⌦ ln z ⌦ ln z + ln z ⌦ ln z ⌦ ln z � i⇡ ⌦ ln z ⌦ ln z

= �1,1,1

✓
Li3(z) +

1

6
ln3 z � i⇡

2
ln2 z

◆
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2
ln2 z + i⇡ ln z + c⇡2 z = 1 ! c =
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the symbol

weight 3
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✓
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◆
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◆
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✓
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= � ln(1� z)⌦ ln z ⌦ ln z + ln z ⌦ ln z ⌦ ln z � i⇡ ⌦ ln z ⌦ ln z
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✓
Li3(z) +

1
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ln3 z � i⇡

2
ln2 z
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�2,1

✓
Li3

✓
1

z

◆
�

✓
Li3(z) +

1

6
ln3 z � i⇡

2
ln2 z

◆◆
= �⇡2

3
⌦ ln z

= �2,1

✓
�⇡2
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ln z
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Li3

✓
1

z

◆
= Li3(z) +

1

6
ln3 z � i⇡

2
ln2 z � ⇡2

3
ln z + c1⇣3 + c2i⇡

3 z = 1 ! c1 = c2 = 0

one can do better

so
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Higgs + 3 gluons

the 2-loop amplitudes for Higgs + 3 gluons have been computed
in terms of 2-dim HPLs Koukoutsakis 03

Gehrmann Jacquier Glover Koukoutsakis 11
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Higgs + 3 gluons

the 2-loop amplitudes for Higgs + 3 gluons have been computed
in terms of 2-dim HPLs Koukoutsakis 03

Gehrmann Jacquier Glover Koukoutsakis 11

the symbol of the leading colour maximally transcendental part
equals the symbol of the 2-loop 3-gluon form factor in planar N=4 SYM
and can be expressed in terms of classical polylogarithms up to weight 4

Brandhuber Travaglini Yang 12

Monday, January 14, 13



Higgs + 3 gluons

the 2-loop amplitudes for Higgs + 3 gluons have been computed
in terms of 2-dim HPLs Koukoutsakis 03

Gehrmann Jacquier Glover Koukoutsakis 11

using coproducts, the whole 2-loop amplitude for Higgs + 3 gluons 
can be expressed in terms of classical polylogarithms up to weight 4

Duhr 12

the symbol of the leading colour maximally transcendental part
equals the symbol of the 2-loop 3-gluon form factor in planar N=4 SYM
and can be expressed in terms of classical polylogarithms up to weight 4

Brandhuber Travaglini Yang 12
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Conclusions

Planar N=4 SYM is an ideal computational lab where to learn 
techniques and tools to be used in multi-loop calculations

a major progress has come from the introduction of symbols, which 
capture most of the analytic properties of a function, and help us in 
simplifying what the final result should be like.

... but symbols loose much info about the target function. 
Most of that info can be recovered using coproducts, 
which include the symbols, and much more ...  

Standard Model 2-loop calculations are very challenging

Symbols are being introduced in the analytic results of 
Standard Model 2-loop amplitudes
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�µ(p1, p2;µ2, ⇤) �< 0|Jµ(0)|p1, p2 >= v̄(p2)⇥µu(p1) �
�

Q2

µ2
, �s(µ2), ⇤

⇥

Resummation: Sudakov form factor
Sudakov (quark) form factor as matrix element of EM current

obeys evolution equation

Q2 ⇧

⇧Q2
ln

⇧
�

⇤
Q2

µ2
, �s(µ2), ⇥

⌅⌃
=

1
2

⇧
K

�
�s(µ2), ⇥

⇥
+ G

⇤
Q2

µ2
, �s(µ2), ⇥

⌅⌃

RG invariance requires

µ
dG

dµ
= �µ

dK

dµ
= ⇥K(�s(µ2))

γK is the cusp anomalous dimension

K is a counterterm; G is finite as ε→ 0

Korchemsky Radyushkin 1987

�
�
Q2, ⇤

⇥
= exp

⌥
1
2

 �Q2

0

d⌅2

⌅2

⇧
G
�
�1, �̄s(⌅2, ⇤), ⇤

⇥
� 1

2
⇥K

�
�̄s(⌅2, ⇤)

