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@ At the LHC, particles are produced through
the head-on collisions of protons, and in
particular through the collisions of quarks
and gluons within the protons

@ The probability of a collision event is
computed through the cross section,
which is given as an integral of (squared)
scattering amplitudes over the phase
space of the produced particles

@ The scattering amplitudes are given as
a power series (loop expansion) in the
strong and/or electroweak couplings

* The scattering amplitudes are
fundamental objects of particle physics



( Scattering amplitudes )

@ The scattering amplitudes are given as a loop-momentum
expansion in the strong and/or electroweak couplings

q g ——VWW VWW, VWW\,
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@ The more terms we know in the loop expansion,
the more precisely we can compute the cross section

@ As a matter of fact, we know any amplitude of interest
at one loop, several (2 = 2) amplitudes at two loops,
just a couple (2 = |) at three loops, and nothing
beyond that



Q@ What outcome do we expect from
the loop expansion of an amplitude!

@ From renormalisability and the infrared
structure of the amplitude, we expect that
the divergent parts are logarithmic functions
of the external momenta

Q@ But, except for unitarity, we have little guidance

for the finite parts.

Heuristically, we know that:

— at one loop, logarithmic and dilogarithmic
functions of the external momenta occur

— beyond one loop, higher polylogarithmic
functions appear and elliptic functions may appear



In the last few years, a lot of progress has been made
in understanding the analytic structure of multi-loop
amplitudes, in particular on how the polylogarithmic

functions appear at any loop level

In particular, a lot of progress has been made:
— in N=4 Super Yang-Mills (SYM)

— in the Regge limit of QCD

— in the Regge limit of N=4 SYM



One of the most remarkable discoveries in elementary
particle physics has been that of the existence of the
complex plane ...

incipit
The analytic S-matrix
Eden Landshoff Olive Polkinghorne 1966



Regge limit
in the
leading logarithmic approximation




( Regge limit of QCD )

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel
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Q  inthe Regge limit, the amplitude is invariant under s <> u exchange.

To NLL accuracy, the amplitude is given by Fadin Lipatov 1993
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(Amplitudes in the Regge limit )

@ Regge limit of the gluon-gluon amplitude
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the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, €, starting at /€2

@ perform the Regge limit of the quark-quark amplitude
— get one-loop quark impact factor

Q@ if factorisation holds, one can obtain the one-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does



( Balitski Fadin Kuraev Lipatov )

Pa
BFKL is a resummation of multiple gluon radiation 0000000000000, 1

out of the gluon exchanged in the t channel
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the Leading Logarithmic (BFKL 1976-77) and
Next-to-Leading Logarithmic (Fadin-Lipatov |1998)
contributions in log(s/|t|) of the radiative corrections to
the gluon propagator in the t channel are resummed to
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the resummation yields an integral (BFKL) equation for the evolution
of the gluon propagator in 2-dim transverse momentum space

the BFKL equation is obtained in the limit of strong rapidity ordering
of the emitted gluons, with no ordering in transverse momentum -
multi-Regge kinematics (MRK)

the solution is a Green’s function of the momenta flowing in and out
of the gluon ladder exchanged in the t channel



( Mueller-Navelet jets )

Mueller Navelet 1987

Dijet production cross section with two tagging
= jets in the forward and backward directions

Py

Pa = o P4 p» = 2, Pg INCOMINg parton momenta

Pa .
J1
- S: hadron centre-of-mass energy

Qa

S = XaXpS: parton centre-of-mass energy

E7j: jet transverse energies

i) S
Ay = |yj, — yj,| > log
‘ J1 .72| Ele ET]2

P ” is the rapidity interval between the tagging jets

gluon radiation is considered in MRK and
Py resummed through the LL BFKL equation

Mueller-Navelet evaluated the inclusive dijet cross section up to 5 loops



(Mueller—NaveIet dijet cross section)

Q@  the cross section for dijet production at large rapidity

: S
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can be described through the BFKL Green'’s function
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(Mueller—NaveIet dijet cross section)

azimuthal angle distribution (¢j; = d-T7)
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( N=4 Super Yang Mills )

@ maximal supersymmetric theory (without gravity)
conformally invariant, § fn. = 0

& spin | gluon
4 spin 1/2 gluinos
6 spin O real scalars

@ ‘t Hooft limit: Nc =00 with A = g?N. fixed

2 only planar diagrams

Q@ AdS/CFT duality Maldacena 97

¢ large-A limit of 4dim CFT < weakly-coupled string theory

(aka weak-strong duality)



( N=4 Super Yang Mills )

