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At the LHC, particles are produced through
the head-on collisions of protons, and in 
particular through the collisions of quarks 
and gluons within the protons

The probability of a collision event is 
computed through the cross section,
which is given as an integral of (squared) 
scattering amplitudes over the phase 
space of the produced particles

The scattering amplitudes are
fundamental objects of particle physics

The scattering amplitudes are given as
a power series (loop expansion) in the 
strong and/or electroweak couplings



Scattering amplitudes

The scattering amplitudes are given as a loop-momentum 
expansion in the strong and/or electroweak couplings

The more terms we know in the loop expansion,
the more precisely we can compute the cross section

As a matter of fact, we know any amplitude of interest 
at one loop, several (2 → 2) amplitudes at two loops, 
just a couple (2 → 1) at three loops, and nothing 
beyond that



What outcome do we expect from
the loop expansion of an amplitude?

From renormalisability and the infrared 
structure of the amplitude, we expect that 
the divergent parts are logarithmic functions 
of the external momenta

But, except for unitarity, we have little guidance 
for the finite parts.
Heuristically, we know that:
— at one loop, logarithmic and dilogarithmic 
functions of the external momenta occur
— beyond one loop, higher polylogarithmic
functions appear and elliptic functions may appear



In the last few years, a lot of progress has been made 
in understanding the analytic structure of multi-loop 
amplitudes, in particular on how the polylogarithmic
functions appear at any loop level

In particular, a lot of progress has been made:
— in N=4 Super Yang-Mills (SYM)
— in the Regge limit of QCD
— in the Regge limit of N=4 SYM



One of the most remarkable discoveries in elementary 
particle physics has been that of the existence of the 
complex plane …

incipit
The analytic S-matrix

Eden Landshoff Olive Polkinghorne 1966



Regge limit
in the

leading logarithmic approximation



In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

Regge limit of QCD

For a 4-gluon tree amplitude, we obtain
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in the Regge limit, the amplitude is invariant under s ↔ u exchange.

To NLL accuracy,  the amplitude is given by Fadin Lipatov 1993
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Regge limit of the gluon-gluon amplitude

strip colour off & expand at one loop

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, ε, starting at 1/ε2

perform the Regge limit of the quark-quark amplitude 
→ get one-loop quark impact factor

if factorisation holds, one can obtain the one-loop quark-gluon amplitude 
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does
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Balitski Fadin Kuraev Lipatov

BFKL is a resummation of multiple gluon radiation
out of the gluon exchanged in the t channel

the resummation yields an integral (BFKL) equation for the evolution 
of the gluon propagator in 2-dim transverse momentum space

the Leading Logarithmic (BFKL 1976-77) and 
Next-to-Leading Logarithmic (Fadin-Lipatov 1998) 
contributions in log(s/|t|) of the radiative corrections to 
the gluon propagator in the t channel are resummed to 
all orders in αs

the BFKL equation is obtained in the limit of strong rapidity ordering
of the emitted gluons, with no ordering in transverse momentum - 
multi-Regge kinematics (MRK)

the solution is a Green’s function of the momenta flowing in and out 
of the gluon ladder exchanged in the t channel



Mueller-Navelet jets

pa = xaPA pb = xbPB

Dijet production cross section with two tagging 
jets in the forward and backward directions

incoming parton momenta

S:  hadron centre-of-mass energy

s = xaxbS:  parton centre-of-mass energy

ETj:  jet transverse energies

�y = |yj1 � yj2 | ' log

s

ETj1ETj2

is the rapidity interval between the tagging jets

gluon radiation is considered in MRK and 
resummed through the LL BFKL equation

Mueller-Navelet evaluated the inclusive dijet cross section up to 5 loops

Mueller Navelet 1987
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Mueller-Navelet dijet cross section

azimuthal angle distribution (ɸjj = ɸ-π)
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N=4 Super Yang Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)



use N=4 SYM as a computational lab:

to learn techniques and tools to be used in Standard Model
calculations 

to learn about the bases of special functions which may occur
in the scattering processes 

amplitudes in N=4 SYM are much simpler
than in Standard Model processes 

N=4 Super Yang Mills



N=4 Super Yang Mills

In the last years, a huge progress has been made in understanding 
the analytic structure of the S-matrix of N=4 SYM 

