Superconformal symmetry and higher-derivative Lagrangians

Antoine Van Proeyen KU Leuven

Frascati, Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity March 25, 2013

Interest in higher-derivative terms

- appear as α' terms in effective action of string theory
- corrections to black hole entropy
- higher order to AdS/CFT correspondence
- counterterms for UV divergences of quantum loops

Plan

- 1. What we know about general sugra/susy theories
- 2. The superconformal method (and in which SUGRAs can we use it)
- 3. Higher derivative sugra actions and sugra loop results
- 4. Dirac-Born-Infeld– Volkov-Akulov
 and deformation of supersymmetry
 (example of an all order higher-derivative susy action)
- 5. Conclusions

1. What we know about general sugra/susy theories

 There are many good books that explain the basics, but ...

Supergravity

Daniel Freedman and Antoine Van Proeyen

CAMBRIDGE

'Ordinary' susy/sugra

Bosonic terms in the action have at most two spacetime derivatives, and fermionic terms at most one.

• E.g. D=4: fields of spin 2, 1, 0, 3/2, 1/2 $e_{\mu}^{a}, A_{\mu}^{I}, \varphi^{u}, \psi_{\mu}, \lambda^{A}$

$$e^{-1}\mathcal{L} = \frac{1}{2}R + \frac{1}{4}(\operatorname{Im} \mathcal{N}_{IJ})\mathcal{F}^{I}_{\mu\nu}\mathcal{F}^{\mu\nu J} - \frac{i}{8}(\operatorname{Re} \mathcal{N}_{IJ})\epsilon^{\mu\nu\rho\sigma}\mathcal{F}^{I}_{\mu\nu}\mathcal{F}^{J}_{\rho\sigma} - \frac{1}{2}g_{uv}D_{\mu}\varphi^{u}D^{\mu}\varphi^{v} - V \\ \left\{-\overline{\psi}_{\mu i}\gamma^{\mu\nu\rho}D_{\nu}\psi_{\rho}^{i} - \frac{1}{2}g_{A}^{B}\overline{\lambda}^{A}\overline{D}\lambda_{B} + \operatorname{h.c.}\right\} +$$

Possibilities for susy depend on the properties of irreducible spinors in each dimension

- Dependent on signature.Here: Minkowski
- M: Majorana
 MW: Majorana-Weyl
 S: Symplectic
 SW: Symplectic-Weyl

Dim	Spinor	min.# comp
2	MW	1
3	Μ	2
4	Μ	4
5	S	8
6	SW	8
7	S	16
8	Μ	16
9	Μ	16
10	MW	16
11	Μ	32

Maximal susy / sugra

 From representations in 4 dimensions: maximal N=8 → 32 susys for supergravity maximal N=4 → 16 susys for supersymmetry
 based on particle states and susy operator

 transforming a boson state in a fermion state,
 and squaring to translations

Maximal susy / sugra

From representations in 4 dimensions: maximal N=8 \rightarrow 32 susys for supergravity maximal N=4 \rightarrow 16 susys for supersymmetry based on particle states and susy operator - transforming a boson state in a fermion state, - and squaring to translations • maximal spin 2 for gravity theories $\rightarrow N \le 8$ or 32 susys maximal spin 1 without gravity $\rightarrow N \leq 4$ or 16 susys any higher dimensional theory can be dimensionally reduced on tori to D=4.

This keeps the same number of susy generators

The map: dimensions and # of supersymmetries

Strathdee,1987

D	susy	32		24	20	16		12	8	4
11	Μ	M								
10	MW	IIA	IIB			Ι				
9	Μ	N	=2			N =1				
8	Μ	N	=2			N =1				
7	S	N	=4			N=2				
6	SW	(2	,2)	(2,1)		(1,1)	(2,0)		(1,0)	
5	S	N	=8	N=6		N=	=4		⊘ N=2	
4	Μ	N	=8	N=6	N=5	N=4		N=3	Ø N=2	Ø N=1
SUGRA			SUGRA	/SUSY	SUGRA	SUGRA	A/SUSY			

vector multiplets

tensor multiplet

vector multiplets +

 $\boxed{2}$ multiplets up to spin 1/2

Basic supergravities and deformations

Basic supergravities:

have only gauged supersymmetry and general coordinate transformations (and U(1)'s of vector fields).