Q@ amplitudes in N=4 SYM are much simpler
than in Standard Model processes

Q@ use N=4 SYM as a computational lab:

w to learn techniques and tools to be used in Standard Model
calculations

¢ to learn about the bases of special functions which may occur
in the scattering processes



( N=4 Super Yang Mills )

In the last years, a huge progress has been made in understanding
the analytic structure of the S-matrix of N=4 SYM

Besides the ordinary conformal symmetry,

in the planar limit the S-matrix exhibits a dual conformal symmetry
Drummond Henn Smirnov Sokatchev 2006

Accordingly, the analytic structure of the scattering amplitudes is

highly constraint

4- and 5-point amplitudes are fixed to all loops by the symmetries
in terms of the one-loop amplitudes and the cusp anomalous dimension

Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005
Drummond Henn Korchemsky Sokatchev 2007

Beyond 5 points, the finite part of the amplitudes is given in terms of a
remainder function R.The symmetries only fix the variables of R (some
conformally invariant cross ratios) but not the analytic dependence of R
on them



Q for n = 6, the conformally invariant cross ratios are
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x; are variables in a dual space s.t. Pi = Ti — Zit1
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Q for n points, dual conformal invariance implies dependence on 3n-15
independent cross ratios
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(Scattering amplitudes)

& Scattering amplitudes of gluons are functions of:
— the external momenta
— colour
— helicities:
— maximally helicity violating (- - ++...+)
— next-to-maximally helicity violating (- - - ++...+)
— and so on



( Scattering amplitudes in N=4 SYM ]

@ The progress in understanding the analytic structure of the S-matrix in
planar N=4 SYM is also due to an improved understanding of the
mathematical structures underlying the scattering amplitudes

@  n-point amplitudes are expected to be written in terms of iterated
integrals (on the space of configurations of points in 3-dim projective

3
Space Conf“(CP ) ) Golden Paulos Spradlin Volovich 2014

@ The simplest case of iterated integrals are the iterated integrals

over rational functions, i.e. the multiple polylogarithms
Goncharov 2001
Z

G(a,w;z) = /OZ dt G(w;t), G(a;z) =1n (1 — —) G(0,1;2) = —Lis(2)

t—a a

Q@ It is thought that maximally helicity violating (MHV) and next-to-MHV
(NMHYV) amplitudes can be expressed in terms of
multiple polylogarithms of uniform transcendental weight

Arkani-Hamed et al. Scattering Amplitudes and the Positive Grassmannian 2012



( Scattering amplitudes in N=4 SYM ]

MHV and NMHYV amplitudes feature maximal transcendentality,
i.e. L-loop amplitudes are expressed in terms of multiple

polylogarithms of weight 2L only

MHYV amplitudes are pure, i.e. the coefficients of the multiple
polylogarithms are (rational) numbers



(Scattering amplitudes in N=4 SYM )

Q@ 6-pt (N)MHV amplitudes are known analytically up to 5(4) loops

Duhr SmirnovVDD 2009 Dixon Drummond Henn 201 |
Goncharov Spradlin Vergu Volovich 2010 Dixon von Hippel 2014
Dixon Drummond Henn 201 | Dixon von Hippel McLeod 2015

Dixon Drummond von Hippel Pennington 2013
Dixon Drummond Duhr Pennington 2014
Caron-Huot Dixon von Hippel McLeod 2016

Q@ 7-pt MHV amplitudes are known analytically at two loops
Golden Spradlin 2014

Q@ No analytic result is known beyond 7 points.
The cluster algebra which defines the multiple polylogarithms

is infinite starting from 8 points
Golden Goncharov Spradlin Vergu Volovich 2013



Q

(" Multi-Regge limit of N=4 SYM )

In the Euclidean region (where all Mandelstam invariants are negative),
amplitudes in MRK factorise completely in terms of building blocks

which are expressed in terms of Regge poles and can be determined

to all orders through the 4-pt and 5-pt amplitudes.

