Higgs Production at LHC

Vittorio Del Duca INFN Torino

Havana 3 April 2006

HIGGS PRODUCTION MODES AT LHC

In proton collisions at 14 TeV, and for $M_H > 100~{\rm GeV}$ the Higgs is produced mostly via

- gluon fusion $gg \to H$
 - largest rate for all $\,M_{H}\,$
 - proportional to the top Yukawa coupling y_t
 - weak-boson fusion (WBF) qq
 ightarrow qqH
 - second largest rate (mostly u d initial state)
 - proportional to the WWH coupling
 - Higgs-strahlung $q\bar{q} \rightarrow W(Z)H$
 - third largest rate
 - same coupling as in WBF
 - $t\bar{t}(b\bar{b})H$ associated production
 - same initial state as in gluon fusion, but higher x range
 - proportional to the heavy-quark Yukawa coupling $\,y_Q$

HIGGS PRODUCTION AT LHC

 $WH, ZH, tar{t}H$ yield cross sections of $\sim 0.2-3~{
m pb}$

HIGGS DECAY MODES AT LHC

HIGGS DECAY AT LHC

total width

branching fractions

- \ge Search for a narrow $\gamma\gamma$ invariant mass peak, with $m_H < 150~{
 m GeV}$
 - Background is smooth: extrapolate it into the signal region from the sidebands

INCLUSIVE SEARCHES: $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^-$

- Gold-plated mode: cleanest mode for $2m_Z < m_H < 600 \text{ GeV}$
- Smooth, irreducible background from $pp \rightarrow ZZ$
 - Small BR: $BR(H \rightarrow ZZ)$ is a few % at threshold

Silver-plated mode $H \rightarrow ZZ \rightarrow l^+ l^- \nu \bar{\nu}$ useful for $m_H \approx 0.8 - 1 \text{ TeV}$

INCLUSIVE SEARCHES: $H \rightarrow WW \rightarrow l^+ \nu l^- \bar{\nu}$

- Exploit l^+l^- angular correlations
- Signal and background have similar shapes: must know background normalisation well

 $\frac{100}{0} = \frac{1}{50} = \frac{1}{100} + \frac{1}{100} +$

ATLAS TDR

 $m_H = 170 \text{ GeV}$ integrated luminosity: 20 fb⁻¹

Associated production: $Ht\bar{t} \rightarrow t\bar{t}b\bar{b}$

Search channel for $m_H = 120 - 130 \text{ GeV}$

Measure $h_t^2 \operatorname{BR}(H \to b\overline{b})$ with $h_t = H t \overline{t}$ Yukawa coupling

must know background normalisation well

WEAK BOSON FUSION: $qq \rightarrow qqH$

WBF can be measured with good statistical accuracy: $\sigma \times BR \approx \mathcal{O}(10\%)$

A WBF event

WBF features

- energetic jets in the forward and backward directions
- Higgs decay products between the tagging jets
- sparse gluon radiation in the central-rapidity region, due to colourless W/Z exchange
- NLO corrections increase the WBF production rate by about 10%, and thus are small and under control

Campbell, Ellis; Figy, Oleari, Zeppenfeld 2003

SIGNAL SIGNIFICANCE AND (STAT + SYST) ERROR

HIGGS COUPLINGS AND QUANTUM NUMBERS

The properties of the Higgs-like resonance are its

- couplings: gauge, Yukawa, self-couplings
- quantum numbers: charge, colour, spin, CP

```
Duehrssen et al.'s analysis hep-ph/0406323
use narrow-width approx for \Gamma (fine for m_H < 200 GeV)
production rate with H decaying to final state xx is
 \sigma(H) \times \mathrm{BR}(H \to xx) = \frac{\sigma(H)^{\mathrm{SM}}}{\Gamma_p^{\mathrm{SM}}} \frac{\Gamma_p \Gamma_x}{\Gamma}
 branching ratio for the decay is BR(H \rightarrow xx) = \frac{\Gamma_x}{\Gamma}
 observed rate determines \frac{\Gamma_p \Gamma_x}{\Gamma}
```


HIGGS COUPLINGS AND QUANTUM NUMBERS

The gauge coupling has also CP properties and a tensor structure. Info on that can be obtained by analysing the final-state topology of Higgs + 2 jet events (more on this later) **HIGGS PRODUCTION VIA GLUON FUSION**

LEADING ORDER
$$\mathcal{O}(\alpha_s^2)$$
 $gg \to H$

• energy scales: $\hat{s} = M_{\rm H}^2$ and M_t^2

╋

HIGGS PRODUCTION VIA GLUON FUSION

╋

EW CORRECTIONS

Relative corrections to production and decay through gluon fusion (with light fermion loop)

For $115 \,{
m GeV} \le M_H \le 2M_W$ the total electroweak corrections are 5 to 8 % of leading order

THE LARGE TOP-MASS LIMIT

I.

