al tempo di LHC

Vittorio Del Duca INFN LNF

Roma3
maggio 2009

Strong interactions

High-energy collisions
Fixed-target experiments ($\mathrm{pN}, \mathrm{mN}, \gamma \mathrm{N}$)
DIS (HERA)
Hadron colliders (Tevatron, LHC)
Q Hadron properties
Hadron masses
Hadron decays
9 High-density media
Heavy-ion collisions (RHIC, LHC)
Star formation and evolution

9
an unbroken Yang-Mills gauge field theory featuring asymptotic freedom and confinement
Q in non-perturbative regime (low Q^{2}) many approaches: lattice, Regge theory, X PT, large N_{c}, HQET

Q in perturbative regime (high Q^{2}) QCD is a precision toolkit for exploring Higgs \& BSM physics
Q LEP was an electroweak machine
Q Tevatron \& LHC are QCD machines

- pp $\sqrt{ } s=14 \mathrm{TeV} L_{\text {design }}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
(after 2009)
$L_{\text {initial }} \leq f e w \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (until 2009)
- Heavy ions (e.g. $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{ } \mathrm{s} \sim 1000 \mathrm{TeV}$)

LHC is a QCD machine

SM processes are backgrounds to New Physics signals
design luminosity $\mathrm{L}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{-5} \mathrm{fb}^{-1} \mathrm{~s}^{-1}$ integrated luminosity (per year)
$\mathrm{L} \approx 100 \mathrm{fb}^{-1} \mathrm{yr}^{-1}$

With I fb^{-1} we shall get ...

final state	events	overall \# of events (2008)
jets ($\left.\mathrm{pT}^{\prime}>100 \mathrm{GeV}\right)$	10^{9}	
jets $(\mathrm{pT}>1 \mathrm{TeV})$	10^{4}	
$W \rightarrow e \nu$	$2 \cdot 10^{7}$	10^{7} (Tevatron)
$Z \rightarrow e^{+} e^{-}$	$2 \cdot 10^{6}$	10^{6} (LEP)
$b \bar{b}$	$5 \cdot 10^{11}$	10^{9} (BaBar, Belle)
$t \bar{t}$	$8 \cdot 10^{5}$	10^{4} (Tevatron)

even at very low luminosity, LHC beats all the other accelerators

$H \rightarrow Z Z \rightarrow 4 \mu$

ATLAS simulation

4 dashed straight lines are the μ 's
... the remainder are by-product of hadron interactions
but this is a golden mode:
if the background is overwhelming it is much worse than that

LHC: the next future

calibrate the detectors, and re-discover the SM i.e. measure known cross sections: jets, $W, Z, t \bar{t}$
understand the EWSB/find New-Physics signals (ranging from Z' to leptons, to gluinos in SUSY decay chains, to finding the Higgs boson)
constrain and model the New-Physics theories
in all the steps above (except probably Z' to leptons) precise QCD predictions play a crucial role

Tales from the past - I Jets at high transverse energy

inclusive I-jet spectrum

CDF Collab. PRL 77 (1996) 438
excess of data over theory

Could it be contact interactions?
\Rightarrow New Physics ?
more prosaic explanation: gluon density at high x was largely unknown; use Tevatron 2-jet data to measure it:
no more excess

Tales from the past - 2

B production: the 90's

discrepancy between Tevatron data and NLO prediction

B cross section in $p \bar{p}$ collisions at 1.96 TeV

FOWL $=$ NL + ML
Cacciari, Frixione, Mangano, Mason, Ridolfi 2003
use of updated fragmentation functions by (Cacciari \& Nasion)

Q is a I-parameter theory: one just needs $\alpha_{s}\left(M_{z}\right)$, which we know at $O(I \%)$
9 is formulated in terms of quarks and gluons, which we cannot observe (confinement) although we cannot prove it
we cannot compute hadron wavefunctions
we cannot compute (yet) mass spectra, but lattice computations improvewe cannot compute (yet) nucleon-nucleon forces, but lattice ...
to summarise: we can make