Thus the remainder functions R vanish at all points Duhr Glover VDD 2008

After analytic continuation to some regions of the Minkowski space,
the amplitudes develops cuts which are described by a dispersion relation

for octet exchange, which is similar to the singlet BFKL equation in QCD
Bartels Lipatov Sabio-Vera 2008

Accordingly, 6-pt amplitudes have been thoroughly examined,
both at weak and at strong coupling

In particular, 6-pt amplitudes at weak coupling can be expressed

in terms of single-valued harmonic polylogarithms
Dixon Duhr Pennington 2012



( Regge factorisation of the n-pt amplitude )
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( Moduli space of Riemann spheres ] __________

in MRK, there is no ordering in transverse momentum,
i.e. only the n-2 transverse momenta are non-trivial

qi1 e X3

X1 e

dual conformal invariance in transverse momentum space
implies dependence on n-5 cross ratios of the transverse
momenta

aN -5 e XN_3

. = (X1 — Xiy3) (Kig2 —Xip1) _ Qipr ks i=1...n—5

(x1 — Xj41) (X402 — Xi43) Adi—1 ki1

Mo, = space of configurations of p points on the Riemann sphere

Because we can fix 3 points at 0, |, 00, its dimension is dim(#o,)= p-3

Mo,n-2 is the space of the MRK, with dim(.#on-2) = n-5

Its coordinates can be chosen to be the z/s,
i.e.the cross ratios of the transverse momenta

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016



( Iterated integrals on #n-2 ]

Q@ on Mop, the singularities are associated to degenerate configurations
when two points merge x; = Xi+|
i.e. when momentum p; becomes soft pi = 0

Q iterated integrals on .40, can be written as multiple polylogarithms
Brown 2006

* amplitudes in MRK can be written in terms of multiple polylogarithms

@ analytic structure of amplitudes is constrained by unitarity
and the optical theorem  Disc(M) = iMM?

Q massless amplitudes may have branch points when Mandelstam invariants
vanish sij = 0 or become infinite sj = o0, but branch cuts are constrained
by unitarity



( Hopf algebra and the coproduct ]

algebra is a vector space with a product i: A A 2 A H(a®b) = a-b
that is associative A A®A 2A®A DA (a°b).c =a-(b-c)

coalgebra is a vector space with a coproduct A: B> B ® B
. . e A(a,) — Z a(.l) X a,(.2)
that is coassociative B> B® B > B®B ®B A ¢

U puts together; A decomposes

a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible A(a-b) = A(a)-A(b)

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov 2002

ZAM i ZLme :

in particular, on classical polylogarithms

A(lnz)=1®Inz+hz®1

A(Liz(2)) =1®Lis(2) + Lis(2) ® 1 —In(1 — 2) @ In 2

the two entries of the coproduct are the discontinuity and the derivative

ADisc = (Disc ® id)A A0 = (id® 0)A Duhr 2012



then the coproduct of an amplitude is related to unitarity

thus, for massless amplitudes

in particular, for amplitudes in MRK

A(M) :ll’l|Xz‘—Xj’2®...

except for the soft limit p; = 0, in MRK the transverse momenta never vanish

x; —x4]* # 0 » single-valued functions

therefore, n-point amplitudes in MRK of planar N=4 SYM can be written

in terms of single-valued iterated integrals on . #on-2
Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016

for n=6, iterated integrals on # 4 are harmonic polylogarithms
thus, 6-point amplitudes in MRK of can be written in terms of

single-valued harmonic polylogarithms (SVHPL) Dixon Duhr Pennington 2012



( Harmonic polylogarithms )

@ classical polylogarithms  1.,,(z) = /z g im—1(2)
0

@  harmonic polylogarithms (HPLs)

: 1 1 1
H(a,;2) = | dt f(ast) H(iw;t L) = ) = - )= ——
(@2 = [ Ap@OH@  fCu0= . f00 =7 [ =
with {a,w} e {-1,0,1} Remiddi Vermaseren 1999

Q@  HPLs obey the differential equations

d H,(2) d H,(2)
— H, w — ) —H w —
dz "’ (2) 2 dz " (2) 11—z
subject to the constraints
1. _
H(z) =1, Hy (2) = - In" z, ;I_If(l) H, 5 (2)=0

Q@  HPLs form a shuffle algebra

H,, (2) Ho,(2) =Y H,(z)  with W the shuffle of Wi and w>

@  HPLs are multi-valued functions on the complex plane



(Single-valued polylogarithms )

@ Single-valued functions are real analytic functions on the complex plane

@ Because the discontinuities of the classical polylogarithms are known

1Ogn—1

(n—1)!

one can build combinations of classical polylogarithms
such that all branch cuts cancel on the punctured plane C/{0,1}
(Riemann sphere with punctures)

ALi,(z) = 2mi

@ An example is the Bloch-Wigner dilogarithm

Ds(z) = Im|Lis(2)] 4+ arg(1 — 2) log | 2|



(Single-valued harmonic polylogarithms)

define a function ¥ that is real-analytic and single-valued on C/{0,1}
and that has the same properties as the HPLs

it obeys the differential equations

0  L,(2) d - Lu(2)
o) =77 gl =1
subject to the constraints
L., ,
Lo(2)=1, L5 (2) = o In" |z|* ;1_% L5 (2)=0

the SVHPLs #(z) also form a shuffle algebra

L, (2)L,,(2) = Zﬁw(z) with W the shuffle of W and W

SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel Brown 2004

,C()(Z)
ﬁl (Z)

Hy(z) + Ho(2) = In |z|?