Besides the ordinary conformal symmetry,
in the planar limit the S-matrix exhibits a dual conformal symmetry

Accordingly, the analytic structure of the scattering amplitudes is
highly constraint

Drummond Henn Smirnov Sokatchev 2006

4- and 5-point amplitudes are fixed to all loops by the symmetries
in terms of the one-loop amplitudes and the cusp anomalous dimension

Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005
Drummond Henn Korchemsky Sokatchev 2007

Beyond 5 points, the finite part of the amplitudes is given in terms of a 
remainder function R. The symmetries only fix the variables of R (some 
conformally invariant cross ratios) but not the analytic dependence of R 
on them



for n = 6, the conformally invariant cross ratios are
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Scattering amplitudes

Scattering amplitudes of gluons are functions of:
— the external momenta
— colour
— helicities:
     — maximally helicity violating (- - ++…+)
     — next-to-maximally helicity violating (- - - ++…+)
     — and so on



Scattering amplitudes in N=4 SYM

The progress in understanding the analytic structure of the S-matrix in
planar N=4 SYM is also due to an improved understanding of the
mathematical structures underlying the scattering amplitudes

n-point amplitudes are expected to be written in terms of iterated 
integrals (on the space of configurations of points in 3-dim projective 
space Confn(CP3) )

The simplest case of iterated integrals are the iterated integrals
over rational functions, i.e. the multiple polylogarithms
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Golden Paulos Spradlin Volovich 2014

It is thought that maximally helicity violating (MHV) and next-to-MHV
(NMHV) amplitudes can be expressed in terms of 
multiple polylogarithms of uniform transcendental weight

Arkani-Hamed et al. Scattering Amplitudes and the Positive Grassmannian 2012

G(0, 1; z) = �Li2(z)



Scattering amplitudes in N=4 SYM

MHV and NMHV amplitudes feature maximal transcendentality, 
i.e. L-loop amplitudes are expressed in terms of multiple 
polylogarithms of weight 2L only

MHV amplitudes are pure, i.e. the coefficients of the multiple 
polylogarithms are (rational) numbers



6-pt (N)MHV amplitudes are known analytically up to 5(4) loops

Duhr Smirnov VDD 2009
Goncharov Spradlin Vergu Volovich 2010
Dixon Drummond Henn 2011
Dixon Drummond von Hippel Pennington 2013
Dixon Drummond Duhr Pennington 2014
Caron-Huot Dixon von Hippel McLeod 2016

Dixon Drummond Henn 2011
Dixon von Hippel 2014
Dixon von Hippel McLeod 2015

7-pt MHV amplitudes are known analytically at two loops
Golden Spradlin 2014

No analytic result is known beyond 7 points.
The cluster algebra which defines the multiple polylogarithms
is infinite starting from 8 points

Scattering amplitudes in N=4 SYM

Golden Goncharov Spradlin Vergu Volovich 2013



Multi-Regge limit of N=4 SYM

In the Euclidean region (where all Mandelstam invariants are negative),
amplitudes in MRK factorise completely in terms of building blocks
which are expressed in terms of Regge poles and can be determined
to all orders through the 4-pt and 5-pt amplitudes. 
Thus the remainder functions R vanish at all points Duhr Glover VDD 2008

After analytic continuation to some regions of the Minkowski space,
the amplitudes develops cuts which are described by a dispersion relation
for octet exchange, which is similar to the singlet BFKL equation in QCD

Bartels Lipatov Sabio-Vera 2008

Accordingly, 6-pt amplitudes have been thoroughly examined,
both at weak and at strong coupling