- not-so-accurate statements about the matter content, characterised by low Q^{2} and motivated by the hadron spectroscopy
- much more accurate statements about the gauge content at high Q^{2} which probes the dynamics and is motivated by the scattering experiments

QCD at the LHC

Precise determination of
Q strong coupling constant α_{s}
9 parton distributions
Q electroweak parameters

- LHC parton luminosity

Precise prediction for

- Higgs production

Q new physics processes
Q their backgrounds
Goal: to make theoretical predictions of signals and backgrounds as accurate as the LHC data

History of QCD

Hadron spectroscopy

AfterWWII, few hadrons known. Fit Heisenberg's pre-war $\mathrm{SU}(2)$ isospin symmetry

Hadron spectroscopy - eightfold way

In the 50's, more hadrons are discovered, some with a long lifetime, which requires to introduce a new quantum \#, the strangeness

Breakthrough:

fit hadrons into the irreducible representations of an $\mathrm{SU}(3)$ isospin symmetry

hypercharge $Y=N+S \quad$ charge $Q=T_{3}+Y / 2 \quad$ Gell-Mann Nishima

Hadron spectroscopy

Bigger breakthrough:

Gell-Mann, Zweig (1964) propose to interpret the eight-fold way through objects (quarks) associated to the fundamental representation of $\operatorname{SU}(3)$

$\operatorname{spin} 1 / 2$

quark model

Quark	Charge	Mass	Baryon Number	Isospin
u	$+\frac{2}{3}$	$\sim 4 \mathrm{MeV}$	$\frac{1}{3}$	$+\frac{1}{2}$
d	$-\frac{1}{3}$	$\sim 7 \mathrm{MeV}$	$\frac{1}{3}$	$-\frac{1}{2}$
c	$+\frac{2}{3}$	$\sim 1.5 \mathrm{GeV}$	$\frac{1}{3}$	0
s	$-\frac{1}{3}$	$\sim 135 \mathrm{MeV}$	$\frac{1}{3}$	0
t	$+\frac{2}{3}$	$\sim 172 \mathrm{GeV}$	$\frac{1}{3}$	0
b	$-\frac{1}{3}$	$\sim 5 \mathrm{GeV}$	$\frac{1}{3}$	0

Hadron spectroscopy

Q quarks have fractional electric charge \& barion \#
Q $\Delta^{++}=$uuu violates spin-statistics theorem: Δ^{++}puzzle solution:

Han Nambu; Greenberg 1965
introduce new $\operatorname{SU}(3)$ global symmetry, with colour as quantum \# colour is not observed \Rightarrow hadrons must be colour singlets

Indirect evidence for colour:
$\Pi^{0} \rightarrow \gamma \gamma \quad$ (Adler-Bell-Jackiw anomaly)
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

In 1971 Fritsch, Gell-Mann propose to promote colour $\mathrm{SU}(3)$
to a local symmetry

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

$$
R_{e^{+} e^{-}}=\frac{\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}}
$$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

from A. Schöning's talk (HI) at DIS 2008

longitudinally polarised $\mathrm{e}^{ \pm}$beams:

A. Schöning

without $\gamma-Z$ interference, no difference between e^{+}and e^{-}

HERA I e ${ }^{+}$p Neutral Current Scattering - H1 and ZEUS

HERA F2
DIS08
large violations at small x

small violations at large x
horizontal lines
straight (non-horizontal) lines
\Longrightarrow Bjorken scaling
\Longrightarrow scaling violations, logarithmic in Q^{2}

HERA I e^{+}p Neutral Current Scattering - H1 and ZEUS

HERA I e^{+}p Neutral Current Scattering - H1 and ZEUS

DIS08 Joël Feltesse

HERA I e p Neutral Current Scattering - H1 and ZEUS

Measurement of F_{L}

NC cross section:

$$
\sigma_{r}=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{1+(1-y)^{2}} F_{L}\left(x, Q^{2}\right)
$$

$$
F_{2} \sim \sigma_{T}+\sigma_{L}
$$

$$
F_{L} \sim \sigma_{L}
$$

(F_{L} term contributes only at high $y!$)
QCD: $\quad F_{L}=\frac{\alpha_{s}}{4 \pi} \chi^{2} \int_{x}^{1} \frac{d z}{z^{3}}\left[\frac{16}{3} F_{2}+8 \sum_{q} w_{q}^{2}\left(1-\frac{x}{x}\right) z g(z)\right]$