Hi(2)+ Hi(2) = —In|l + 2|

1 _ _ _ _
,Co,l(Z) = 1 [—2H1,0 + 2H1,0 + 2H0H1 — 2HOH1 + 2H0.1 — 2H071}

examples

= Lis(z) — Lig(2) + % In|z* In(1 — 2) — In(1 — 2))



( Single-valued multiple polylogarithms ]

Q@ Single-valued multiple polylogarithms (SYMPL) can be constructed through
a map that to each multiple polylogarithm associates its single-valued version

Brown 2004,2013,2015
examples of SVMPLs



( MRK in N=4 SYM )

Q In MRK, 6-pt MHV and NMHV amplitudes are known at any number of loops
Lipatov Prygarin 2010-201 |
Dixon Duhr Pennington 2012
Pennington 2012
Lipatov Prygarin Schnitzer 2012

Q Beyond 6 points, only 2-loop MHV amplitudes were known in MRK at LLA

In MRK at LLA, the 2-loop n-pt remainder function R,
can be written as a sum of 2-loop 6-pt remainder functions Rs?

Prygarin Spradlin Vergu Volovich 201 |
Bartels Kormilitzin Lipatov Prygarin 201 |
Bargheer Papathanasiou Schomerus 2015

Q In MRK at LLA, we can compute all MHV amplitudes at L loops
in terms of amplitudes with up to (L+4) points

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016

Q We showed explicitly that the MHYV amplitudes at:
® 2 loops are determined by the 2-loop 6-pt amplitudes
® 3 loops are determined by the 6- and 7-pt amplitudes through 3 loops
® 4 loops are determined by the 6-, 7-, and 8-pt amplitudes through 4 loops
® 5 loops are determined by the 6-, 7-, 8- and 9-pt amplitudes through 5 loops

Q We computed also all non-MHYV amplitudes up 8 points and 4 loops



( MRK factorisation in N=4 SYM )

Q@  For the helicities hy, ..., hn.4 define the ratio | ex
ki1
Rin o = [P et i
1yeees PN —4 BDS 2
AR (=4 4 ) IMRK, LLA X1 o
kz\'—o
@ factorisation in MRK at LLA an-s . Xn_3
kn_4
'Rhl’,_,,hN_él (7’1,21,...,7']\[_5,2’]\[_5) aN-4 o XN_2

o0 N-5 . '\ . e = ——
. i 1 7 11,0t N —
SO SED SRR O 1 F R P .

. : . : (X
1 =2 11+...+iny_s5=1—1 k=1

with Tk = function of cross ratios, and with coefficients -

N—-5 o0 ng/2 p4oo
L1yt N — (_1)N de’ 1V
o= P T S B Bl

k=1 npy=—00 -

N—5
xxhl(ul,nl) H C’hj(uj_l,nj_1,7/j,nj) X_hN *(VN—5,PN—5)

where:

the X’s are the 2 impact factors,

the C’s are the N-6 central-emission vertices

the E’s are the N-5 BFKL-like eigenvalues for octet exchange




( Convolutions )

we use the Fouries-Mellin (FM) transform

FEwm) = 3 (£)" /+mg—;|z|2i”F(V,n)

n=—o00 —0o0

which maps products into convolutions

FIF -G =F|F|«F|Gl=(f*xg)(z) = Ly e (w) g(i)

w ) wl?

we compute the integral through the residue formula
T2 £(2) = Res.eo F Res.—_,, F
[ 5@ = Reso F(2) = 3 Res. F(2) Schnetz 2013

where F is the antiholomorphic primitive of f 0, F = f



( Convolutions and factorization )

Q@ through the FM transform of the BFKL eigenvalue
E(z) = F [Eun]
we can write the recursion

21, znes) = E(z) * gl N (2, 2vs)

which implies that we can drop all the propagators without a log

(00,101 ,05-0,iay 0,-,0ia, ,0,..-,0) (g viag s msiay, )
g++ (1017'°°7pN_5):g+—|— (pia17pia,27"'7107:ak)

example for N=7, with h; = h;

which connects amplitudes with a different number of legs



in fact, if all indices are zero except for one

0,...,0,i4,0,...,0 »
gi_,,Jr ' )(/01, ., PN—5) = 9$+)(,0a)

which implies that

2 1
RY .= > ngli(p)
1<i<N—5
with
1 1 1
QS:J)F(,Ol) = —190,1 (p1) — Zgl,O (p1) + 591,1 (p1)

which shows, as previously stated, that in MRK at LLA, the 2-loop n-pt remainder function R,?)
can be written as a sum of 2-loop 6-pt amplitudes, in terms of SVHPLs