- No potential for the scalars.
- Only Minkowski vacua.
- In any entry of the table there are 'deformations': without changing the kinetic terms of the fields, the couplings are changed.
 - Many deformations are 'gauged supergravities': gauging of a YM group, introducing a potential.
 - Produced by fluxes on branes
 - There are also other deformations (e.g. massive deformations, superpotential)

Embedding tensor formalism

The gauge group is a subgroup of the isometry group G, defined by an embedding tensor. $\left(\partial_{\mu} - A_{\mu}{}^{M} \Theta_{M}{}^{\alpha} \delta_{\alpha}\right) \phi$

all the rigid symmetries

determines which symmetries are gauged, and how: e.g. also the coupling constants. There are several constraints on the tensor.

Structure to get a complete picture of supergravities with at most two spacetime derivatives in Lagrangian (although: to get all the explicit solutions of constraints still needs more work)

Cordaro, Frè, Gualtieri, Termonia and Trigiante, 9804056

Nicolai, Samtleben, 0010076

de Wit, Samtleben and Trigiante, 0507289

Higher-derivative actions: no systematic knowledge

Various constructions of higher derivative terms

 e.g. susy Dirac-Born-Infeld: Cecotti, Ferrara, 1987; Tseytlin; Bagger, Galperin; Roček; Kuzenko, Theisen; Ivanov, Krivonos, Ketov; Bellucci,

but no systematic construction,
 or classification of what are the possibilities;
 (certainly not in supergravity)

Constructions of actions

Possible constructions:

order by order Noether transformations: the only possibility for the maximal theories (Q>16)

superspace:

- very useful for rigid N=1: shows structure of multiplets.
- very difficult for supergravity. Needs many fields and many gauge transformations
- (super)group manifold:
 - Optimal use of the symmetries using constraints on the curvatures
 - superconformal tensor calculus:
 - keeps the structure of multiplets as in superspace but avoids its immense number of unphysical degrees of freedom
 - extra symmetry gives insight in the structure

2. The superconformal method

- Superconformal symmetry is the maximal extension of spacetime symmetries according to Coleman-Mandula theorem
- Here: *not* about Weyl supergravity: $\int d^4x \left[R_{\mu\nu\rho\sigma}^2 2R_{\mu\nu}^2 + \frac{1}{3}R^2 \right]$ $\int d^4x \frac{1}{2\kappa^2} R$
- **Tool** for construction of actions
 - allows to use multiplet calculus similar to superspace
 - makes hidden symmetries explicit

Gravity as a conformal gauge theory The strategy

• scalar field (compensator)

conformal gravity: $\mathcal{L} = -\frac{1}{2}\sqrt{g}\phi \Box^{C}\phi = -\frac{1}{2}\sqrt{g}\phi \Box\phi + \frac{1}{12}\sqrt{g}R\phi^{2}$ dilatational gauge fixing $\phi = \sqrt{6}/\kappa$ $\mathcal{L} = \frac{1}{2w^{2}}\sqrt{g}R$

First action is conformal invariant,
gauge-fixed one is Poincaré invariant.
Scalar field had scale transformation δφ (x) = λ_D(x)φ(x)

Schematic: Conformal construction of gravity

conformal scalar action (contains Weyl fields) local conformal symmetry

Gauge fix dilatations and special conformal transformations

Poincaré gravity action

local 🖸 symmetry

Superconformal construction The idea of superconformal methods

- Difference susy- sugra: the concept of multiplets is clear in susy, they are mixed in supergravity
 Superfields are an easy conceptual tool for rigid susy
- (Super)gravity can be obtained by starting with (super)conformal symmetry and gauge fixing.
- With matter:
 Before gauge fixing: everything looks like in rigid supersymmetry + covariantizations

