Hadron collider phenomenology

Vittorio Del Duca INFN LNF

INT Seattle 15 September 2010

hadron collider phenomenology is a very broad topic

I had to make drastic choices

I focused on some aspects of high Q² physics at CDF, D0, ATLAS, CMS

Standard Model

Past & Present: the LEP/SLD/Tevatron legacy

The Standard Model has been a spectacular success, weathering out all challenges

The comparison with the electroweak precision measurements has not changed much in the last years

	Measurement	Fit	IO ^{meas} -O ^{fit} I/o ^{meas}
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	
σ_{had}^0 [nb]	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.743	
A ^{0,I}	0.01714 ± 0.00095	0.01643	
A _I (P _z)	0.1465 ± 0.0032	0.1480	
R _b	0.21629 ± 0.00066	0.21581	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1480	
sin ² 0 ^{lept} (Q _{fb})	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.398 ± 0.025	80.377	
Г _w [GeV]	2.097 ± 0.048	2.092	
m _t [GeV]	172.6 ± 1.4	172.8	
March 2008			0 1 2 3

Top quark production

but with a smaller sample (~ Ipb⁻¹)

CDF & D0 cross sections not combined yet; likely this winter

Top quark Mass

ICHEP 10

W boson Mass

Moriond 10

D0's is world best measurement

 $\Delta m_W/m_W = 0.03\%$

not changed much over last years

- Tevatron average more precise than LEP's
- D0 measurement based on 500k W's

ATLAS, CMS will collect each as many W's after ~ 200 pb⁻¹

Effects on global EW fits

ElectroWeak fits point to a light Higgs boson

Higgs search at Tevatron

Higgs boson Mass

 $m_H > 114.4 \text{ GeV}$ from direct search at LEP

 $m_{H} = 87^{+36}_{-27} \text{ GeV}$ from EW fits

At 95% CL $m_H < 160$ GeV from EW fits $m_H < 190$ GeV combined with direct search at LEP

use m_t to estimate m_H from EW corrections

as m_t changes, large shifts in m_H

the Standard Model is in excellent shape, but ...

foremost task of the LHC is to understand the EWSB: find the Higgs boson or whatever else is the cause of it

• pp
$$\sqrt{s} = 14 \text{ TeV}$$
 $L_{design} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (after 2013)
 $\sqrt{s} = 7 \text{ TeV}$ $L_{initial} \le 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (2010-2011)
• Heavy ions (e.g. Pb-Pb at $\sqrt{s} \sim 1000 \text{ TeV}$)

LHC at present (end of August 2010)

average luminosity $7.08 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

peak luminosity 1.07×10^{31} cm⁻² s⁻¹ to be increased by a factor 10 (100) by end of 2010 (2011)

integrated luminosity 3.7 pb⁻¹ (but 1.7 pb⁻¹ collected in the last week of running)

LHC at design energy and luminosity

Thursday, September 30, 2010

With | fb⁻¹ at |4 TeV we shall get

final state	events	overall # of events
jets (p _T > 100 GeV)	109	
jets (p _T > I TeV)	104	
$W ightarrow e u, \mu u$	2·10 ⁷	10 ⁷ (Tevatron)
$Z \to \ell \ell$	2·10 ⁶	10 ⁶ (LEP)
$b\overline{b}$	5·10 ¹¹	10 ⁹ (BaBar, Belle)
$t\overline{t}$	8.5 · 10 ⁵	10 ⁴ (Tevatron)

even at 1 fb⁻¹ luminosity, LHC beats all the other accelerators at 7 TeV, figures are slightly reduced: W x-sect goes from 20 nb at 14 Tev to 10 nb at 7 TeV tt x-sect goes from 850 pb at 14 TeV to 450 pb at 7 TeV

LHC: present & future

- calibrate the detectors, and re-discover the SM i.e. measure known cross sections: jets, W, Z, tt
- understand the EWSB/find New-Physics signals (ranging from Z' to leptons, to gluinos in SUSY decay chains, to finding the Higgs boson)
- constrain and model the New-Physics theories

in all the steps above (except probably Z' to leptons) precise QCD predictions play a crucial role