In particular, 6-pt amplitudes at weak coupling can be expressed 
in terms of single-valued harmonic polylogarithms

Dixon Duhr Pennington 2012



Regge factorisation of the n-pt amplitude
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n-pt amplitude in the multi-Regge limit

s⇥ s1, s2, . . . , sn�3 ⇥ �t1,�t2 . . . ,�tn�3

the l-loop n-pt amplitude can be assembled
using the l-loop trajectories, vertices and
coefficient functions, determined through the
l-loop 4-pt and 5-pt amplitudes

y3 ⇥ y4 ⇥ · · ·⇥ yn; |p3�| ⇤ |p4�|... ⇤ |pn�|

in Euclidean space, 
no violation of the BDS ansatz can
be found in the multi-Regge limit

Duhr Glover  VDD 2008



in MRK, there is no ordering in transverse momentum,
i.e. only the n-2 transverse momenta are non-trivial

dual conformal invariance in transverse momentum space
implies dependence on n-5 cross ratios of the transverse 
momenta 

zi =
(x1 � xi+3) (xi+2 � xi+1)

(x1 � xi+1) (xi+2 � xi+3)
= � qi+1 ki

qi�1 ki+1

i = 1, . . . , n� 5

ℳ0,p = space of configurations of p points on the Riemann sphere

Moduli space of Riemann spheres

ℳ0,n-2 is the space of the MRK, with dim(ℳ0,n-2) = n-5

Because we can fix 3 points at 0, 1, ∞, its dimension is dim(ℳ0,p)= p-3

Its coordinates can be chosen to be the zi’s,
i.e. the cross ratios of the transverse momenta

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016



Iterated integrals on ℳ0,n-2

on ℳ0,n-2,  the singularities are associated to degenerate configurations
when two points merge xi → xi+1

i.e. when momentum pi becomes soft  pi → 0

iterated integrals on ℳ0,p can be written as multiple polylogarithms 
Brown 2006

amplitudes in MRK can be written in terms of multiple polylogarithms

massless amplitudes may have branch points when Mandelstam invariants
vanish sij → 0 or become infinite sij → ∞, but branch cuts are constrained 
by unitarity

analytic structure of amplitudes is constrained by unitarity
and the optical theorem Disc(M) = iMM†



Goncharov 2002

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

μ puts together; Δ decomposes

coalgebra is a vector space with a coproduct  Δ:  B → B ⊗ B
that is coassociative  B → B ⊗ B → B ⊗ B ⊗ B �(a) =

X

i

a(1)i ⌦ a(2)i

Duhr 2012

a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

multiple polylogarithms form a Hopf algebra with a coproduct
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Hopf algebra and the coproduct

the two entries of the coproduct are the discontinuity and the derivative
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then the coproduct of an amplitude is related to unitarity

thus, for massless amplitudes

�(M) = ln(sij)⌦ . . .

in particular, for amplitudes in MRK

�(M) = ln |xi � xj |2 ⌦ . . .

except for the soft limit pi → 0, in MRK the transverse momenta never vanish

|xi � xj |2 6= 0 single-valued functions

therefore, n-point amplitudes in MRK of planar N=4 SYM can be written
in terms of single-valued iterated integrals on ℳ0,n-2

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016

for n=6, iterated integrals on ℳ0,4 are harmonic polylogarithms
thus, 6-point amplitudes in MRK of can be written in terms of
single-valued harmonic polylogarithms (SVHPL) Dixon Duhr Pennington 2012



Harmonic polylogarithms

classical polylogarithms Lim(z) =

Z z

0
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harmonic polylogarithms (HPLs)
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HPLs are multi-valued functions on the complex plane



Single-valued polylogarithms

Single-valued functions are real analytic functions on the complex plane

Because the discontinuities of the classical polylogarithms are known

�Lin(z) = 2⇡i
log

n�1 z

(n� 1)!

one can build combinations of classical polylogarithms
such that all branch cuts cancel on the punctured plane C/{0,1}
(Riemann sphere with punctures)