Superconformal algebra

In general $\begin{pmatrix} \text{conformal algebra} & Q, S \\ Q, S & R - \text{symmetry} \end{pmatrix}$ according to dilatational weight: (e.g. N=1) $[D,Q] = \frac{1}{2}Q, \qquad [D,S] = -\frac{1}{2}S$ $1 : P_{\mu}$ $\frac{1}{2}$: Q $0 : D, M_{ab}, U(1)$ $-rac{1}{2}$: S-1 : K_{μ}

 $\left\{ Q_{\alpha}, Q^{\beta} \right\} = -\frac{1}{2} (\gamma^{a})_{\alpha}{}^{\beta}P_{a}, \qquad \left\{ S_{\alpha}, S^{\beta} \right\} = -\frac{1}{2} (\gamma^{a})_{\alpha}{}^{\beta}K_{a}, \\ \left\{ Q_{\alpha}, S^{\beta} \right\} = -\frac{1}{2} \delta_{\alpha}{}^{\beta}D - \frac{1}{4} (\gamma^{ab})_{\alpha}{}^{\beta}M_{ab} + \frac{1}{2} \mathsf{i}(\gamma_{*})_{\alpha}{}^{\beta} \mathsf{U}(1)$

The strategy : superconformal construction of N=1 supergravity

chiral multiplet + Weyl multiplet superconformal action

Gauge fix dilatations, special conformal transformations,

local R-symmetry and special supersymmetry

Poincaré supergravity action

Superconformal construction of N=4 supergravity

De Roo, 1985

Weyl multiplet

6 gauge compensating multiplets (on-shell)

superconformal action

gauge-fixing Weyl symmetry, local SU(4), local U(1), S-supersymmetry and K-conformal boosts

pure N=4 Cremmer-Scherk-Ferrara supergravity

 $rac{1}{4}R-rac{1}{8}rac{\partial au\partialar{ au}}{({
m Im} au)^2}+rac{i}{4} au F^{+I}_{\mu
u}\delta_{IJ}F^{+J\mu
u}+h.c.$

On-shell and off-shell multiplets

- Action should be invariant
- Algebra can be closed only modulo field equations
- Problem: No flexibility in field equationsExamples:
 - hypermultiplets N=2;
 - N=4 gauge multiplets (are compensator multiplets);

In which sugras can we use superconformal methods ?

We should have a superconformal algebraWe should have compensating multiplets

Superconformal groups

conformal algebra is so(D,2)

D	supergroup	conf	R	ferm.
3	OSp(N 4)	SO(3,2) = Sp(4)	SO(N)	4 N
4	SU(2,2 N)	SO(4,2) = SU(2,2)	$U(N)$ for $N \neq 4$	8 <i>N</i>
			SU(4) for $N = 4$	
5	$F^{2}(4)$	SO(5,2)	SU(2)	16
6	$OSp(8^* 2N)$	$SO(6,2) = SO^{*}(8)$	USp(2N)	16N

covering group always compact

Other superalgebras have been considered, where the conformal algebra is not a factor, but a subalgebra of the bosonic part symmetry e.g. $SO(11,2) \subset Sp(64) \subset OSp(1|64)$ But not successfully applied for constructing actions

> JW van Holten, AVP, 1982 D'Auria, S. Ferrara, M. Lledò, V. Varadarajan, 2000

The map: dimensions and # of supersymmetries

3. Higher derivative supergravity actions and supergravity loop results

The Null Results

Miracle #1 2007 N=8, D=4 is UV finite up to 3-loops

Bern, Carrasco, Dixon, Johansson, Kosower, Roiban

Miracle #2 2009 N=8, D=5 is UV finite up to 4-loops

Bern, Carrasco, Dixon, Johansson, Roiban

Miracle #32012N= 4, D=4 is UV finite up to 3-loopsMiracle #42012N= 4, D=5 is UV finite up to 2-loops \leftarrow

Bern, Davies, Dennen, Huang 3-loop D=4 computation in pure supergravity September: 2-loop D=5 UV finite

If there are divergences: supersymmetric counterterms should exist (or supersymmetry anomalies)

We do not know enough to be sure whether invariants do exist.