- indirect method:
$\rightarrow \mathrm{F}_{2}$ extrapolation method (Phys.Lett.B393:452,1997)
- direct method:

Rosenbluth plot:

- measure σ_{r} for same $\left(\mathrm{Q}^{2}, \mathrm{x}\right)$ at different y :

$$
\begin{aligned}
& s=\frac{Q^{2}}{x y} \rightarrow \text { measure at different beam energies } \\
& \mathrm{E}_{\mathrm{p}}=920 \mathrm{GeV} \rightarrow \text { lower } y \\
& \left.\mathrm{E}_{\mathrm{p}}=460 \mathrm{GeV} \rightarrow \text { high } y \text { (high } \mathrm{BG}!\right)
\end{aligned}
$$

A. Schöning

Cross Sections for F_{L}
H1 Preliminary
medium \& high Q^{2}

Parton distribution functions (PDF)

just to get an idea of the PDF size, take some PDF fit

from H.Abramowicz talk (Zeus) at DIS 2008

Systematic uncertainty greatly reduced when data combined

coefficients of the β function

$\frac{d \alpha_{s}}{d \ln \left(Q^{2} / \mu^{2}\right)}=-\beta_{0} \alpha_{s}^{2}-\beta_{1} \alpha_{s}^{3}-\beta_{2} \alpha_{s}^{4}-\beta_{3} \alpha_{s}^{5}+\mathcal{O}\left(\alpha_{s}^{6}\right)$
$\beta_{0}=\frac{\hat{\beta}_{0}}{4 \pi} \quad \beta_{1}=\frac{\hat{\beta}_{1}}{(4 \pi)^{2}}$
$\hat{\beta}_{0} \quad$ Gross Wilczek; Politzer 1973
$\hat{\beta}_{1}$ Caswell Jones 1974
$\hat{\beta}_{2}$ Tarasov Vladimirov Zharkov 1980
$\hat{\beta}_{3}$ van Ritbergen Vermaseren Larin 1997

coefficients of the β function

$$
\begin{aligned}
\hat{\beta}_{0}= & \frac{11}{3} C_{A}-\frac{4}{3} T_{F} n_{f} \\
\hat{\beta}_{1}= & \frac{34}{3} C_{A}^{2}-4 C_{F} T_{F} n_{f}-\frac{20}{3} C_{A} T_{F} n_{f} \\
\hat{\beta}_{2}= & \frac{2857}{54} C_{A}^{3}+2 C_{F}^{2} T_{F} n_{f}-\frac{205}{9} C_{F} C_{A} T_{F} n_{f} \\
& -\frac{1415}{27} C_{A}^{2} T_{F} n_{f}+\frac{44}{9} C_{F} T_{F}^{2} n_{f}^{2}+\frac{158}{27} C_{A} T_{F}^{2} n_{f}^{2} \\
\hat{\beta}_{3}= & C_{A}^{4}\left(\frac{150653}{486}-\frac{44}{9} \zeta_{3}\right)+C_{A}^{3} T_{F} n_{f}\left(-\frac{39143}{81}+\frac{136}{3} \zeta_{3}\right) \\
& +C_{A}^{2} C_{F} T_{F} n_{f}\left(\frac{7073}{243}-\frac{656}{9} \zeta_{3}\right)+C_{A} C_{F}^{2} T_{F} n_{f}\left(-\frac{4204}{27}+\frac{352}{9} \zeta_{3}\right) \\
& +46 C_{F}^{3} T_{F} n_{f}+C_{A}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{7930}{81}+\frac{224}{9} \zeta_{3}\right)+C_{F}^{2} T_{F}^{2} n_{f}^{2}\left(\frac{1352}{27}-\frac{704}{9} \zeta_{3}\right) \\
& +C_{A} C_{F} T_{F}^{2} n_{f}^{2}\left(\frac{17152}{243}+\frac{448}{9} \zeta_{3}\right)+\frac{424}{243} C_{A} T_{F}^{3} n_{f}^{3}+\frac{1232}{243} C_{F} T_{F}^{3} n_{f}^{3} \\
& +\frac{d_{A}^{a b c d} d_{A}^{a b c d}}{N_{A}}\left(-\frac{80}{9}+\frac{704}{3} \zeta_{3}\right)+n_{f} \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{N_{A}}\left(\frac{512}{9}-\frac{1664}{3} \zeta_{3}\right) \\
& +n_{f}^{2} \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{N_{A}}\left(-\frac{704}{9}+\frac{512}{3} \zeta_{3}\right)
\end{aligned}
$$