At 3 loops, the n-pt remainder function R,®) can be written
as a sum of 3-loop 6-pt and 7-pt amplitudes

3 1 9 1,1
RY (=2 > Wnglle)+ Y lmlmgli(e )

1<i<N—5 1<i<j<N-5

with

gfi(pl) = — %Q0,0,l (,01) — igo,l,o (pl) + %go,l,l (Pl) — %gl,o,o (,01)
+ 391,0,1 (p1) + %gm,o (p1) — G111 (p1)

1 1 1 1
g(ffi(m,pz) = _ggo,l,pQ (p1) — ggo,pg,l (p1) + §g1,1,p2 (p1) — §Q1,p2,0 (p1)

1 1 1 !
= 29210 (p1) + 590011 (p1) + 7911 (P1) = 761 (p2) G (1)

- %91 (p1) Go,0 (p2) — égo (p2) Go.1 (p1) + %gl (p2) Go,1 (p1) — égm (p1) Go,1 (p2)
+ 261 (p2) G (p1) — G0 (p2) G0 (p1) + 261 (p2) G0 (p1) + £Go (p2) G (o)
- %gl (p2) Gi1 (p1) — %gl (p1) Gi1 (p2) + égm (p1) G1,1 (p2) + %QO (p2) G1,p2 (1)
- %Ql (p2) Gps,0 (1) — %Ql (2) Gps.1 (p1)

Note that R,®) cannot be written only in terms of SVHPLs, but SYMPLs are necessary



At 4 loops, the n-pt remainder function R, can be written
as a sum of 4-loop 6-pt, 7-pt and 8-pt amplitudes,

and in general, we can compute all MHV amplitudes

at L loops in terms of amplitudes with up to (L+4) points

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016

We displayed that explicitly up to 5 loops, showing that the n-pt remainder function R,®)
can be written as a sum of 5-loop 6-, 7-, 8- and 9-pt amplitudes

Note also that because the convolutions with pure functions are pure,
so are the MHV amplitudes

MRK factorisation works also for non-MHV amplitudes,
however at each loop the number of building blocks is infinite,
and the helicity flips make the non-MHV amplitudes not pure

We constructed explicitly all non-MHV amplitudes through 4 loop and 8 points



( Mueller-Navelet jets and SVHPLs )

& The singlet LL BFKL ladder in QCD, and thus the dijet cross section

in the high-energy

imit, can also be expressed in terms of SVHPLs,

i.e.in terms of single-valued iterated integrals on . #0.4

Dixon Duhr Pennington VDD 2013

& Mueller & Navelet evaluated analytically the inclusive dijet cross section
up to 5 loops.We evaluated it analytically up to |3 loops

&  Also, we could evaluate analytically the dijet cross section differential
in the jet transverse energies or the azimuthal angle between the jets

(up to 6 loops)



(BFKL Green’s function and single-valued functions]

Q@  use complex transverse momentum Gk = qj; + iqy
and a complex variable =8
q2

the Green's function can be expanded into a power series in 7, =@,y

1 1 =,
5 (@1, q2,mu) = 55(2)(611 —q2) + o T & Z k—ﬁb ik (2)

2 k=1
where the coefficient functions f« are given by the Fourier-Mellin transform

+o0 —+ o0
LL/N _ kol E)”/Q/ av ok
k (Z) =F [Xyn} - Z (2 ) |Z‘ Xvn

n—=—oo —o0

the fx have a unique, well-defined value for every ratio of the magnitudes
of the two jet transverse momenta and angle between them.
So, they are real-analytic functions of w