Higher derivative sugra actions

examples with superconformal tensor calculus

- S. Cecotti and S. Ferrara, `Supersymmetric Born-Infeld actions', 1986
- N=2 constructions:

B. de Wit, S. Katmadas, M. van Zalk, arXiv:1010.2150;W. Chemissany, S. Ferrara, R. Kallosh, C. S. Shahbazi, 1208.4801

- Higher derivative extension in D=6 (1,0)
 E. Bergshoeff, F. Coomans, E. Sezgin, AVP 1203.2975)
- other methods

starting with S. Deser, J.H. Kay and K.S. Stelle, 1977, ... more recent: G. Bossard, P. Howe, K. Stelle, P. Vanhove; M. Koehn, J-L Lehners, B. Ovrut ... (using superspace)

N=2 D=4 construction

Based on tensor calculus as in superspace:

- chiral multiplets: $S = \{X, \Omega_i, \dots, C\}$

- also Weyl multiplet $W^2 = \{T_{ab}^-, \dots\}$ - kinetic multiplet: $\mathbb{T}(\bar{S}) = \{\bar{C}, \ldots\}$

arbitrary power is still chiral

- made superconformal invariant
 - restriction on possible actions (homogeneity)
- Everything off-shell
- many possibilities, e.g. invariants contributing to entropy and central charges of black holes

de Wit, Katmadas, van Zalk, 2011

N=2 higher derivative terms with auxiliary fields

The term quartic in the auxiliary field from the Weyl multiplet is a partner of the term quartic in the Weyl curvature. $\lambda(C)^4 \qquad \lambda(\partial T)^4$

 $\lambda(C_{\dots})^4$ Deformed EOM for the Weyl multiplet auxiliary

$$T_{ab}^{+} = \frac{2}{X}F_{ab}^{+} + \lambda(\partial^4 T^3)_{ab}^{+} + \dots$$

Solve recursively: infinite number of higher derivative terms with higher and higher powers of the graviphoton, N=2 supergravity vector

$$\mathcal{T}^{def} = \mathcal{F} + \lambda \left[\partial^4 \mathcal{F}^3\right] + \lambda^2 \left[\partial^4 \mathcal{F}^2\right] \left[\partial^4 \mathcal{F}^3\right] + \cdots$$

The action with auxiliary field eliminated: Born-Infeld with higher derivatives

$$S^{def} = -\frac{1}{4}\mathcal{F}^2 + \lambda([\partial \mathcal{F}])^4 + \lambda^2[\partial^8 \mathcal{F}^6] + \cdots$$

Chemissany, Ferrara, Kallosh, Shahbazi, 1208.4801

Also transformation laws deform

EXACT

$$\delta\psi^i_{\mu} = D_{\mu}\epsilon^i - \frac{1}{16}\gamma^{ab}T^-_{ab}\varepsilon^{ij}\gamma_{\mu}\epsilon_j - \gamma_{\mu}\eta^i$$

Deformation of the supergravity local N=2 supersymmetry after S-supersymmetry gauge-fixing and expanding near the lowest order solution for auxiliary fields

Order by order

$$\phi_{aux} = \phi_{aux}^0 + \Delta \phi_{aux}$$

 $\Delta \phi_{aux} = \sum_{n=1} \lambda^n \phi_{aux}^{(n)},$

The deformation of the gravitino supersymmetry due to higher derivative term is

$$\Delta \psi_{\mu} = -4\lambda [\partial^4 \mathcal{F}^3]_{\mu}{}^{\nu} \gamma_{\nu} \epsilon^i + \dots$$

Are all valid counterterms (broken) superconformal actions ?