SM Higgs at the LHC at 7 TeV

SM Higgs at the LHC at 7 TeV

LHCC meeting of 5/05/10

1fb⁻¹ ATLAS H→WW→II

CMS H→WW→II

depending on the analysis technique, discovery at 3 to 5 σ at m_H ~ 160 GeV

SM Higgs at the LHC at 7 TeV

LHCC meeting of 5/05/10

Exclusion: One experiment only CMS Preliminary: projection for 7 TeV(1 fb⁻¹ Mar 17 2010 $r = \sigma_{95\% CL}/\sigma_{SM}$ 10 $Hy\gamma + HWW + HZZ$ 95% CL exclusion: mean 95% CL exclusion: 68% band 95% CL exclusion: 95% band 95% CL exclusion: mean (no sys) 1 120 160 180 100 140 200 Higgs mass, m [GeV/c²] exclusion range ~ 145 - 190 GeV Q

1fb-1

SM Higgs at the LHC at 14 TeV

In of course production rates are much bigger at 14 TeV with an adequate luminosity

MSSM neutral Higgs at the LHC at 7 TeV

 \bigcirc discovery (exclusion) down to tan $\beta \sim 20$ (15) at low m_A

with I fb⁻¹ at 7 TeV, LHC overtakes Tevatron at 10 fb⁻¹ on all Higgs searches

New Physics at the LHC at 7 TeV

New Physics at the LHC at 7 TeV

- Idon't have time to cover the many New Physics production channels (please see the minutes of the LHCC meeting of 5/05/10) it suffices to say that with I fb⁻¹ at 7 TeV:
- for SUSY, LHC will be able to discover squarks with 500 GeV < m < 1 TeV,
- for dilepton resonances (Z'), sensitivity (discovery/exclusion) up to 1.5 TeV, (with 100 pb⁻¹ up to 1 TeV)
- and a long list of exotica (compositeness, Randall-Sundrum gravitons, excited leptons, 4th generation quarks, large extra dimension monojets and photon pairs ...) can be probed with 0.1 1 fb⁻¹

New Physics caveat: tales from the past - I

Jets at high transverse energy

CDF Collab. PRL 77 (1996) 438

excess of data over theory

Could it be contact interactions ? \Rightarrow New Physics ?

more prosaic explanation: gluon density at high x was largely unknown; use Tevatron 2-jet data to measure it: no more excess

New Physics caveat: tales from the past - II

B production in the 90's

discrepancy between Tevatron data and NLO prediction

B cross section in $p\bar{p}$ collisions at 1.96 TeV

use of updated fragmentation functions by Cacciari & Nason and resummation

good agreement with data

$$\rightarrow$$

no New Physics

W, Z at the LHC at 7 TeV

with a few pb⁻¹ ATLAS, CMS have collected a few thousand W's so far

here is the cross section with 0.2 pb⁻¹ presented at ICHEP 2010

W charge asymmetry at Tevatron

from the parton model

 $\sigma(W^+) \propto u(x_1)\overline{d}(x_2) \qquad \sigma(W^-) \propto d(x_1)\overline{u}(x_2)$

because the *ubar* distribution in the antiproton is the same as the *u* distribution in the proton, at Tevatron $\sigma(W^+) = \sigma(W^-)$ however the *u*'s carry more proton momentum than the *d*'s, so the quantity

