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In proton collisions, the Higgs boson is produced mostly via

gluon fusion

vector-boson fusion (VBF)

largest rate for all       

proportional to the top Yukawa coupling

second largest rate (mostly u d  initial state)

proportional to the VVH coupling

gg → H

qq → qqH

yt

MH

Higgs production modes at LHC



VBF features

A VBF event Lego plot

Vector boson fusion  qq → qqH

energetic jets in the forward and backward directions

sparse gluon radiation in the central-rapidity region,
due to colourless W/Z exchange → rapidity gaps
Higgs decay products between the tagging jets

αs corrections are known up to N3LO  for inclusive 
Higgs production (up to NNLO for Higgs + 2-jet production)
in the DIS approximation, i.e. no gluon radiation exchanged
between the two quark lines. They are ≤ 1% (about 5-10%)



Parton distribution functions (PDF)



Higgs + 2 jet production

gluon fusion vs.  VBF 

inclusive cuts

pjT > 20GeV |yj | < 5 Rjj > 0.6

VBF cuts

|yj1 � yj2 | > 4.2 yj1 · yj2 < 0
p
sj1j2 > 600GeV

from inclusive to VBF cuts:
H+2jets production from gluon fusion goes from 9-10 pb to 0.3-0.4 pb
H+2jets production from VBF goes from about 3 pb to about 1.2 pb

VBF cuts enhance VBF wrt gluon fusion by a factor 10

Kilgore Oleari Schmidt Zeppenfeld VDD 2001



Factorisation
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X = W, Z, H, QQ̄,high-ET jets, ...

is known as a fixed-order expansion in αSσ̂

is the separation between
the short- and the long-range interactions

extracted from data
evolved through DGLAP

computed in pQCD
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LO: maximal dependence on scales. Poor convergenge of expansion in αS
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Factorisation-breaking contributions

underlying event: we expect that the soft gluon 
radiation exchanged between the protons fills up 
the rapidity gap present in the hard interaction,
although occasionally the gap might survive
Bjorken’s rapidity gap survival probability

In hadron-hadron collisions, production of Higgs bosons and other color-
singlet systems can occur via fusion of electroweak bosons, occasionally 
leaving a ‘‘rapidity gap’’ in the underlying-event structure. This observation, due 
to Dokshitzer, Khoze, and Troyan, is studied to see whether it serves as a 
signature for detection of the Higgs bosons, etc. We find it is a very strong 
signature at subprocess c.m. energies in excess of a few TeV. The most serious 
problem with this strategy is the estimation of the fraction of events containing 
the rapidity gap; most of the time the gap is filled by soft interactions of 
spectator degrees of freedom. We also study this question and estimate this 
‘‘survival probability of the rapidity gap’’ to be of order 5%, with an uncertainty 
of a factor 3

abstract of PRD47 (1993) 101

Bjorken 1992



Rapidity gaps

a rapidity gap is the near-absence of secondary hadrons
in a given rapidity interval

what makes a rapidity gap?

• an electroweak process, with exchange of bosons in the t channel
• a strong interaction process, with exchange of two gluons in the

t channel in a singlet configuration (pomeron)

2-gluon ladder



Examples of rapidity gaps

all drawings taken from PRD47 (1993) 101

double pomeron exchangesinglet-octet ladder



… There are many difficult issues involved. They include the following.
 1. How big must the rapidity gaps be in order that multiplicity fluctuations do not mimic 
their effect?
 2. How big are strong-interaction (Pomeron-exchange) backgrounds and how do they scale 
with energy and  pT ?
3. What fraction of a given electroweak-boson exchange process, as defined at the parton 
level, really leads to a final state containing the rapidity gap? Most of the time spectator 
interactions will fill in the gap present at the naive level considered above. We estimate … 
that the survival probability of the rapidity gap is of order 5%, but there are serious 
theoretical issues here which need further exploration …

 from PRD47 (1993) 101

through a simple leading order (octet exchange) evaluation,
Bjorken estimates the probability of a rapidity gap from 
strong interactions to be about 0.1-1%

In the above considerations, we have uncritically assumed that higher 
orders in αs, do not significantly change this result. This is naive, and 
a proper estimate should include at the least the ladders of exchanged
gluons … This is more properly described by the BFKL evolution 
equation … Qualitatively, the result of these additional contributions 
is an increase in strength of the qq interaction at very large s, as well 
as an increase in the relative importance of the color-singlet-exchange
contribution … Mueller and Navelet …



Pile-up events

At the LHC, there is one more player in the game.
Every time two tightly packed bunches of protons 
cross, they generate up to 25-30 primary collisions 
between protons: pile-up events

In such an environment, it might be very difficult
to observe a rapidity gap

we may re-define the rapidity gap as the absence 
of low-ET jets (minijets) in the rapidity interval



Inter-jet radiation

Can the gluon radiation be much softer than the 
tagging forward jets, but still be hard enough to be 
modelled through a pQCD computation?