 $\int d^4\theta \frac{W^2}{S^2} \mathbb{T}\left(\frac{W^2}{\overline{S^2}}\right)$

???

N=0 : Locally conformal \mathbb{R}^4 ; gauge fixed: is 3-loop counterterm $\int d^4x \sqrt{-g} \phi^{-4} C_{\alpha\beta\gamma\delta} C_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}} C^{\alpha\beta\gamma\delta} C^{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}}$

N=2 superconformal R⁴

chiral kinetic action with inverse powers of the compensator superfield S

N=4 superconformal R⁴

N=4 has no tensor calculus

- Since compensating multiplets cannot be multiplied, ...
 - we cannot make constructions as those for N=2.
- Algebra only valid on shell: modified actions imply modified field equations:
 - \Rightarrow transformations (or superfields) have to be deformed.

How for N=4 ?

- No tensor calculus; no auxiliary fields
 - How to establish the existence/non-existence of the consistent order by order deformation of N=4 on shell superspace ?
- Conjecture: if it does not exist: explanation of finiteness (if Bern et al do not find N=4, D=4 is divergent at higher loops)
 - Until invariant counterterms are constructed (conformal?) we have no reason to expect UV divergences

Two points of view

Legitimate counterterms are not available yet
 Legitimate counterterms are not available, period

???

S. Ferrara, R. Kallosh, AVP, 1209.0418

N=4 conjecture

If the UV finiteness will persist in higher loops, one would like to view this as an opportunity to test some new ideas about gravity. E.g. : is superconformal symmetry more fundamental ?

Repeat: Classical N=4 is obtained from gauge fixing a superconformal invariant action: The mass M_{Pl} appears in the gauge-fixing procedure

Bergshoeff, de Roo, de Wit, van Holten and AVP, 1981; de Roo, 1984

Analogy:

• Mass parameters M_W and M_Z of the massive vector mesons are not present in the gauge invariant action of the standard model.

- Show up when the gauge symmetry is spontaneously broken.
- In unitary gauge they give an impression of being fundamental.
- In renormalizable gauge (where UV properties analyzed) : absent

S. Ferrara, R. Kallosh, AVP, 1209.0418

The non-existence of (broken) superconformal-invariant counterterms and anomalies in N=4, D=4 could explain 'miraculous' vanishing results.

- **simplest** possible explanation of the 3-loop finiteness and predicts perturbative UV finiteness in higher loops
- the same conjecture applies to higher derivative superconformal invariants and to a consistent superconformal anomaly
- the conjecture is **economical**, sparing in the use of resources: either the local N=4 superconformal symmetry is a good symmetry, or it is not.
- **Falsifiable** by N=4 L=4 computations (which are already underway)

If the conjecture survives these computations (if UV finite) : hint that the models with superconformal symmetry serve as a basis for constructing a consistent quantum theory where M_{Pl} appears in the process of gauge-fixing superconformal symmetry.

Also **falsifiable** by our own calculations: if we find a way to construct (non-perturbative) superconformal invariants The non-existence of (broker anomalies in N=4, D=4 could

- simplest possible explanati finiteness in higher loops
- the same conjecture applies to higher derivative superconformal invariants and to a consistent superconformal anomaly
- the conjecture is **economical**, sparing in the use of resources: either the local N=4 superconformal symmetry is a good symmetry, or it is not.
- Falsifiable by N=4 L=4 computations (which are already underway)

If the conjecture survives these computations (if UV finite) : hint that the models with superconformal symmetry serve as a basis for constructing a consistent quantum theory where M_{Pl} appears in the process of **gauge-fixing** superconformal symmetry.