 $A(y_W) = \frac{\frac{d\sigma(W^+)}{dy_W} - \frac{d\sigma(W^-)}{dy_W}}{\frac{d\sigma(W^+)}{dy_W} + \frac{d\sigma(W^-)}{dy_W}}$

called charge asymmetry, is non zero

it has been measured by CDF & D0

W⁺/W⁻ at the LHC

At LHC there is no W charge asymmetry: it's $pp \rightarrow an$ even function of y_W

however, *u* distribution is larger than $d \rightarrow \sigma(W^+) > \sigma(W^-)$

the ratio

 $R^{\pm} = \frac{\sigma(W^+ \to \ell^+ \bar{\nu})}{\sigma(W^- \to \ell^- \nu)} = \frac{u(x_1)\bar{d}(x_2)}{d(x_1)\bar{u}(x_2)}$

is larger than I

Kom Stirling 2010

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
MSTW 2008 LO	1.463 ± 0.014	1.365 ± 0.011
MSTW 2008 NLO	1.422 ± 0.012	1.325 ± 0.010
MSTW 2008 NNLO	1.429 ± 0.013	1.328 ± 0.011

R grows with **x**, so it decreases with \sqrt{s}

R has

- small EXP systematics
- (N)NLO QCD corrections of $\leq 2\%$
- PDF uncertainty ~ 1-2%, driven by valence u(x)/d(x) at not-so-small x

W⁺/W⁻ at the LHC

At LHC there is no W charge asymmetry: it's $pp \rightarrow an$ even function of y_W

however, *u* distribution is larger than d $\rightarrow \sigma(W^+) > \sigma(W^-)$

the ratio

$$R^{\pm} = \frac{\sigma(W^+ \to \ell^+ \bar{\nu})}{\sigma(W^- \to \ell^- \nu)} = \underbrace{u(x_1)\bar{d}(x_1)}_{\bar{d}(x_1)} \bar{u}(x_2)$$

is larger than I

Kom Stirling 2010

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
MSTW 2008 LO	1.463 ± 0.014	1.365 ± 0.011
MSTW 2008 NLO	1.422 ± 0.012	1.325 ± 0.010
MSTW 2008 NNLO	1.429 ± 0.013	1.328 ± 0.011

R grows with **x**, so it decreases with \sqrt{s}

R has

- small EXP systematics
- (N)NLO QCD corrections of $\leq 2\%$
- PDF uncertainty ~ 1-2%, driven by valence u(x)/d(x) at not-so-small x

$W^+/W^- + n$ jets at the LHC

$W^+/W^- + n$ jets at the LHC

possible dynamic explanation: dominance of BFKL-like configuration for n > 1

- in any scattering process with s >> t, gluon exchange dominates
- \bigcirc for s >> t, BFKL resums the (next-to-)leading logarithmic contributions, In (s/t), to the radiative corrections to gluon exchange in the t channel
- in W + jets, gluon exchange occurs with at least 2 jets
- ${igged}$ the dominant subprocess is $q + g
 ightarrow q + W^{\pm} + ng$
- the leading-order subprocess breakdown is

n	QQ	Qg	gg
0	100	0	0
1	18	82	0
2	21	73	6
3	23	70	7
4	25	67	8

the issue can be further analysed using NLO production, known up to W + 4 jets Berger et al. (BlackHat) 2010

Andersen VDD Maltoni Stirling 2001

Top at the LHC at 7 TeV

Top at the LHC at 7 TeV

- With ~ 100 pb⁻¹, LHC sample comparable to Tevatron's
- With ~ a few hundred pb⁻¹, physics programme will look familiar
 - top cross section
 - top mass
 - single top
 - rare decays

If LHC reaches 1 fb⁻¹ by end 2011, and Tevatron increases yield by a factor 10, samples will still be comparable

Radiative corrections at the LHC

En passant, we have mentioned higher order corrections in

- Higgs exclusion limit
- background to Higgs production
- jets at high transverse energy
- *b, t* production
- SM production of W, Z, t + jets is background to Higgs, New Physics processes

NLO cross sections: experimenter's wishlist 2005 Les Houches

QCD, EW & Higgs working group hep-ph/0604210

Table 42: The LHC "priority" wishlist for which a NLO computation seems now feasible.

process $(V \in \{Z, W, \gamma\})$	relevant for
1. $pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
2. $pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$
3. $pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
4. $pp \rightarrow VVb\bar{b}$	VBF $\rightarrow H \rightarrow VV, t\bar{t}H$, new physics
5. $pp \rightarrow VV + 2$ jets	VBF $\rightarrow H \rightarrow VV$
6. $pp \rightarrow V + 3$ jets	various new physics signatures
7. $pp \rightarrow VVV$	SUSY trilepton