»
| T
-



(generating functional of SVHPLs )

to all orders in N the BFKL Green's function can be written
in terms of a generating functional of SVHPLs Dixon Duhr Pennington VDD 2013

writing the coefficient function fi as

LL E
— F
K (2) 27 |1 — z|? k()

we obtain that the first few functions Fi are

note that fi has weight k-1



(Azimuthal angle distribution )

this allows us to write the azimuthal angle distribution as

dogy 7T(CAOés)Q [ (6 _|_§: af (/5.7.7 k
3j

do;; 2B} —

where the contribution of the k™ loop is

> d|wl Im Ag(d;;)
JJ
ax(Pjj) = / — fr(w,w*) = —
0 |w| sin ¢
with
1
A1(¢jj) - _§H07
Aa(¢j) = Hip,
2
As(pj) = gHo 0,0 2H110+ CQHO —im (o,
4 4 10 4 ,
Ay(pj5) = —§H0,0,1,0 — Hp 1,00 — ng,o,o,o +4H1 11,0 — C2| 2Ho1 + §H1,0 + §C3 Hy +am (2C2H1 — 2C3) :
46 8 8
As(pj;) = 15]‘1’00000ﬂL 3H00110+2H01010+2H01100+ 3H10010+2H10100
8 33 20
+ §H1,1,0,0,0 —8Hi 11,10 — C2< = Hyo0—4Ho11 —4H101 — §H1 1 o)

8 217 10 10
— (3 (2H0,1 + §H1,0) —C4H0 +am [C2< 3 Hyo—4H; 1) + 4¢3 Hy — EQL]

Dixon Duhr Pennington VDD 2013

where H;; . Hi,j,...(6_2i¢jj>



(Transverse momentum distribution)

~ 2
Q 4099 _ ma0s) §(pT. —p3.) + : b(p;n)
2 2 2 2 1 2 9
dpy, dps | 2p1. D5, 2T pi p%J_
2T P &
where = |w| blpsn) = 7> > Bilp)n
—p
k=1
with
Bl(p) =1,
1
Ba(p) = —5 Ho — 2Hy,
1
Bs(p) = g Hoo +2Ho 1 +Hyo+4H 1,
1 4 1 1
By(p) = —ﬂﬂo,o,o —3Ho01 — Ho10—4Hp11 — §H1,0,0 —4Hy101 —2H1 10— 8H1 11 + 3 3,
Bs(p) = — 2 Ho o0 + 2 Hoor0 + SHooi + 2 Ho o + 4H
5(P) = TogHo0.00 + 5Ho001 + 5Ho01.0 + 5Ho011 + 5Ho00 0,1,0,1
1 8
+2Hp 11,0+ 8Ho 1,11+ EHLO,O,O + §H1,0,0,1 +2H1010+8H1,0,1,1
2 1 2
+ §H1,1,0,0 +8H1 1,01 +4H1 110+ 16H1 1,11 + (3 _EHO — §H1 ,

Hz-,j,__,(pQ) Dixon Duhr Pennington VDD 2013

where H; ;. .



(Mueller—NaveIet dijet cross section reloaded]

. : : A m(Caas T k
the MN dijet cross section is 099 = — 5 p2 Zfo,kn
L k=0

the first 5 loops were computed by Mueller-Navelet. Dixon Duhr Pennington VDD 2013
We computed it through the |3 loops

3737

13,
foe = C3 + 120 Co »
116 3983
for ———C3C4——C2C5—mC7,
37 369 50606057
fos ———C53+—C2C3+—C5C3 m@,
139 15517 3533 557 5215361
foo = ~ 60 G- —— el — o G5 — Cz Cr — 60480 Co
2488 94721 1948 2608 12099 1335931 ., 25669936301
Joro = _4725 €382 ~ 517680 ¢7* T 105 43 105 26+ 50 TGt a0 St 63502000
L 8 2872 13211 661411
| 242776937 bt 605321 o — 2583643 o 28702763 I
725760 1 3024 00T 16200 %7 340200 “2°9°
74711 13793 3965011 33356851
fo12 = 162000C53C4 7560 —— (6,411 + 703300 G7,3C2 — MCIQ@
952163 620477 8101339 342869
+ 181220 @ T 70080 6% T 73600 4GB T grgp 267G
| 101571047 b ot 71425871 G+ 904497401571619 ¢ +484414571 ”
680400 2> 1587600 *2°° T 620606448000 2 2721600 °°7’
4513 27248 97003 13411
f0,13 — @ C5 3 C5 23625 C5 3,3 C2 - 235200 CS 5, 3 75600 C’? 3 C3
7997743 187318 125056 17411413
+ 12700800 <% ~ 14175 Ga G5 a5 26 G~ 302400 G G3
5724191 e 1874972477 o s — 2418071698069 ¢
100800 °° > 2376000 °'°>° 2235340800 °'°
2379684877 i e — 9207666465053 o o 1770762319 s o 999717224973 »
6048000 >'>2 7 523908000 °°7 2494800 > 628689600 **°