An example is the Bloch-Wigner dilogarithm

D2(z) = Im[Li2(z)] + arg(1� z) log |z|



Single-valued harmonic polylogarithms

define a function ℒ that is real-analytic and single-valued on
and that has the same properties as the HPLs 

C/{0, 1}

it obeys the differential equations
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SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel
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Single-valued multiple polylogarithms

Single-valued multiple polylogarithms (SVMPL) can be constructed through
a map that to each multiple polylogarithm associates its single-valued version

 Brown 2004, 2013, 2015
examples of SVMPLs
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Ga(z) = Ga(z) +Gā(z̄) = ln
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MRK in N=4 SYM

Beyond 6 points, only 2-loop MHV amplitudes were known in MRK at LLA

In MRK at LLA, the 2-loop n-pt remainder function Rn
(2) 

can be written as a sum of 2-loop 6-pt remainder functions R6
(2)

Prygarin Spradlin Vergu Volovich 2011
Bartels Kormilitzin Lipatov Prygarin 2011
Bargheer Papathanasiou Schomerus 2015

In MRK at LLA, we can compute all MHV amplitudes at L loops
in terms of amplitudes with up to (L+4) points

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016

We showed explicitly that the MHV amplitudes at:
• 2 loops are determined by the 2-loop 6-pt amplitudes
• 3 loops are determined by the 6- and 7-pt amplitudes through 3 loops
• 4 loops are determined by the 6-, 7-, and 8-pt amplitudes through 4 loops
• 5 loops are determined by the 6-, 7-, 8- and 9-pt amplitudes through 5 loops

We computed also all non-MHV amplitudes up 8 points and 4 loops

In MRK, 6-pt MHV and NMHV amplitudes are known at any number of loops
Lipatov Prygarin 2010-2011
Dixon Duhr Pennington 2012
Pennington 2012
Lipatov Prygarin Schnitzer 2012



MRK factorisation in N=4 SYM

For the helicities h1, …, hN-4 define the ratio

factorisation in MRK at LLA

with 𝛕k = function of cross ratios, and with coefficients
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Convolutions

we use the Fouries-Mellin (FM) transform
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through the FM transform of the BFKL eigenvalue

E(z) = F [E⌫n]

we can write the recursion

g(i1,...,ik+1,...,iN�5)
+...+ (z1, . . . , zN�5) = E(zk) ⇤ g(i1,...,iN�5)

+...+ (z1, . . . , zN�5)

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak

,0,...,0)
+...+ (⇢1, . . . , ⇢N�5) = g

(ia1 ,ia2 ,...,iak
)

+...+ (⇢ia1
, ⇢ia2

, . . . , ⇢iak
)

which implies that we can drop all the propagators without a log

i1

0
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2
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5

-

-

+

+
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�h1

Ch2
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�h3

example for N=7, with h1 = h2

which connects amplitudes with a different number of legs
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+
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�h1

6 h3

�h3
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Convolutions and factorization 



in fact, if all indices are zero except for one

g(0,...,0,ia,0,...,0)+...+ (⇢1, . . . , ⇢N�5) = g(ia)++ (⇢a)

which implies that 

which shows, as previously stated, that in MRK at LLA, the 2-loop n-pt remainder function Rn
(2) 

can be written as a sum of 2-loop 6-pt amplitudes, in terms of SVHPLs

R(2)
+...+ =

X

1iN�5

ln ⌧i g
(1)
++(⇢i)

with

g(1)++(⇢1) = �1

4
G0,1 (⇢1)�

1

4
G1,0 (⇢1) +

1

2
G1,1 (⇢1)



At 3 loops, the n-pt remainder function Rn
(3) can be written

as a sum of 3-loop 6-pt and 7-pt amplitudes

R(3)
+...+ =

1

2

X

1iN�5

ln2 ⌧i g
(2)
++(⇢i) +

X

1i<jN�5

ln ⌧i ln ⌧j g
(1,1)
+++(⇢i, ⇢j)
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g(2)++(⇢1) =� 1

