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- description of a subtraction method at NL in to



Singleresolved emissione

- Scattering of two partons of flavour a and b , and momente
p
,
and p within hadrons of and B with momenta Po and PB/

with production of jets plus any number of non-QCA particles
(Higgs , W , z,... ) denoted by X .

The cross section is

~ (Pap)= de
, felname fam/

with P,
= 1, Pa

and =P and I sum over parton flavours
a
,b

NRLOE NRL0(posPe ;M,M)and Tab Tab k = 0
,
1
,
2
...

is the parton cross section
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whereI denotes briefly the integration over the m-pentou phase space
and Je is a jet function

Im Properties :

- Im vanishes if one parton is soft or collimar to another

↳ do is integrable over the 1-perton IR phase space



next-to-leading order

~ Spi
, P ;MiM) =do,es unde s

Im Properties :

soft :

- J (Rs
... Pi = 39 --

,
un JeSpur-Pe of o

collusan :

- Jun) PissPas---P s ---Pr Jen (Pis~ Penti

↑f Pizz p(1 -z)b

- Fut , vourles if two partons are nuresolved (both softorcolliver to another)

↳ do is integrable over the -partou IR phase space



Collinearsubtraction term :

drub()-Az ,(de d(z,, z-)
· Obd8(1 -22)(-E( pa22 ,) + 1 (z))
· Grc8(1 - z

, )) -t(pd + k(zz))

pas : 4-dim DGLAP splitting function
ke : facterisation scheme dependent finte term ( = 0 in MF)

Fe = (deas =
(45)E (other chetess : Se =(4) rE(
M(1-E)



Subtraction :

- define on approximate cross section d , which matches

The singularity structure ofda point-wise in

the 1-perton In phase space ,
and subtract it from dra

onees = do
as
Fu - dri as Im d

=4+1

- it regularises the single unresolved emissions
- it is finite in d = 4 by construction

Then

↓des + dr + /dras) 5m]d
=

is finite by KLN



Single unresolved emissions

write the approximate cross section symbolically as

&Ran = Om(RP2) A , Pres
,

ab(pre sP2))

with
ma partou phase space ,

A
, ↑Mast subtraction term

A
, Poste

,

ab(3 R ,P2))

-
= (1

, 23 ,
= 43, . . .,

m + 3] denote sets of initial end final state parton
1

,
2 : hertons of flavour a

,
b, colour Cass>

momentum P, Pr

= nerton of flavour fi colour C ,
momentum p: = = 3, ..., m + 3



Subtraction terms

- S regularises emission of single soft gluss
FF(0) If (o)

- Cir
, regularise FF and If colliner singularitiesEer

~ account for double subtractions in overlappinga
soft-colliver regious



Final Final (FF) Collar subtraction

For final state collinar partons and r
,
define countenterne

( ( p3 mt
+x j PsPe)

= (iii) Pull (3m +x
; ,2))

with spir product shorthard

↑fuhr Palm
,

ab(3m +x , ) te 3--fat
-

withof the flavour of the parentpartou in ,
and spir terror

↑
S

abf--fats = EF fel ,
~- mesi5---

, trut]
*

es
- mesi ---

,t

5us Colour abffz--fo +3 abffz--fo +3

(flavour indices are not summed over)



Zin it) are the tree CLAP splitting functions for FF

(e . g. forg, (z , k ; e) = Tr(-g + 4z(1-z) kn))2Us

of the variables Zinir ,
which permetrise the colliman

Kinematics which we crelyse now in detail .