⇥
ln
⇤
�Q2

⌅2

⌅⌃�
solution is
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Collinear limits of  Wilson loops
collinear limit  a||b

R6 → 0 R7 → R6 Rn → Rn-1

triple collinear limit  a||b||c

R6 → R6 R7 → R6 R8 → R6 + R6 Rn → Rn-2 + R6

quadruple collinear limit  a||b||c||d

R7 → R7 R8 → R7 R9 → R6 + R7 Rn → Rn-3 + R7

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
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Collinear limits of  Wilson loops
collinear limit  a||b

R6 → 0 R7 → R6 Rn → Rn-1

triple collinear limit  a||b||c

R6 → R6 R7 → R6 R8 → R6 + R6 Rn → Rn-2 + R6

quadruple collinear limit  a||b||c||d

R7 → R7 R8 → R7 R9 → R6 + R7 Rn → Rn-3 + R7

Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

Rn → Rn-1

(k+1)-ple collinear limit  i1||i2|| · · · ||ik+1

Rn → Rn-k + Rk+4

(n-4)-ple collinear limit  

i1||i2|| · · · ||in�3(n-3)-ple collinear limit  

i1||i2|| · · · ||in�4

Rn-1 → Rn-1

Rn → Rn

thus Rn is fixed by the (n-3)-ple collinear limit  
Monday, January 14, 13



A comment on 2-loop n-edged Wilson loops
2-loop 7-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 4-fold integrals

Monday, January 14, 13



A comment on 2-loop n-edged Wilson loops
2-loop 7-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 4-fold integrals

2-loop 8-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 5-fold integrals
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A comment on 2-loop n-edged Wilson loops
2-loop 7-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 4-fold integrals

2-loop 8-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 5-fold integrals

2-loop 9-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 6-fold integrals

At 9 edges, the hard diagram topology saturates, which generates
the highest-fold integrals
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A comment on 2-loop n-edged Wilson loops
2-loop 7-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 4-fold integrals

2-loop 8-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 5-fold integrals

2-loop 9-edged  Wilson loop: 
in the MB repr. of the integrals in qmRk, one gets up to 6-fold integrals

At 9 edges, the hard diagram topology saturates, which generates
the highest-fold integrals

For 10 ≤ n ≤ 12, the only new contributions come from the 
factorized cross diagram topology, which is the simplest 
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DGR associate decorated (n+1)-gons to multiple polylogarithms of weight n
Duhr Gangl Rhodes 11

Symbols in the DGR construction

G(a; x) ↔ S(G(a;x)) =
�
1� x

a

⇥

G(a, b; x) ↔ 

S(G(a, b; x)) ↔ 

ab|cd =

�
1� b

a

⇥
⇥
�
1� d

c

⇥

G(a, b, c; x) ↔ G(a, b, c, d; x) ↔ 

Gangl Goncharov Levin 05
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DGR associate decorated (n+1)-gons to multiple polylogarithms of weight n
Duhr Gangl Rhodes 11

Symbols in the DGR construction

G(a; x) ↔ S(G(a;x)) =
�
1� x

a

⇥

G(a, b; x) ↔ 

S(G(a, b; x)) ↔ 

ab|cd =

�
1� b

a

⇥
⇥
�
1� d

c

⇥

G(a, b, c; x) ↔ G(a, b, c, d; x) ↔ 

Gangl Goncharov Levin 05

the symbol in the DGR construction is basically equivalent to GSVV’s,
except that one needs not treat d log c  as zero 

C ⇥ 2m 3n x�5 ⇥D = m (C ⇥ 2⇥D) + n (C ⇥ 3⇥D)� 5(C ⇥ x⇥D)
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6-dim one-mass one-loop 6-pt integral

the cross ratios are

hexagon with a massive side

in the massless limit, u4 → 0

u1 =
x2
26 x

2
35

x2
25 x

2
36

, u2 =
x2
13 x

2
46

x2
36 x

2
14

, u3 =
x2
15 x

2
24

x2
14 x

2
25

, u4 =
x2
12 x

2
36

x2
13 x

2
26

Z2 symmetry swaps u1 and u2

x2
12 = m2 x2

23 = x2
34 = x2

45 = x2
56 = x2

61 = 0
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6-dim one-mass one-loop 6-pt integral

the cross ratios are

hexagon with a massive side

in the massless limit, u4 → 0

u1 =
x2
26 x

2
35

x2
25 x

2
36

, u2 =
x2
13 x

2
46

x2
36 x

2
14

, u3 =
x2
15 x

2
24

x2
14 x

2
25

, u4 =
x2
12 x

2
36

x2
13 x

2
26

Z2 symmetry swaps u1 and u2

x2
12 = m2 x2

23 = x2
34 = x2

45 = x2
56 = x2

61 = 0

I6,m(u1, u2, u3, u4)