8
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4
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2
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1

8
G1,0,0 (⇢1)

+
1

2
G1,0,1 (⇢1) +

1

2
G1,1,0 (⇢1)� G1,1,1 (⇢1)

g(1,1)+++(⇢1, ⇢2) = �1

8
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1
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� 1

8
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1

8
G⇢2,1,1 (⇢1) +

1

4
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1

4
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+
1

8
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8
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+
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8
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8
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1

8
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1

8
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� 1

8
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1

8
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1

8
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8
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8
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Note that Rn
(3) cannot be written only in terms of SVHPLs, but SVMPLs are necessary



At 4 loops, the n-pt remainder function Rn
(4) can be written

as a sum of 4-loop 6-pt, 7-pt and 8-pt amplitudes,
and in general, we can compute all MHV amplitudes 
at L loops in terms of amplitudes with up to (L+4) points

Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek VDD 2016

Note also that because the convolutions with pure functions are pure,
so are the MHV amplitudes

MRK factorisation works also for non-MHV amplitudes,
however at each loop the number of building blocks is infinite,
and the helicity flips make the non-MHV  amplitudes not pure

We displayed that explicitly up to 5 loops, showing that the n-pt remainder function Rn
(5) 

can be written as a sum of 5-loop 6-, 7-, 8- and 9-pt amplitudes

We constructed explicitly all non-MHV amplitudes through 4 loop and 8 points



Mueller-Navelet jets and SVHPLs

Mueller & Navelet  evaluated analytically the inclusive dijet cross section 
up to 5 loops. We evaluated it analytically up to 13 loops

The singlet LL BFKL ladder in QCD, and thus the dijet cross section
in the high-energy limit, can also be expressed in terms of SVHPLs, 
i.e. in terms of single-valued iterated integrals on ℳ0,4

Dixon Duhr Pennington VDD 2013

Also, we could evaluate analytically the dijet cross section differential
in the jet transverse energies or the azimuthal angle between the jets
(up to 6 loops)



use complex transverse momentum

and a complex variable

the Green's function can be expanded into a power series in 

where the coefficient functions fk are given by the Fourier-Mellin transform

the fk have a unique, well-defined value for every ratio of the magnitudes 
of the two jet transverse momenta and angle between them.
So, they are real-analytic functions of w

BFKL Green’s function and single-valued functions

q̃
k

⌘ qx
k

+ iqy
k

z ⌘ q̃1
q̃2

⌘µ = ↵µ y
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2
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q21 q
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k (z)

fLL
k (z) = F
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+1X
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⇣z
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⌘n/2
Z +1

�1

d⌫
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|z|2i⌫ �k
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generating functional of SVHPLs

to all orders in η the BFKL Green's function can be written 
in terms of a generating functional of SVHPLs Dixon Duhr Pennington VDD 2013

writing the coefficient function fk as

we obtain that the first few functions Fk are

note that fk has weight k-1

fLL
k (z) =

|z|
2⇡ |1� z|2 Fk(z)

F1(z) = 1 ,

F2(z) = 2G1(z)� G0(z) ,

F3(z) = 6G1,1(z)� 3G0,1(z)� 3G1,0(z) + G0,0,0(z) ,

F4(z) = 24G1,1,1(z) + 4G0,0,1(z) + 6G0,1,0(z)� 12G0,1,1(z) + 4G1,0,0(z)

� 12G1,0,1(z)� 12G1,1,0(z)� G0,0,0(z) + 8 ⇣3



this allows us to write the azimuthal angle distribution as

d�̂gg

d�jj
=

⇡(CA↵s)2

2E2
?