2

We consider the light-come decomposition of : and pr

& Pu= Zip: +k + a= nM
P

Pr
7

= Zu + + arnu -
>

Ph

with-) and n two light-like vectors,
2 = = 0 which specify the light-cue directions ,

Pir = m .
)

= 0
·



The massless on-shell conditions ph = p = 0 allow us to fix as

a =- j = E,
2

; Pan

The momentum frections are Zi= u=P ·U
IV

ewith Zi+Z =
P. 1

,
where P + Pr is the parentmomentum

Per

however we can use the longitudinal-boost invarient variables,
-

zn =
Prom with Zi +n

= 1Zu = Dim Er zitz ene

So S
= Ei Pir + L, -

-Bon
offer Witte 1

,

a
= k = - k
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--Pr - Er R -
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Note that Sir= - = -2
-

Er

↳
= (ten =

E
-

so Sineo as hi o
,
i

.
e . as pand pr become colliver

So the colliver limit can als be defined through the revealing
↳, 3 with Jes 1

The parent parton with momentum PPM is offshell .

p= Sir = O(R2) .
It
goes on shell only in the strict collinan

limit
,
where factorisation is exact . In order to achieve

exact factorisation also elsewhere, a trik (Cateui Seymour 1996)
as to shift moments and enforce the parent parton to be



on shell . That requires to shift at least another parton , say Pro
e Mbesides the parent partou P + Pr

↑
in such a way that es

&

Pin = A (P=+ PY) + B pr M

-E P = C (PE+ P) + A P ↳

with A
,
B

,
C

,
I

,
constants to be determined.

Momentumgeratonnegreat p
e

B +1 =1
·

On-shellunss
·

-

-

= Pr
12

= 0requires that p= = Pre = Pin
·

·

·

·

squaring the shift equations above ,
we obtain that

↑↑ Str + AB (Sin + Sn) = 0

Sin + (Sin + Sur) = 0

sunming the quations above ,
leads to an inconsistency : Sin Furt Sin = O



unless either C = 0 or1 = 0
,

I = 0 is early discarded , since 20 implies that also C = 0
.

We set then C = 0
·
thur momentum pr is simply rescaled.I

Momentum conservation fores A = 1
,
B +1 = 1

Setting 0 = Sin + Surtfir and yir=
- = 0 implies that Sir + -B (p: + Pr) · Ph = 0

Sev
=-
in and IThr B =

-Senten 1 - Gin

D =

1 - ye

so the shift is

S
= Pup in pe =

P+ pr-Yir Or
-

1 - Gin 1 - Gin

= I
1 - y=y

Nor
Cui Seymour 1996



-For a set of+ momente , 5 But [ ---

< Put] ,
will

m+3

Q =pr -E ,
rather than rescaling just one monertum pu

k=
K

we can think of dealing in the same way with all them-1momento

recoiling against the collinear limit. by revealing them all by theS

seme factor (such that at NNLO ,
all the partons which were not

involved inthe NLO colliver limit are treated in the secue way) .
Then

3m +x
= 3) ...,Firs ..., m , x] is the set of m + X shifted momenta

Obtained by removing po and p and replacing them with For
and the shift is

M+ 3
r

E
P = A (P=+ Pl) + B I & Pr + Pe Sn= 3

,
k+ Y

,)
-

PM = DPM k = 3
, . . .,,

=xX ,
---

,
m+3

Fr = DPU



n+ 3

Momentum conservation↳Ein up
fres gene A = 1

,
B +1 = 1

.

&

the shift equation pic = P+ PM + B(P - (PE+ PM)]
&

becomes Pi = (1-B) (PEP) + B PCM)

The on-shell condition = 0 yields a quadratic equation in B,
since the recoiler pm-(PPM) is timelike (to be contracted with the
lines equation in B in the Cateri-Seymour shift, where pr s light-like) .E

Xin AWe change veriables , bysetting B =

-1-Xi
- D =

1 -Xi

which lets us write the shift equations in a similar way as

in Catein-Seymour



Put
M

- Xi
M

e =
Pr N P(10)

1 - Xini= I

in

Nas k = 3
, . . .,,

=xX ,
---

,
m+3

1 - &

-M

P => I prX
1 - &

*

En

with 0 yielding a quadratic equation in or

Sin + En-2dir (pi + Pr) ·P( = O

whose solutions are

dir===+ pr) · PE ((p: + Pr) .P() - Sis

512

which
, using - + Pr) ·P = Sinc can be written as

dir, = Glin() Since -45Siu
25

,2S