Evolution

Q factorisation scale μ_{F} is arbitrary
cross section cannot depend on μ_{F}

$$
\mu_{F} \frac{d \sigma}{d \mu_{F}}=0
$$

implies DGLAP equations
V. Gribov L. Lipatov;Y. Dokshitzer G. Altarelli G. Parisi

$$
\mu_{F} \frac{d f_{a}\left(x, \mu_{F}^{2}\right)}{d \mu_{F}}=P_{a b}\left(x, \alpha_{S}\left(\mu_{F}^{2}\right)\right) \otimes f_{b}\left(x, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{1}{Q^{2}}\right)
$$

$$
\mu_{F} \frac{d \hat{\sigma}_{a b}\left(Q^{2} / \mu_{F}^{2}, \alpha_{S}\left(\mu_{F}^{2}\right)\right)}{d \mu_{F}}=-P_{a c}\left(x, \alpha_{S}\left(\mu_{F}^{2}\right)\right) \otimes \hat{\sigma}_{c b}\left(Q^{2} / \mu_{F}^{2}, \alpha_{S}\left(\mu_{F}^{2}\right)\right)+\mathcal{O}\left(\frac{1}{Q^{2}}\right)
$$

- $P_{a b}\left(x, \alpha_{S}\left(\mu_{F}^{2}\right)\right)$ is calculable in pQCD

Parton distribution functions (PDF)

Q factorisation for the structure functions (e.g. $F_{2}^{e p}, F_{L}^{e p}$)
$\mathcal{F}_{i}\left(x, \mu_{F}^{2}\right)=C_{i j} \otimes q_{j}+C_{i g} \otimes g$
with the convolution $\quad[a \otimes b](x) \equiv \int_{x}^{1} \frac{d y}{y} a(y) b\left(\frac{x}{y}\right)$
$C_{i j}, C_{i g}$ coefficient functions
$q_{i}\left(x, \mu_{F}^{2}\right) \quad g\left(x, \mu_{F}^{2}\right) \quad$ PDF's
Q DGLAP evolution equations
$\frac{d}{d \ln \mu_{F}^{2}}\binom{q_{i}}{g}=\left(\begin{array}{cc}P_{\mathrm{qiq}_{\mathrm{i}}} & P_{\mathrm{dgg}} \\ P_{\mathrm{gqj}_{\mathrm{j}}} & P_{\mathrm{gg}}\end{array}\right) \otimes\binom{q_{j}}{g}$
9 perturbative series $\quad P_{i j} \approx \alpha_{s} P_{i j}^{(0)}+\alpha_{s}^{2} P_{i j}^{(1)}+\alpha_{s}^{3} P_{i j}^{(2)}$

$$
\gamma_{i j}(N)=-\int_{0}^{1} d x x^{N-1} P_{i j}(x)
$$

PDF's

Q general structure of the quark-quark splitting functions

$$
\begin{aligned}
& P_{\mathrm{q}_{i} \mathrm{q}_{k}}=P_{\overline{\mathrm{q}}_{i} \overline{\mathrm{q}}_{k}}=\delta_{i k} P_{\mathrm{qq}}^{\mathrm{v}}+P_{\mathrm{qq}}^{\mathrm{s}} \\
& P_{\mathrm{q}_{i} \overline{\mathrm{q}}_{k}}=P_{\overline{\mathrm{q}}_{i} \mathrm{q}_{k}}=\delta_{i k} P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}+P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{s}}
\end{aligned}
$$