QCD at high Q²

- Parton model
- Perturbative QCD
 - factorisation
 - universality of IR behaviour
 - cancellation of IR singularities
 - IR safe observables: inclusive rates

🖲 jets

event shapes

World average of $\alpha_S(M_Z)$ $\alpha_s(M_Z) = 0.1184 \pm 0.0007$

S. Bethke arXiv:0908.1135

 $\frac{\Delta \alpha_s}{\ldots} = 0.6\%$

vertical line and shaded band mark the world average

first time that shapes are included at NNLO

Factorisation

is the separation between the short- and the long-range interactions

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_{a/A}(x_1, \mu_F^2) f_{b/B}(x_2, \mu_F^2)$$

$$\times \hat{\sigma}_{ab \to X} \left(x_1, x_2, \{ p_i^{\mu} \}; \alpha_S(\mu_R^2), \alpha(\mu_F^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right)$$

 $X = W, Z, H, Q\bar{Q}, \text{high-}E_T \text{jets}, \dots$

 $\hat{\sigma}$ is known as a fixed-order expansion in α_{s}

 $\hat{\sigma}(\alpha_S,\mu_R,\mu_F) = \left(\alpha_S(\mu_R)\right)^n \left[\hat{\sigma}^{(0)} + \left(\frac{\alpha_S}{2\pi}\right)\hat{\sigma}^{(1)}(\mu_R,\mu_F) + \left(\frac{\alpha_S}{2\pi}\right)^2\hat{\sigma}^{(2)}(\mu_R,\mu_F) + \dots\right]$

 $\hat{\sigma}^{(0)} = \mathsf{LO}$ $\hat{\sigma}^{(1)} = \mathsf{NLO}$ $\hat{\sigma}^{(2)} = \mathsf{NNLO}$

LO: maximal dependence on scales. Poor convergenge of expansion in α_s NLO: (usually) good estimate of x-sect NNLO: good estimate of uncertainty

2000000

20000000

Factorisation

extracted from data evolved through DGLAP

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 (f_{a/A}(x_1, \mu_F^2) f_{b/B}(x_2, \mu_F^2))$$

$$\times \quad \hat{\sigma}_{ab\to X} \left(x_1, x_2, \{ p_i^{\mu} \}; \alpha_S(\mu_R^2), \alpha(\mu_F^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right)$$

 $X = W, Z, H, Q\bar{Q}, \text{high-}E_T \text{jets}, \dots$

 $\hat{\sigma}$ is known as a fixed-order expansion in α_{s}

 $\hat{\sigma}(\alpha_S,\mu_R,\mu_F) = \left(\alpha_S(\mu_R)\right)^n \left[\hat{\sigma}^{(0)} + \left(\frac{\alpha_S}{2\pi}\right)\hat{\sigma}^{(1)}(\mu_R,\mu_F) + \left(\frac{\alpha_S}{2\pi}\right)^2\hat{\sigma}^{(2)}(\mu_R,\mu_F) + \dots\right]$

 $\hat{\sigma}^{(0)} = \mathsf{LO}$ $\hat{\sigma}^{(1)} = \mathsf{NLO}$ $\hat{\sigma}^{(2)} = \mathsf{NNLO}$

LO: maximal dependence on scales. Poor convergenge of expansion in α_s NLO: (usually) good estimate of x-sect NNLO: good estimate of uncertainty

 p_a p_{a} p_{b} p_{b} p_{b}

LO: maximal dependence on scales. Poor convergenge of expansion in α_s NLO: (usually) good estimate of x-sect NNLO: good estimate of uncertainty

Factorisation-breaking contributions

- underlying event
- power corrections
 - Solution MC's and theory modelling of power corrections laid out and tested at LEP where they provide an accurate determination of α_s models still need be tested in hadron collisions (see e.g. Tevatron studies at different \sqrt{s})
- Giffractive events
- double-parton scattering

observed by Tevatron CDF in the inclusive sample

 $p\bar{p} \rightarrow \gamma + 3 \text{ jets}$

potentially important at LHC $\sigma_D \propto \sigma_S^2$

breakdown in dijet production at N³LO ?