Regge limit
in the
next-to-leading logarithmic
approximation




( BFKL theory )

the BFKL equation describes the evolution of the gluon propagator
in 2-dim transverse momentum space

o fulara) = 30 — ) + [ ERK (k) Lk )

the solution is given in terms of eigenfunctions ®y, and an eigenvalue Wyn

+o0 —|—oo
(I)Vn (I);I;n
olag) = ) / Vo Gunl@) 2 (a2)

nN=—oo

as a function of rapidity, the solution is

flq1, 92,y Ji.f /+OO dv ®,,(q1) ®* (qo) ¥
we expand kernel K, eigenfunctions ®,, and eigenvalue Wy, in powers of @, = %as(;ﬁ)
K(q1,42) MZO‘ KU)(Ql q2) = OzMZa w(l) Z q)(l)
[=0
At LLA
wi) = — ) (|n| +1 + iy) — ) (|n|2+ 1 w) 50 (q) = 2i (q2)"1/2+v gind
s

note that in N=4 SYM the eigenfunctions and the eigenvalue are the same



(BFKL eigenvalue at NLLAD

@ AtNLLA in QCD and in N=4 SYM, the eigenvalue is Fadin Lipatov 1998
1 1 1 ) 1 3 Kotikov Lipatov 2000, 2002
W) = 5 00+ 5 o5+ 05 + v X om — Boxin 3G Chirilli Kovchegov 2013

Duhr Marzucca Verbeek VDD 2017
with one-loop beta function and two-loop cusp anomalous dimension

g 12N @ 1(64 10N;\ G
73 7 3N, K =3 \9 " 9N, 2
and with

51(/%2 = agXVn Xvn = wz(/%)

51(/%”2 — —2@(71, 7) T 2(1)(77’7 1 — 7)

L(: 4+ i)l —av) 1 1
(3) — _ —\2 2 - DAY
=T e (5 e (5 )

" [5”0 (3 ! (1 ’ z% e 23%(<11_+72>v>> ~ o ((1 § xf) e (;w_(? : 27))]

®(n,Y) is a sum over linear combinations of Y functions
and Y is a shorthand Yy = [/2 + iV

In blue we labeled the terms which occur only in QCD,
in red the ones which occur in QCD and in N=4 SYM



@

(BFKL eigenfunctions at NLLAD

: : . . Chirilli Kovchegov 2013
Q At NLLA in QCD, the eigenfunction is Duhr Marzucea Verbeek VDD 2017
2 2
®,,(q) = 29 (q) |1 —@1(1 o,P2 4 il p A ) oG
@ =20 [1+5, 0w (ap e im D P ) 4 o)
At NLLA, the expansion of the BFKL ladder is
flar, a2, y) = " (a1, q2,m0) + @ [V (@1, q2,m0) + - - Mu = 0uy

fNIE contains the NLO corrections to the eigenvalue and to the eigenfunctions,
however if we use the scale of the strong coupling to be the geometric mean
of the transverse momenta at the ends of the ladder, then we can use the LO
eigenfunctions instead of the NLO ones

+00 + 00
f(q1,92,y Z / dV(I)(O) )(I),(,?l)*(%)eyO‘S(SO)[@(QJras(So)wim+”.

Duhr Marzucca Verbeek VDD 2017

with 1% =s0 =1/} 43



(Fourier—MeIIin transform)

Q At NLLA, the BFKL ladder is

e _
Y (01, q2,ms0) = Z =% it (2) Nsy = Ts(50) Y
q1q2 k=1

with coefficients given by the Fourier-Mellin transform

—l_OO o0
NLL (1) _ Z Z\/2 [T dy 2iv (1) (0)
k <Z) F|w vn Xz/n — % ) ’Z| vn Xyn Xvn — Wyp

using the explicit form of the eigenvalue

L s 2) (3 442\ 1o o2 3
Won 4 51/71 + — 4 51/77, —|—4 51/7@ K Xvn 860Xyn —|_2C3

the coefficients can be written as
1 1 1 1 3
FHE ) = 10 @) 1 C0 () 47 00 () i) FE) = g Bo il (2) 45 G S (2)
with C(z) = ]'—{5(7’) Xon }

the weight of Nt is

weight(Nth)= & k 0<w<k k-2<w<k k-1 k



(SV functions]

C,il)(z) are SVHPLs of uniform weight k with singularities at z=0 and z=|

C,i?’)(z) are MPLs of type G(ai,...,an;|2|) with a € {—i,0,i}
they are SV functions of z because they have no branch cut on the positive real axis,
and have weight 0 < w < k