"
�(�jj � ⇡) +

1X

k=1

ak(�jj)

⇡
⌘k

#

where the contribution of the kth loop is

Azimuthal angle distribution

with

A1(�jj) = �1

2
H0 ,

A2(�jj) = H1,0 ,

A3(�jj) =
2

3
H0,0,0 � 2H1,1,0 +

5

3
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8

3
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+
8

3
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where Hi,j,... ⌘ Hi,j,...(e
�2i�jj ) Dixon Duhr Pennington VDD 2013



Transverse momentum distribution

d�̂gg

dp21?dp
2
2?

=
⇡(CA↵s)2

2p21?p
2
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"
�(p21? � p22?) +

1
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where ⇢ = |w|

with
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Mueller-Navelet dijet cross section reloaded

the MN dijet cross section is 

the first 5 loops were computed by Mueller-Navelet.
We computed it through the 13 loops

Dixon Duhr Pennington VDD 2013



Regge limit
in the

next-to-leading logarithmic
approximation



BFKL theory
the BFKL equation describes the evolution of the gluon propagator
in 2-dim transverse momentum space

! f!(q1, q2) =
1

2
�(2)(q1 � q2) +

Z
d2kK(q1, k) f!(k, q2)

the solution is given in terms of eigenfunctions Φνn and an eigenvalue ωνn
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+1X
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as a function of rapidity, the solution is
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+1X
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we expand kernel K, eigenfunctions Φνn and eigenvalue ωνn in powers of  ↵µ =
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⇡
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note that in N=4 SYM the eigenfunctions and the eigenvalue are the same  



At NLLA in QCD and in N=4 SYM, the eigenvalue is Fadin Lipatov 1998
Kotikov Lipatov 2000, 2002
Chirilli Kovchegov 2013
Duhr Marzucca Verbeek VDD 2017

with one-loop beta function and two-loop cusp anomalous dimension

and with
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Φ(n,γ) is a sum over linear combinations of ψ functions
and γ is a shorthand  γ = 1/2 + iν
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In blue we labeled the terms which occur only in QCD,
in red the ones which occur in QCD and in N=4 SYM
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BFKL eigenvalue at NLLA



At NLLA, the expansion of the BFKL ladder is 

f(q1, q2, y) = fLL(q1, q2, ⌘µ) + ↵µ f
NLL(q1, q2, ⌘µ) + . . . , ⌘µ = ↵µ y

fNLL contains the NLO corrections to the eigenvalue and to the eigenfunctions,
however if we use the scale of the strong coupling to be the geometric mean 
of the transverse momenta at the ends of the ladder, then we can use the LO
eigenfunctions instead of the NLO ones  

At NLLA in QCD, the eigenfunction is 
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⌫n (q)
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Chirilli Kovchegov 2013
Duhr Marzucca Verbeek VDD 2017
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Duhr Marzucca Verbeek VDD 2017

µ2 = s0 =
q
q21q

2
2with

BFKL eigenfunctions at NLLA



At NLLA, the BFKL ladder is 

fNLL(q1, q2, ⌘s0) =
1

2⇡
p

q21q
2
2

1X

k=1

⌘ks0
k!

fNLL
k+1 (z) ⌘s0 = ↵S(s0) y

with coefficients given by the Fourier-Mellin transform
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using the explicit form of the eigenvalue 

the coefficients can be written as
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the weight of fNLL
k is

weight(fNLL
k)= k k kk � 1k � 2  w  k0  w  k

Fourier-Mellin transform



are SVHPLs of uniform weight k with singularities at z=0 and z=1

C(3)
k (z) are MPLs of type G(a1, . . . , an; |z|) with ak 2 {�i, 0, i}

they are SV functions of z because they have no branch cut on the positive real axis,
and have weight 0 ≤ w ≤ k

C(1)
k (z)

C(2)
k (z) one needs Schnetz’ generalised SVMPLs with singularities at

z =
↵ z̄ + �

� z̄ + �
, ↵,�, �, � 2 C

For
Schnetz 2016

are Schnetz’ generalised SVMPLsthen one can show that C(2)
k (z)

with singularities atG(a1, . . . , an; z) ai 2 {�1, 0, 1,�1/z̄}
Duhr Marzucca Verbeek VDD 2017