Collins Qiu 2007

Power corrections at Tevatron

Ratio of inclusive jet cross sections at 630 and 1800 GeV

solid: best fit to data with free power-correction parameter $\Lambda\,$ in the theory

Factorisation in diffraction ??

diffraction in DIS double pomeron exchange in $p\bar{p}$

no proof of factorisation in diffractive events

data do not seem to support it

Thursday, September 30, 2010

PDF evolution

factorisation scale μ_F is arbitrary

Cross section cannot depend on μ_F $\mu_F \frac{d\sigma}{d\mu_F} = 0$

$$\begin{array}{ll} \text{implies DGLAP equations} & \begin{array}{l} \text{V. Gribov L. Lipatov; Y. Dokshitzer} \\ \text{G. Altarelli G. Parisi} \end{array} \\ \mu_F \frac{df_a(x, \mu_F^2)}{d\mu_F} = P_{ab}(x, \alpha_S(\mu_F^2)) \otimes f_b(x, \mu_F^2) + \mathcal{O}(\frac{1}{Q^2}) \\ \mu_F \frac{d\hat{\sigma}_{ab}(Q^2/\mu_F^2, \alpha_S(\mu_F^2))}{d\mu_F} = -P_{ac}(x, \alpha_S(\mu_F^2)) \otimes \hat{\sigma}_{cb}(Q^2/\mu_F^2, \alpha_S(\mu_F^2)) + \mathcal{O}(\frac{1}{Q^2}) \end{array}$$

$$\bigcirc P_{ab}(x, \alpha_S(\mu_F^2))$$
 is calculable in pQCD

LHC kinematic reach

LHC opens up a new kinematic range

x range covered by HERA but Q² range must be provided by DGLAP evolution

100-200 GeV physics is large x physics (valence quarks) at Tevatron, but smaller x physics (gluons & sea quarks) at the LHC

rapidity distributions span widest x range

 x_1

Feynman x's for the production of a particle of mass M

$$_{,2} = \frac{M}{14 \,\mathrm{TeV}} \,e^{\pm y}$$

Parton cross section

3 complementary approaches to $\hat{\sigma}$

	matrix-elem MC's	fixed-order x-sect	shower MC's
final-state description	hard-parton jets. Describes geometry, correlations,	limited access to final-state structure	full information available at the hadron level
higher-order effects: loop corrections	hard to implement: must introduce negative probabilities	straightforward to implement (when available)	included as vertex corrections (Sudakov FF's)
higher-order effects: hard emissions	included, up to high orders (multijets)	straightforward to implement (when available)	approximate, incomplete phase space at large angles
resummation of large logs	?	feasible (when available)	unitarity implementation (i.e. correct shapes but not total rates)

M.L. Mangano KITP collider conf 2004

Parton shower MonteCarlo generators

Generation HERWIG B. Webber et al. 1992

re-written as a C++ code (HERWIG++)

- **PYTHIA** T. Sjostrand 1994 (also re-written as a C++ code)
 - SHERPA F. Krauss et al. 2003
- model parton showering and hadronisation

Matrix-element MonteCarlo generators

- several automated codes to yield large number of (up to 8-9) final-state partons
 - can be straightforwardly interfaced to parton-shower MC's
 - ideal to scout new territory
 - large dependence on ren/fact scales
 example: Higgs (via gluon fusion) + 2 jets is α_s⁴(Q²)
 - ➡ unreliable for precision calculations