Q flavour non-singlet
Q flavour asymmetry

$$
q_{\mathrm{ns}, i k}^{ \pm}=q_{i} \pm \bar{q}_{i}-\left(q_{k} \pm \bar{q}_{k}\right) \quad \longleftrightarrow \quad P_{\mathrm{ns}}^{ \pm}=P_{\mathrm{qq}}^{\mathrm{v}} \pm P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}
$$

9
sum of valence distributions of all flavours

$$
q_{\mathrm{ns}}^{\mathrm{v}}=\sum_{r=1}^{n_{f}}\left(q_{r}-\bar{q}_{r}\right) \quad \Longleftrightarrow \quad P_{\mathrm{ns}}^{\mathrm{v}}=P_{\mathrm{qq}}^{\mathrm{v}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{v}}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}-P_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{s}}\right)
$$

Q flavour singlet
$q_{\mathrm{s}}=\sum_{i=1}^{n_{f}}\left(q_{i}+\bar{q}_{i}\right) \Longleftrightarrow \frac{d}{d \ln \mu_{F}^{2}}\binom{q_{\mathrm{s}}}{g}=\left(\begin{array}{cc}P_{\mathrm{qq}} & P_{\mathrm{qg}} \\ P_{\mathrm{gq}} & P_{\mathrm{gg}}\end{array}\right) \otimes\binom{q_{\mathrm{s}}}{g}$
with $\quad \begin{aligned} & P_{\mathrm{qq}}=P_{\mathrm{ns}}^{+}+n_{f}\left(P_{\mathrm{qq}}^{\mathrm{s}}+P_{\mathrm{q} q}^{\mathrm{s}}\right) \\ & P_{\mathrm{qg}}=n_{f} P_{\mathrm{q}_{i} \mathrm{~g}}, \quad P_{\mathrm{gq}}=P_{\mathrm{gq}_{i}}\end{aligned}$

PDF history

leading order (or one-loop) anomalous dim/splitting functions

Gross Wilczek I973;Altarelli Parisi I977
NLO (or two-loop)
F_{2}, F_{L}
anomalous dim/splitting functions
Bardeen Buras Duke Muta 1978
Curci Furmanski Petronzio 1980
NNLO (or three-loop)
F_{2}, F_{L}
Zijlstra van Neerven I992; Moch Vermaseren 1999 anomalous dim/splitting functions Moch Vermaseren Vogt 2004

9the calculation of the three-loop anomalous dimension is the toughest calculation ever performed in perturbative QCD!

one-loop	$\gamma_{i j}^{(0)} / P_{i j}^{(0)}$		
two-loop	$\gamma_{i j}^{(1)} / P_{i j}^{(1)}$		
three-loop	$\gamma_{i j}^{(2)} / P_{i j}^{(2)}$	\quad	I8 Feynman diagrams
:---			

350 Feynman diagrams

20 man-year-equivalents, 10^{6} lines of dedicated algebra code

LHC kinematic reach

LHC opens up a new kinematic range x range covered by HERA but Q^{2} range must be provided by DGLAP evolution
$100-200 \mathrm{GeV}$ physics is large x physics (valence quarks) at Tevatron, but smaller x physics (gluons \& sea quarks) at the LHC rapidity distributions span widest x range

Feynman x's for the production of a particle of mass $\mathbf{M} \quad x_{1,2}=\frac{M}{14 \mathrm{TeV}} e^{ \pm y}$

QCD at high Q^{2}

Q Parton model

- Perturbative QCD

Q factorisation
Q universality of IR behaviour
Q cancellation of IR singularities
Q IR safe observables: inclusive rates