THE LARGE TOP-MASS LIMIT

NLO CORRECTIONS

I.

K factor in the large M_t limit $K_{\infty} = \lim_{M_t \to \infty} K$ NLO rate in the large M_t limit $\sigma_{\infty}^{\text{NLO}} = K_{\infty}^{\text{NLO}} \sigma^{\text{LO}}$ $\sigma_{\infty}^{\text{NLO}}$ is within 10% of σ^{NLO} for $M_{\text{H}} \lesssim 1 \text{ TeV}$ $gg \to H$ in the large M_t limit

HIGGS + 2 JETS VIA GLUON FUSION

 $\begin{array}{lll} & \textcircled{\ } \text{tree} & gg \to ggH & qg \to qgH & qQ \to qQH & + & \text{crossings} \\ & \textcircled{\ } \text{energy scales:} \ \hat{s} \,, s_{j_1\text{H}}, s_{j_2\text{H}}, s_{j_1j_2}, M_{\text{H}}^2, M_t^2, \, \text{with} \ \hat{s} = s_{j_1j_2} + s_{j_1\text{H}} + s_{j_2\text{H}} - M_{\text{H}}^2 \\ \end{array}$

HIGGS + 2 JETS VIA GLUON FUSION

+

H+ **2 JETS RATE** as a function of $M_{\rm H}$

SCALE DEPENDENCE

renormalisation μ_R & factorisation μ_F scales

Kilgore, Oleari, Schmidt, Zeppenfeld, VDD hep-ph/0108030

• strong μ_R dependence: the calculation is LO and $\mathcal{O}(\alpha_s^4)$ • a natural scale for α_s ?

high energy limit suggests $\alpha_s^4 \to \alpha_s(p_{j_1\perp})\alpha_s(p_{j_1\perp})\alpha_s^2(M_{\rm H})$

• σ varies by a factor 2.5 for $\mu_0/2 < \mu_R < 2\mu_0$

• mild μ_F dependence: $\mathcal{O}(10\%)$ over the $\mu_0/5 < \mu_R < 5\mu_0$ range

RAPIDITY DISTRIBUTIONS

- WBF events spontaneously have a large $\Delta \eta_{jj}$
- dip in gluon fusion at low $\Delta \eta_{jj}$ is unphysical: $R_{jj} = \sqrt{\Delta \eta_{jj} + \Delta \phi_{jj}} > 0.6$

AZIMUTHAL ANGLE CORRELATIONS

 $\Delta \phi_{jj} \equiv$ the azimuthal angle between the two jets

╋

 $\mathcal{A}_{WBF} \sim \frac{1}{2p_1 \cdot p_4 - M_W^2} \frac{1}{2p_2 \cdot p_3 - M_W^2} \hat{s}m_{jj}^2$ $\blacktriangleright \text{ a flat } \Delta \phi_{jj} \text{ distribution}$

gluon fusion in the large M_t limit $\mathcal{L}_{eff} = \frac{1}{4}A \ H \ G^a_{\mu\nu}G^{a\ \mu\nu} \quad A = \frac{\alpha_s}{3\pi v}$ $\mathcal{A}_{gluon} \sim J^{\mu}_1(q^{\nu}_1q^{\mu}_2 - g^{\mu\nu}q_1 \cdot q_2)J^{\nu}_2$ $J^{\mu} \equiv \text{quark-gluon current}$ for $|p_i^{\ z}| \gg |p_i^{\ x,y}| \quad i = 3,4$: forward jets $\mathcal{A}_{gluon} \sim (J^0_1J^0_2 - J^3_1J^3_2) \ p_{3\perp} \cdot p_{4\perp}$ \clubsuit zero at $\Delta\phi_{jj} = \frac{\pi}{2}$

AZIMUTHAL ANGLE DISTRIBUTION

the azimuthal angle distribution discriminates between WBF and gluon fusion

note that the large M_t limit curve approximates very well the exact curve

Azimuthal angle distribution

ALPGEN: H + 2 jets at parton level + showers & hadronisation by HERWIG

Azimuthal angle asymmetry

 $A_{\phi}(\text{ggh} + 2j) \text{ (parton level)} = 0.474(3)$ $A_{\phi}(\text{wbf} + 2j) \text{ (parton level)} = 0.017(1)$ $A_{\phi}(\text{ggh} + 2j) \text{ (shower level)} = 0.343(3)$ $A_{\phi}(\text{wbf} + 2j) \text{ (shower level)} = 0.011(1)$

 $A_{\phi} = \frac{\sigma(\Delta\phi < \pi/4) - \sigma(\pi/4 < \Delta\phi < 3\pi/4) + \sigma(\Delta\phi > 3\pi/4)}{\sigma(\Delta\phi < \pi/4) + \sigma(\pi/4 < \Delta\phi < 3\pi/4) + \sigma(\Delta\phi > 3\pi/4)}$