Matrix-element MonteCarlo generators

- multi-parton LO generation: processes with many jets (or V/H bosons)
 - ALPGEN M.L.Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002
 - MADGRAPH/MADEVENT W.F. Long F. Maltoni T. Stelzer 1994/2003
 - COMPHEP A. Pukhov et al. 1999
 - GRACE/GR@PPA T. Ishikawa et al. K. Sato et al. 1992/2001
 - HELAC C. Papadopoulos et al. 2000
 - processes with 6 final-state fermions
 - PHASE E. Accomando A. Ballestrero E. Maina 2004

merged with parton showers

all of the above, merged with HERWIG or PYTHIA

MonteCarlo interfaces

CKKW S. Catani F. Krauss R. Kuhn B. Webber 2001

MLM L. Lonnblad 2002 M.L. Mangano 2005

procedures to interface parton subprocesses with a different number of final states to parton-shower MC's

MC@NLO S. Frixione B. Webber 2002

P. Nason 2004

procedures to interface NLO computations to parton-shower MC's

POWHEG

Single top in MC@NLO

Frixione Laenen Motylinski Webber 2005

at low p_T , parton shower models collinear radiation

at high p_T, NLO models hard radiation

Thursday, September 30, 2010

Matrix-element MonteCarlo generator at NLO

desirable to have a multi-parton NLO generator interfaced to a parton shower: a sort of MadGraph cum MC@NLO

a step in this direction: automation of subtraction of IR divergences Frederix Frixione Maltoni Stelzer 2009

MadGraph provides real amplitude user inputs virtual amplitude procedure provides subtraction counterterms

Accuracy of pQCD calculations

- \bigcirc LO 2 \rightarrow 2 process + shower & hadronisation (HERWIG, PYTHIA, SHERPA)
- \bigcirc LO 2 → n process + shower (ALPGEN, MADGRAPH/MADEVENT)
- **NLO** parton level
- NLO + shower (MC@NLO, POWHEG)
- NNLO parton level
- Sottom line: use best available accuracy (ideally NLO + shower)

High (EXP) demand for cross sections of X + n jets X = W, Z, Higgs, heavy quark(s), ... Big TH community effort

To compute the NLO cross section of X + n jets, we need:
1) tree-level amplitude for X + (n+3) partons
2) one-loop amplitude for X + (n+2) partons
3) a method to cancel the IR divergences and so to compute the cross section

3: until the mid 90's, we did not have systematic methods to cancel the IR divergences
2: until 2007-8, we did not have systematic methods to compute the one-loop amplitudes

NLO cross sections (2010)

2005 Les Houches list almost completed

process wanted at NLO	background to	
1. $pp ightarrow VV + {\sf jet}$	$tar{t}H$, new physics	
	Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi	
2. $pp ightarrow H+2$ jets	H in VBF	
	Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier	
3. $pp ightarrow t ar{t} b ar{b}$	$tar{t}H$ Bredenstein, Denner Dittmaier, Pozzorini;	
	Bevilacqua, Czakon, Papadopoulos, Pittau, Worek	
4. $pp ightarrow tar{t} + 2$ jets	tt H Bevilacqua, Czakon, Papadopoulos, Worek	
5. $pp \rightarrow VVb\overline{b}$	VBF $ ightarrow H ightarrow VV$, $tar{t}H$, new physics	
6. $pp ightarrow VV + 2$ jets	VBF o H o VV	
	VBF: Bozzi, Jäger, Oleari, Zeppenfeld	
7. $pp ightarrow V + 3$ jets	new physics	
	Berger Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita,	
	Kosower, Maitre; Ellis, Melnikov, Zanderighi	
8. $pp \rightarrow VVV$	SUSY trilepton	
	Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld;	
	Binoth, Ossola, Papadopoulos, Pittau	
9. $pp ightarrow b \overline{b} b \overline{b}$	Higgs, new physics GOLEM	