Also **falsifiable** by our own calculations: if we find a way to construct (non-perturbative) superconformal invariants

"We are trying to prove ourselves wrong as quickly as possible, because only in that way can we find progress." (Feynman)

4. Dirac-Born-Infeld– Volkov-Akulov and deformation of supersymmetry

Preview

Dirac-Born-Infeld-Volkov-Akulov and Deformation of Supersymmetry

Fric Bergshoeff Frederik Coomans, Renata Kallosh, C.S. Shahbazi and Antoine Van Proeyen

supersymetry transformations of the d=10 and d=4 Maxwell supermultiplets so that at each order of the deformation the theory has 16 Maxwell multiplet deformed supersymetry as well as 16 Volkov-Akulov type non-linear supersymmetries. The result agrees with the expansion in the string tension of the explicit action of the Dirac-Bom-Infeld model and its es, extracted from D9 and D3 superbranes, respectively. The half-maximal Dirac-Bom-Infeld models with 8 Maxwell supermultiplet deformed supersymmetries and 8 Volkov-Akulov type es are described by a new class of d=6 vector branes related to chiral (2,0) supergravity, which we denote as 'Vp-branes'. We use a space-filling V5 superbrane for the d=6 model and a V3 the d=4 half-maximal Dirac-Born-Infeld (DBI) models. In this way we present a completion to all orders of the deformation of the Maxwell supermultiplets with maximal 16+16 es in d=10 and 4, and half-maximal 8+8 supersymmetries in d=6 and 4.

superbrai

supersym

a super new paper (arXiv:1303.5662)

on the search of deformations of N=4 theories, we find all-order invariant actions in rigid susy with extra supersymmetries (Volkov-Akulov (VA) – type) Down-up approach: start deformations

 $S = \int \mathrm{d}^D x \left\{ -\frac{1}{4} (F_{\mu\nu})^2 + \bar{\lambda} \partial \!\!\!/ \lambda \right\}$

gauge field (D-2) on-shell dof; fermion = #spinor comp / 2

Dim	Spinor	min.# comp
2	MW	1
3	М	2
4	М	4
5	S	8
6	SW	8
7	S	16
8	Μ	16
9	Μ	16
10	MW	16
11	Μ	32

The map: dimensions and # of supersymmetries

D	susy	3	2	24	20	16		12	8	4
11	Μ	Μ								
10	MW	IIA	IIB			Ι	>			
9	Μ	N	=2			N=1				
8	Μ	N=2				N =1				
7	S	N	=4			N=2				
6	SW	(2	,2)	(2,1)		(1,1)	(2,0)		(1,0)	
5	S	N	=8	N=6		N:	=4		⊘ N=2	
4	Μ	N	=8	N=6	N=5	N	=4	N=3	Ø N=2 [€]	N=1
SUGRA		SUGRA	A/SUSY	SUGRA	SUGRA	A/SUSY				

vector multiplets

tensor multiplet

vector multiplets + multiplets up to spin 1/2 Down-up approach: start deformations $S = \int d^{D}x \left\{ -\frac{1}{4} (F_{\mu\nu})^{2} + \bar{\lambda} \partial \lambda \right\}$

D=10: MW; D=6 SW; D=4 M; D=3 M; D=2 MW

gauge field (D-2) on-shell dof; fermion = #spinor comp / 2

$$\delta_{\epsilon}A_{\mu} = \overline{\epsilon}\Gamma_{\mu}\lambda, \qquad \delta_{\epsilon}\lambda = \frac{1}{4}\Gamma^{\mu\nu}F_{\mu\nu}\epsilon$$

extra (trivial) fermionic shift symmetry

$$\delta_{\eta}A_{\mu} = 0, \qquad \delta_{\eta}\lambda = -\frac{1}{2\alpha}r$$

normalization for later use

Bottom-up deformation

$$S = \int d^{D}x \left\{ -\frac{1}{4}F^{2} + \bar{\lambda}\partial\lambda \right\} - 2\alpha c_{4}F^{\mu\nu}\bar{\lambda}\Gamma_{\mu}\partial_{\nu}\lambda$$