For C\”(z) one needs Schnetz’ generalised SYMPLs with singularities at
az+ [

Z = ,
vZ+90

Schnetz 2016

a,3,7,0 € C

then one can show that (?)(z) are Schnetz’ generalised SVMPLs

G(ai,...,an;2)  with singularities at a; € {-1,0,1,—-1/z}
Duhr Marzucca Verbeek VDD 2017

In moment space, the maximal weight of the BFKL eigenvalue and of
the anomalous dimensions of the leading twist operators which control
the Bjorken scaling violations in QCD is the same as the corresponding

quantities in N=4 SYM Kotikov Lipatov 2000, 2002
Kotikov Lipatov Velizhanin 2003

Interestingly, in transverse momentum space at NLLA, the maximal weight

of the BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM
Duhr Marzucca Verbeek VDD 2017



(BFKL ladder in a generic SU(N.) gauge theory)

Q one can consider the BFKL eigenvalue at NLLA in a SU(N.) gauge theory
with scalar or fermionic matter in arbitrary representations

1 1 1 ~  ~ 3 L 1 S
wl(/%’L) — 151(/}1) + 1531) + 1591) (Nf> NS) T 5(3 + 7<2) (nfvns) Xvn — gﬁo(nfans) X12/n
Kotikov Lipatov 2000
11 2n Ng )= =\ _ 1 /64 107y 4ng (o
3 3N, GN. V) =0\ g T 9N, ToN,) T 2

with  By(7is, 7s) =

) ) 1
ip=Y niTr  7s=>» nilTg Te(TSTh) = Tg 5 Tp = 5
R R

is(f;) = number of scalars (Weyl fermions) in the representation R

650 (N, No) = 05 (N, No) + 6,57 (N, N,)

~

. ]. R
Wlth NxzizR:nxTR(2CR_NC)7 CU:f,S

Q Necessary and sufficient conditions for a SU(N.) gauge theory to have a BFKL ladder

of maximal WGIght are. Duhr Marzucca Verbeek VDD 2017

— the one-loop beta function must vanish
— the two-loop cusp AD must be proportional to G,
— §(32) must vanish = 2N, = N2 + N

=== [here is no theory whose BFKL ladder has uniform maximal weight which agrees

with the maximal weight terms of QCD Duhr Marzucea Verbeek VDD 2017



Matter in the fundamental and in the adjoint

We solve the conditions above for matter in the fundamental F and in the adjoint A

representations. Ve obtain:
Zn?:nF 271‘9,?:2—%77/84

S

which describes the spectrum of a gauge theory with N supersymmetries
and n" = n{ chiral multiplets in F and n* = n/* - N chiral multiplets in A

There are four solutions to those conditions

N |4 2 1 1
na | 0 0
ng | 0 4N, O6N. 2N, Duhr Marzucca Verbeek VDD 2017

— the first is N=4 SYM
— the second is N=2 superconformal QCD with Nr= 2N, hypermultiplets
— the third is N=1 superconf. QCD

because the one-loop beta function is fixed by matter loops in gluon self-energies,
we are only sensitive to the matter content of a theory, and not to its details
(like scalar potential or Yukawa couplings)



O ©

(Conclusions at LLA]

n-point amplitudes in the LLA of the Multi-Regge limit of N=4 SYM can

be fully expressed in terms of single-valued iterated integrals on 4o n-2
i.e.in terms of single-valued multiple polylogarithms

We showed that one can compute all MHV amplitudes at L loops
in terms of amplitudes with up to (L+4) points

We displayed that explicitly up to 5 loops, showing that
the n-pt remainder function R,®) can be written as a sum
of 5-loop 6-, 7-, 8- and 9-pt amplitudes

We constructed explicitly all non-MHV amplitudes through
4 loop and 8 points

The singlet BFKL ladder, and thus the dijet cross section in the LLA
of the high-energy limit of QCD, can also be expressed in terms of

of single-valued iterated integrals on - # 4, i.e.in terms of SVHPLs
We computed the Mueller-Navelet dijet cross section through 13 loops

We expect that the n-jet cross section in the LLA of the high-energy
limit of QCD can be written in terms of single-valued iterated

integrals on #on+2



(Conclusions at NLLA]

The singlet BFKL ladder at NLLA in QCD and in N=4 SYM can
also be expressed in terms of SVMPLs, but generalised to
non-constant values of the roots

In transverse momentum space at NLLA, the maximal weight of the
BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM

There is no SU(N.) gauge theory whose BFKL ladder has uniform
maximal weight which agrees with the maximal weight terms of QCD

We found four theories with matter in the fundamental and in the adjoint
representations, whose BFKL ladder has uniform maximal weight