Firstly, this is an experimental question:
what is the minimum ET for which a jet can still be called 
a jet (and not be a fluctuation from the underlying event)?

suppose we have established an ET,min of, say, 10-20 GeV. 
About that value, the jets are hard, but not so hard (minijets)

we expect that gluon radiation in the t channel be very 
different for octet vs. singlet exchange: gluon radiation 
from an octet will fill the gap, while a singlet should have 
no radiation within the gap



How do we model an inter-jet radiation of minijets?

One way is through a fixed-order computation
of 3 or more jets, where two jets are the tagging
forward jets, while the additional jets model
the inter-jet radiation

Frizzo Maltoni VDD 2004

yrel = yj3 �
yj1 + yj2

2

with inclusive cuts

plus VBF cuts

|yj1 � yj2 | > 4.2 yj1 · yj2 < 0
p
sj1j2 > 600GeV

pjT > 20GeV |yj | < 5 Rjj > 0.6



But in order to model two-gluon exchange in a singlet 
configuration, we need a computation which is at least
O(αs2) wrt to the leading order, i.e. at least NNLO,
and possibly O(αs3) or higher, in order to analyse if/how
the singlet evolves wrt the octet

as of now, we have: 
• NNLO computations of 2 → 2 processes
• N3LO  computations of 2 → 1 processes



Balitski Fadin Kuraev Lipatov

In perturbative QCD, in the Regge limit s » |t|,  any scattering process 
is dominated by gluon exchange in the t channel

BFKL is a resummation of multiple gluon radiation
out of the gluon exchanged in the t channel

the resummation yields an integral equation 
for the evolution of the gluon propagator in 
2-dim transverse momentum space

the Leading Logarithmic (BFKL 1976-77) and 
Next-to-Leading Logarithmic (Fadin-Lipatov 1998) contributions 
in log(s/|t|) of the radiative corrections to the gluon propagator in 
the t channel are resummed to all orders in αs

the BFKL equation is obtained in the limit of strong rapidity order
of the emitted gluons - multi-Regge kinematics (MRK)



Mueller-Navelet jets

pa = xaPA pb = xbPB

Dijet production cross section with two tagging 
jets in the forward and backward directions

incoming parton momenta

S:  hadron centre-of-mass energy

s = xaxbS:  parton centre-of-mass energy

ETj:  jet transverse energies

�y = |yj1 � yj2 | ' log

s

ETj1ETj2

is the rapidity interval between the tagging jets

gluon radiation is considered in MRK and 
resummed through the LL BFKL equation

Mueller-Navelet evaluated the inclusive dijet cross section up to 5 loops

Mueller Navelet 1987



Solution of the LL BFKL equation is analytic

The kernel of the LL BFKL equation is also implemented
numerically in a Monte Carlo - High Energy Jets (HEJ)

Andersen Smillie 2009

It is known that NLL corrections to the BFKL equation are large,
but the solution of the NLL BFKL equation is rather complicated
→ not used in practice in realistic simulations

However, the LLA is unsatisfactory (αs is fixed, not running)



One of the most remarkable discoveries in elementary 
particle physics has been that of the existence of the 
complex plane …

incipit of The analytic S-matrix
Eden Landshoff Olive Polkinghorne 1966



N=4 Super Yang Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)



use N=4 SYM as a computational lab:

to learn techniques and tools to be used in Standard Model
calculations 

to learn about the bases of special functions which may occur
in the scattering processes 

amplitudes in N=4 SYM are much simpler
than in Standard Model processes 

N=4 Super Yang Mills



N=4 Super Yang Mills

In the last years, a huge progress has been made in understanding 
the analytic structure of the S-matrix of N=4 SYM 

Besides the ordinary conformal symmetry,
in the planar limit the S-matrix exhibits a dual conformal symmetry

Accordingly, the analytic structure of the scattering amplitudes is
highly constraint

Drummond Henn Smirnov Sokatchev 2006

4- and 5-point amplitudes are fixed to all loops by the symmetries
in terms of the one-loop amplitudes and the cusp anomalous dimension

Bern Dixon Smirnov 2005; Drummond Henn Korchemsky Sokatchev 2007

Beyond 5 points, the amplitudes are given in terms of a remainder
function R. The symmetries only fix the variables of R (some conformally
invariant cross ratios) but not the analytic dependence of R on them



N=4 Super Yang Mills

The progress in understanding the analytic structure of the S-matrix in
planar N=4 SYM is also due to an improved understanding of the
mathematical structures underlying the scattering amplitudes

n-point amplitudes are expected to be iterated integrals on the space 
of configurations of points in 3-dim projective space Confn(CP3),
with singularities given by a certain cluster algebra

The simplest case of iterated integrals are the iterated integrals
over rational functions, i.e. the multiple polylogarithms
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⇤ z