=
1⇥
�7

⇧
�

8⌥

i=1

2⌥

j=1

⇤
L3(x

+
i,j , x

�
i,j)�

1

6
⇥̄1(x

+
i,j , x

�
i,j)

3 � �2

6
⇥̄1(x

+
i,j , x

�
i,j)

⌅

+
1

2

�
⇥̄1(x

+
2,1, x

�
2,1) + ⇥̄1(x

+
2,2, x

�
2,2)

⇥ �
2⇥̄1(x

+
1,1, x

�
1,1) ⇥̄1(x

+
1,2, x

�
1,2)

+ ⇥̄1(x
+
1,1, x

�
1,1) ⇥̄1(x

+
3,1, x

�
3,1) + ⇥̄1(x

+
1,1, x

�
1,1) ⇥̄1(x

+
3,2, x

�
3,2) + ⇥̄1(x

+
1,2, x

�
1,2) ⇥̄1(x

+
3,1, x

�
3,1)

+⇥̄1(x
+
1,2, x

�
1,2) ⇥̄1(x

+
3,2, x

�
3,2) + 2⇥̄1(x

+
3,1, x

�
3,1) ⇥̄1(x

+
3,2, x

�
3,2)

⇥
⌃

after using MB integrals, the symbol map and momentum twistors, the integral is

�7 = (u1 + u2 + u3 � u1u2u4 � 1)2 � 4u1u2u3 (1� u4)

�̄n(x
+, x�) = �n(x

+)� �n(x
�)

x±
i,2(u1, u2, u3, u4) = x±

i,1(u2, u1, u3, u4) , i = 1, . . . , 8

reduces to Δ in the massless limit

under Z2 symmetry

Duhr Smirnov VDD 11
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8-edged Wilson loop in AdS3

at strong coupling, Alday & Maldacena have considered 2n-sided polygons 
embedded into the boundary of AdS3

2n-sided remainder function depends on 2(n-3) variables
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8-edged Wilson loop in AdS3

at strong coupling, Alday & Maldacena have considered 2n-sided polygons 
embedded into the boundary of AdS3

2n-sided remainder function depends on 2(n-3) variables

Alday Maldacena 09

for the octagon, the remainder function is

Rstrong
8,WL = �1

2
ln

�
1 + ⇤�

⇥
ln

⇧
1 +

1
⇤+

⌃
+

7�

6

+
⌥ +⇥

�⇥
dt

|m| sinh t

tanh(2t + 2i⇥)
ln

⇤
1 + e�2�|m| cosh t

⌅

where �+ = e2�Im m �� = e�2�Re m m = |m|ei�
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embedded into the boundary of AdS3
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for the octagon, the remainder function is

Rstrong
8,WL = �1

2
ln

�
1 + ⇤�

⇥
ln

⇧
1 +

1
⇤+

⌃
+

7�

6

+
⌥ +⇥

�⇥
dt

|m| sinh t

tanh(2t + 2i⇥)
ln

⇤
1 + e�2�|m| cosh t

⌅

where �+ = e2�Im m �� = e�2�Re m m = |m|ei�

at weak coupling, the 2-loop octagon remainder function is

R(2)
8,WL(⇥+, ⇥�) = ��4

18
� 1

2
ln

�
1 + ⇥+

⇥
ln

⇤
1 +

1
⇥+

⌅
ln

�
1 + ⇥�

⇥
ln

⇤
1 +

1
⇥�

⌅

Duhr Smirnov VDD 10
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2-loop 2n-sided polygon R conjectured through collinear limits
proven through OPE
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2-loop n-pt MHV amplitudes can be written 
as sum of pentaboxes in twistor space
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