Interestingly, in transverse momentum space at NLLA, the maximal weight 
of the BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM

In moment space, the maximal weight of the BFKL eigenvalue and of 
the anomalous dimensions of the leading twist operators which control 
the Bjorken scaling violations in QCD is the same as the corresponding
quantities in N=4 SYM Kotikov Lipatov 2000, 2002

Kotikov Lipatov Velizhanin 2003

Duhr Marzucca Verbeek VDD 2017

SV functions



one can consider the BFKL eigenvalue at NLLA in a SU(Nc) gauge theory
with scalar or fermionic matter in arbitrary representations
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BFKL ladder in a generic SU(Nc) gauge theory

number of  scalars (Weyl fermions) in the representation Rñs(ñf ) =

�(3)⌫n (Ñf , Ñs) = �(3,1)⌫n (Ñf , Ñs) + �(3,2)⌫n (Ñf , Ñs)
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Ñ

x
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X

R

n

R

x

T

R

(2C
R

�N

c

) , x = f, s

Necessary and sufficient conditions for a SU(Nc) gauge theory to have a BFKL ladder
of maximal weight are:

— the one-loop beta function must vanish
— the two-loop cusp AD must be proportional to ζ2

—         must vanish  →  �(3,2)⌫n

There is no theory whose BFKL ladder has uniform maximal weight which agrees 
with the maximal weight terms of QCD

Duhr Marzucca Verbeek VDD 2017

2Ñf = N2
c + Ñs

Duhr Marzucca Verbeek VDD 2017



Matter in the fundamental and in the adjoint

We solve the conditions above for matter in the fundamental F and in the adjoint A
representations. We obtain:

2nF
f = nF

s 2nA
f = 2 + nA

s

which describes the spectrum of a gauge theory with N supersymmetries
and nF = nfF chiral multiplets in F and nA = nfA - N chiral multiplets in A

There are four solutions to those conditions

— the first is N=4 SYM
— the second is N=2 superconformal QCD with Nf = 2Nc hypermultiplets
— the third is N=1 superconf. QCD

because the one-loop beta function is fixed by matter loops in gluon self-energies,
we are only sensitive to the matter content of a theory, and not to its details
(like scalar potential or Yukawa couplings)

Duhr Marzucca Verbeek VDD 2017



Conclusions at LLA

We computed the Mueller-Navelet dijet cross section through 13 loops

n-point amplitudes in the LLA of the Multi-Regge limit of N=4 SYM can 
be fully expressed in terms of single-valued iterated integrals on ℳ0,n-2 
i.e. in terms of single-valued multiple polylogarithms 

We showed that one can compute all MHV amplitudes at L loops
in terms of amplitudes with up to (L+4) points

We displayed that explicitly up to 5 loops, showing that 
the n-pt remainder function Rn

(5) can be written as a sum
of 5-loop 6-, 7-, 8- and 9-pt amplitudes

We constructed explicitly all non-MHV amplitudes through
4 loop and 8 points

The singlet BFKL ladder, and thus the dijet cross section in the LLA
of the high-energy limit of QCD, can also be expressed in terms of 
of single-valued iterated integrals on ℳ0,4,  i.e. in terms of SVHPLs

We expect that the n-jet cross section in the LLA of the high-energy 
limit of QCD can be written in terms of single-valued iterated 
integrals on ℳ0,n+2



Conclusions at NLLA

The singlet BFKL ladder at NLLA in QCD and in N=4 SYM can
also be expressed in terms of SVMPLs, but generalised to
non-constant values of the roots

In transverse momentum space at NLLA, the maximal weight of the
BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM

There is no SU(Nc) gauge theory whose BFKL ladder has uniform
maximal weight which agrees with the maximal weight terms of QCD

We found four theories with matter in the fundamental and in the adjoint
representations, whose BFKL ladder has uniform maximal weight