- jets
- event shapes

Factorisation

extracted from data evolved through DGLAP
is the separation between the short- and the long-range interac Ons

$$
\begin{aligned}
\sigma_{X} & =\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} \underbrace{}_{f_{a / A}\left(x_{1}, \mu_{F}^{2}\right) f_{b / B}\left(x_{2}, \mu_{F}^{2}\right.} \\
& \times \hat{\sigma}_{a b \rightarrow X}\left(x_{1}, x_{2},\left\{p_{i}^{4}\right\} ; \alpha_{S}\left(\mu_{R}^{2}\right), \alpha\left(\mu_{F}^{2}\right), \frac{Q^{2}}{\mu_{R}^{2}}, \frac{Q^{2}}{\mu_{F}^{2}}\right)
\end{aligned}
$$

$$
X=W, Z, H, Q \bar{Q}, \text { high }-E_{T} \text { jets, } \ldots
$$

$\hat{\sigma}$ is known as a fixed-order expansion in α_{S}

$$
\begin{aligned}
& \hat{\sigma}=C \alpha_{S}^{n}\left(1+c_{1} \alpha_{S}+c_{2} \alpha_{S}^{2}+\ldots\right) \\
& c_{1}=\mathrm{NLO} \quad c_{2}=\mathrm{NNLO}
\end{aligned}
$$

or as an all-order resummation

$$
\hat{\sigma}=C \alpha_{S}^{n}\left[1+\left(c_{11} L+c_{10}\right) \alpha_{S}+\left(c_{22} L^{2}+c_{21} L+c_{20}\right) \alpha_{S}^{2}+\ldots\right]
$$

$$
\text { where } L=\ln \left(M / q_{T}\right), \ln (1-x), \ln (1 / x), \ln (1-T), \ldots
$$

$$
c_{11}, c_{22}=\mathrm{LL} \quad c_{10}, c_{21}=\mathrm{NLL} \quad c_{20}=\mathrm{NNLL}
$$

LHC Event Simulation

2
Parton showering and hadronisation are modelled through shower Monte Carlos (HERWIG o PYTHIA)

Jet structure

the jet non-trivial structure shows up first at NLO
leading order

NLO

NNLO

World average of $\alpha_{S}\left(M_{Z}\right)$

$$
\alpha_{S}\left(M_{Z}\right)=0.1189 \pm 0.0010
$$

S. Bethke hep-ex/0606035

Process	$\mathrm{Q}[\mathrm{GeV}]$	$\alpha_{\mathrm{s}}\left(M_{\mathrm{Z}^{\circ}}\right)$	excl. mean $\alpha_{\mathrm{s}}\left(M_{\mathrm{Z}^{\circ}}\right)$	std. dev.
DIS [Bj-SR]	1.58	$0.121_{-0.009}^{0.005}$	0.1189 ± 0.0008	0.3
τ-decays	1.78	0.1215 ± 0.0012	0.1176 ± 0.0018	1.8
DIS $\left[\nu ; x F_{3}\right]$	$2.8-11$	$0.119_{-0.006}^{+0.007}$	0.1189 ± 0.0008	0.0
DIS $\left[\mathrm{e} / \mu ; F_{2}\right]$	$2-15$	0.1166 ± 0.0022	0.1192 ± 0.0008	1.1
DIS $[\mathrm{e}-\mathrm{p} \rightarrow$ jets $]$	$6-100$	0.1186 ± 0.0051	0.1190 ± 0.0008	0.1
Υ decays	4.75	0.118 ± 0.006	0.1190 ± 0.0008	0.2
$\mathrm{QQ}^{\bar{Q}}$ states	7.5	0.1170 ± 0.0012	0.1200 ± 0.0014	1.6
$\mathrm{e}^{+} \mathrm{e}^{-}[\Gamma(Z \rightarrow$ had $)$	91.2	$0.1226_{-0.0038}^{+0.0038}$	0.1189 ± 0.0008	0.9
$\mathrm{e}^{+} \mathrm{e}^{-} 4$-jet rate	91.2	0.1176 ± 0.0022	0.1191 ± 0.0008	0.6
$\mathrm{e}^{+} \mathrm{e}^{-}[\mathrm{jets} \&$ shps $]$	189	0.121 ± 0.005	0.1188 ± 0.0008	0.4

Rightmost 2 columns give the exclusive mean value of $\alpha_{S}\left(M_{Z}\right)$ calculated without that measurement, and the number of std. dev. between this measurement and the respective excl. mean