0

dt
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�
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a
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Golden Paulos Spradlin Volovich 2014

It is thought that maximally helicity violating (MHV) and next-to-MHV
(NMHV) amplitudes can be expressed in terms of 
multiple polylogarithms of uniform transcendental weight

Arkani-Hamed et al. Scattering Amplitudes and the Positive Grassmannian 2012



N=4 Super Yang Mills

6-pt MHV and NMHV amplitudes are known analytically up to five loops

Duhr Smirnov VDD 2009
Goncharov Spradlin Vergu Volovich 2010
Dixon Drummond Henn 2011
Dixon Drummond von Hippel Pennington 2013
Dixon Drummond Duhr Pennington 2014

Dixon Drummond Henn 2011
Dixon von Hippel 2014
Dixon von Hippel McLeod 2015

7-pt MHV amplitudes are known analytically at two loops
Golden Spradlin 2014

No analytic result is known beyond seven-pt
The cluster algebra which defines the multiple polylogarithms
is infinite starting from eight points



MRK in N=4 Super Yang Mills

In the Euclidean region (where all Mandelstam invariants are negative),
amplitudes in MRK factorise completely in terms of building blocks
which are expressed in terms of Regge poles and can be determined
to all orders through the 4-pt and 5-pt amplitudes. 
Thus the remainder functions R vanish at all points Duhr Glover VDD 08

After analytic continuation to some regions of the Minkowski space,
the amplitudes develops cuts which are described by a dispersion relation
for octet exchange, which is similar to the singlet BFKL equation in QCD

Bartels Lipatov Sabio-Vera 08

Accordingly, 6-pt amplitudes have been thoroughly examined,
both at weak and at strong coupling

In particular, 6-pt amplitudes can be expressed in terms of
single-valued harmonic polylogarithms Dixon Duhr Pennington 2012



Regge factorisation of the n-pt amplitude
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s⇥ s1, s2, . . . , sn�3 ⇥ �t1,�t2 . . . ,�tn�3

the l-loop n-pt amplitude can be assembled
using the l-loop trajectories, vertices and
coefficient functions, determined through the
l-loop 4-pt and 5-pt amplitudes
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in Euclidean space, 
no violation of the BDS ansatz can
be found in the multi-Regge limit

Duhr Glover  VDD 08



Single-valued polylogarithms

Single-valued functions are real analytic functions on the complex plane

Because the discontinuities of the classical polylogarithms are known

�Lin(z) = 2⇡i
log

n�1 z

(n� 1)!

one can build combinations of classical polylogarithms
such that all branch cuts cancel on the punctured plane C/{0,1}
(Riemann sphere with punctures)

An example is the Bloch-Wigner dilogarithm

D2(z) = Im[Li2(z)] + arg(1� z) log |z|



Harmonic polylogarithms (HPLs) are multiple polylogarithms
with the root = +1,-1,0
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Single-valued HPLs (SVHPL) are combinations of HPLs with no branch cuts.
Some SVHPLs

weight 1:

weight 2:



Mueller-Navelet jets and SVHPLs

MN evaluated analytically the inclusive dijet cross section up to 5 loops.
We evaluated it analytically up to 13 loops

The singlet LL BFKL ladder in QCD, and thus the dijet cross section
a la Mueller-Navelet, can be expressed in terms of SVHPLs

Dixon Duhr Pennington VDD 2013

Also, we could evaluate analytically the dijet cross section differential
wrt the jet transverse energies or the azimuthal angle between the jets
(up to 6 loops)



MRK in N=4 Super Yang Mills

Beyond 6 points, only 2-loop MHV amplitudes were known in MRK

In MRK and at LLA, the 2-loop n-pt remainder function Rn
(2) 

can be written as a sum of 2-loop 6-pt remainder functions R6
(2)

Prygarin Spradlin Vergu Volovich; Bartels Kormilitzin Lipatov Prygarin 2011

In MRK and at LLA, we can write all MHV amplitudes at L loops
in terms of amplitudes with up to (L+4) points

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD, to appear

We show explicitly that the MHV amplitudes at:
• 2 loops are determined by the 2-loop 6-pt amplitudes
• 3 loops are determined by the 6- and 7-pt amplitudes through 3 loops
• 4 loops are determined by the 6-, 7-, and 8-pt amplitudes through 4 loops
• 5 loops are determined by the 6-, 7-, 8- and 9-pt amplitudes through 5 loops

we can also write all non-MHV amplitudes up 8 points and 4 loops



MRK in N=4 Super Yang Mills

the n-pt scattering amplitudes in MRK at LLA are
single-valued iterated integrals on the moduli space M0,n-2  
of Riemann spheres with n marked points 

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD, to appear

in fact, single-valued iterated integrals on M0,4 are SVHPLs

the single-valuedness is not related to the conformal symmetry;
rather to the fact that the essential degrees of freedom are the
2-dim transverse momenta which have no branch cuts