 $\Delta \Phi$ is the azimuthal angle between the tagging jets

 \bigcirc In WBF no colour is exchanged in the t channel

Solution For the second structure of the second struc

Barger, Phillips & Zeppenfeld hep-ph/9412276

The central-jet veto can also be used to distinguish between Higgs production via gluon fusion and via WBF

WWH COUPLING

- ▶ the azimuthal angle $\Delta \phi_{jj}$ between the jets can be used as a tool to investigate the tensor structure of the WWH coupling Plehn, Rainwater, Zeppenfeld hep-ph/0105325
- * take a gauge-invariant effective Lagrangian with dim. 6 operators
 (CP even and CP odd) describing an anomalous WWH coupling $\mathcal{L}_{6} = \frac{g^{2}}{2\Lambda_{e,6}^{2}} \left(\Phi^{\dagger}\Phi\right) V_{\mu\nu}V^{\mu\nu} + \frac{g^{2}}{2\Lambda_{o,6}^{2}} \left(\Phi^{\dagger}\Phi\right) \widetilde{V}_{\mu\nu}V^{\mu\nu}$

• expand Φ about the vev (get dim. 5 (D5) operators) $\mathcal{L}_5 = \frac{1}{\Lambda_{e,5}} H W^+_{\mu\nu} W^{-\mu\nu} + \frac{1}{\Lambda_{o,5}} H \widetilde{W}^+_{\mu\nu} W^{-\mu\nu}$ with $\frac{1}{\Lambda_5} = \frac{g^2 v}{\Lambda_6^2}$

- CP odd D5 operator: $\epsilon^{\mu\nu\alpha\beta}$ tensor in the coupling • zero at $\Delta\phi_{jj} = 0, \pi$
- CP even D5 operator is like the effective ggH coupling $\mathcal{A}_{\text{CP even}} \sim \frac{1}{\Lambda_{\text{e},5}} J_1^{\mu} (q_1^{\nu} q_2^{\mu} - g^{\mu\nu} q_1 \cdot q_2) J_2^{\nu} \Rightarrow \text{zero at } \Delta \phi_{jj} = \frac{\pi}{2}$

AZIMUTHAL ANGLE DISTRIBUTION FOR WWH COUPLINGS

• assume a Higgs-like scalar signal is found at LHC at the SM rate (for D5 operators: $\Lambda_5 \sim 500 \text{ GeV}$)

 $\begin{array}{l} \text{WBF cuts:} \\ p_{j\perp} > 20 \; \text{GeV} \\ |\eta_j| < 5 \\ R_{jj} > 0.6 \\ \eta_{j_1} \cdot \eta_{j_2} < 0 \\ |\eta_{j_1} - \eta_{j_2}| > 4.2 \end{array}$

- the $\Delta \phi_{jj}$ distribution
 - discriminates between different WWH couplings
 - is independent of the particular decay channel and the Higgs mass range

INTERFERENCE EFFECTS IN THE $\Delta \phi_{jj}$ distribution

- assume a Higgs candidate is found at LHC with a predominantly SM $g^{\mu\nu}$ + coupling. How sensitive are experiments to any D5 terms ?
 - no interference between SM and CP odd D5 operator

 $\Delta \phi_{jj}$ distribution for the SM and interference with a CP even D5 coupling. The two curves for each sign of the operator correspond to values $\sigma/\sigma_{\rm SM} = 0.04, 1.0$. Error bars correspond to an integrated luminosity of 100 fb⁻¹ per experiment, distributed over 6 bins, and are statistical only

interference between SM and CP even D5 operator: |A|² = |A_{SM} + A_{e,5}|²

all terms, but |A_{SM}|², have an approximate zero at Δφ_{jj} = π/2

systematic uncertainty induced by H + 2 jet rate from gluon fusion

HG_{µν}G^{µν} is a CP even D5 operator

CONCLUSIONS

- In Higgs + 2 jets, the azimuthal angle correlation between the two jets can be used as a tool to distinguish between WBF and gluon fusion, and to investigate the tensor structure of the WWH coupling
- Higgs + 2 jets via gluon fusion is known at leading order, including the top mass dependence
 - it has a strong renormalisation scale dependence
 - the large M_t limit is accurate if $M_H \ll 2M_t$ and $p_T \ll M_t$, and is valid even when the dijet, or jet-Higgs, invariant masses are much larger than M_t
- Higgs + 2 jets via WBF is known at NLO, which increases the WBF production rate by about $10\,\%$
- Large-rapidity (WBF) cuts can be used to deplete gluon fusion wrt WBF
- A central-jet veto can be used to further deplete gluon fusion wrt WBF; a study of the veto can be performed through Higgs + 3 jets, which has been computed at leading order in the large M_t limit