new physics

C. Berger et al (BlackHat) 2010

Thursday, September 30, 2010

 $pp \rightarrow V + 4$ jets

- in the past, long time span to add one more jet to a x-section
 - in the last few years, huge progress
 - 2 → 2 and 2 → 3 processes: almost all computed and included into NLO packages
 - $2 \rightarrow 4$ processes: a few computed
 - $pp \rightarrow t \,\overline{t} \, b \, b$ Bredenstein Denner Dittmaier Pozzorini; Bevilacqua Czakon Papadopoulos Pittau Worek 2009
 - $pp
 ightarrow Q ar{Q} + 2 \, {
 m jets}$ Bevilacqua Czakon Papadopoulos Worek 2010
 - $pp \rightarrow H + 3 \text{ jets}$ (VBF) Figy Hankele Zeppenfeld 2007
 - $pp \rightarrow V + 3 \; {
 m jets}$ Berger et al. (BlackHat); K. Ellis Melnikov Zanderighi 2009
 - $2 \rightarrow 5$ processes: just one
 - $pp \rightarrow V + 4 \text{ jets}$ Berger et al. (BlackHat) 2010

 $pp \rightarrow t \, \overline{t} + 2 \, \text{jets}$ at NLO

 $igoplus for {\mathbf P}$ reducible background to $pp o H\,t\,\overline{t}$

$$\bigcirc$$
 NLO/LO = K factor = 0.89

Reduced theoretical error: 40-70% at LO; 12-13% at NLO

W + 4 jets at NLO

A C++ code based on generalised unitarity, and on-shell recursion for the rational parts

BlackHat: Berger et al. 2010

computes

- real W + 7 parton amplitudes
- one-loop W + 6 parton amplitudes (leading colour)

Conclusions

- an exciting period of LHC phenomenology is about to begin
- signals and backgrounds for Higgs and New Physics are evaluated with better and better accuracy, thanks to
 - a lot of progress in pQCD in the last few years in
 - Monte Carlo generators
 - NLO computations with many jets

NLO production rates

Process-independent procedure devised in the 90's

Kosower 1997; Campbell Cullen Glover 1998

slicing

Giele Glover Kosower 1992-3

subtraction Frixione Kunszt Signer 1995; Nagy Trocsanyi 1996

- dipole Catani Seymour 1996
- 🥥 antenna

$$\sigma = \sigma^{\text{LO}} + \sigma^{\text{NLO}} = \int_{m} d\sigma_{m}^{B} J_{m} + \sigma^{\text{NLO}}$$
$$\sigma^{\text{NLO}} = \int_{m+1} d\sigma_{m+1}^{R} J_{m+1} + \int_{m} d\sigma_{m}^{V} J_{m}$$

the 2 terms on the rhs are divergent in d=4

use universal IR structure to subtract divergences

$$\sigma^{\text{NLO}} = \int_{m+1} \left[d\sigma_{m+1}^{\text{R}} J_{m+1} - d\sigma_{m+1}^{\text{R},\text{A}} J_m \right] + \int_m \left[d\sigma_m^{\text{V}} + \int_1 d\sigma_{m+1}^{\text{R},\text{A}} \right] J_m$$

the 2 terms on the rhs are finite in d=4

Observables must be IR safe

observable function J_m

 J_m vanishes when one parton becomes soft or collinear to another one

 $J_m(p_1, \dots, p_m) \to 0$, if $p_i \cdot p_j \to 0$

 $d\sigma_m^{\rm B}$ is integrable over I-parton IR phase space

 J_{m+1} vanishes when two partons become simultaneously soft and/or collinear

 $J_{m+1}(p_1, \dots, p_{m+1}) \to 0$, if $p_i \cdot p_j$ and $p_k \cdot p_l \to 0$ $(i \neq k)$

R and V are integrable over 2-parton IR phase space

observables are IR safe

 $J_{n+1}(p_1, .., p_j = \lambda q, .., p_{n+1}) \to J_n(p_1, ..., p_{n+1}) \quad \text{if} \quad \lambda \to 0$ $J_{n+1}(p_1, .., p_i, .., p_j, .., p_{n+1}) \to J_n(p_1, .., p, .., p_{n+1}) \quad \text{if} \quad p_i \to zp, \ p_j \to (1-z)p$

for all $n \ge m$