+ $\frac{1}{8}\alpha^{2}\left[\operatorname{Tr}F^{4} - \frac{1}{4}\left(F^{2}\right)^{2} + 4(1 + 4c_{4}^{2})(F^{2})^{\mu\nu}\bar{\lambda}\Gamma_{\mu}\partial_{\nu}\lambda$
+ $(1 - 4c_{4}^{2})F_{\mu}^{\lambda}(\partial_{\lambda}F_{\nu\rho})\bar{\lambda}\Gamma^{\mu\nu\rho}\lambda + \frac{1}{2}(c_{1} + 8c_{4}^{2})F^{2}\bar{\lambda}\partial\lambda$
- $\frac{1}{2}c_{2}F_{\mu\nu}(\partial_{\lambda}F^{\lambda}{}_{\rho})\bar{\lambda}\Gamma^{\mu\nu\rho}\lambda - \frac{1}{2}(c_{3} + 4c_{4}^{2})F_{\mu\nu}F_{\rho\sigma}\bar{\lambda}\Gamma^{\mu\nu\rho\sigma}\partial\lambda]$
+ $\mathcal{O}(\alpha^{2}\lambda^{4}) + \mathcal{O}(\alpha^{3})$

free coefficients c_i , but these are related to field redefinitions $A_{\mu}(0) = A_{\mu} - \frac{1}{16} \alpha^2 c_2 F^{\nu\rho} \overline{\lambda} \Gamma_{\mu\nu\rho} \lambda$, $\lambda(0) = \lambda + \frac{1}{2} \alpha c_4 F_{\mu\nu} \Gamma^{\mu\nu} \lambda + \frac{1}{32} \alpha^2 c_1 F^2 \lambda - \frac{1}{32} \alpha^2 c_3 F_{\mu\nu} F_{\rho\sigma} \Gamma^{\mu\nu\rho\sigma} \lambda$,

 \Rightarrow answer unique;

also transformation rules deformed.

As well ϵ as η parameter transformations can be defined

continues from E. Bergshoeff, M. Rakowski and E. Sezgin, 1987

bottom-up deformation

e.g.

$$\delta_{\eta}A^{\mu} = \frac{\alpha}{4}\bar{\eta}F^{\nu\mu}\Gamma_{\nu}\lambda + \frac{\alpha}{8}\bar{\eta}\Gamma^{\mu\nu\rho}F_{\nu\rho}\lambda - \frac{1}{16}\alpha c_{2}F_{\nu\rho}\bar{\eta}\Gamma^{\mu\nu\rho}\lambda + \mathcal{O}(\alpha\eta\lambda^{3}) + \mathcal{O}(\alpha^{2})$$

$$\delta_{\eta}\lambda = -\frac{1}{2\alpha}\eta + \alpha \left[-\frac{1}{32}F^{2} - \frac{1}{64}\Gamma^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}\right]\eta$$

$$+\frac{1}{4}c_{4}F_{\mu\nu}(c)\Gamma^{\mu\nu}\left[\eta - \frac{1}{2}\alpha c_{4}F_{\rho\sigma}(c)\Gamma^{\rho\sigma}\eta\right]$$

$$+\frac{1}{64}\alpha c_{1}F^{2}\eta - \frac{1}{64}\alpha c_{3}F_{\mu\nu}F_{\rho\sigma}\Gamma^{\mu\nu\rho\sigma}\eta + \mathcal{O}(\alpha\eta\lambda^{2}) + \mathcal{O}(\alpha^{2})$$

already complicated; but only use of -Majorana flip relations $\bar{\lambda}_1 \Gamma^{\mu} \lambda_2 = -\bar{\lambda}_2 \Gamma^{\mu} \lambda_1$ -cyclic (Fierz) identity $\Gamma_{\mu} \lambda_1 \bar{\lambda}_2 \Gamma^{\mu} \lambda_3 + \Gamma_{\mu} \lambda_2 \bar{\lambda}_3 \Gamma^{\mu} \lambda_1 + \Gamma_{\mu} \lambda_3 \bar{\lambda}_1 \Gamma^{\mu} \lambda_2 = 0$. which are valid in D=10,6,4,3,2

looks hopeless to continue to all orders

Dp-brane action

Start with κ -symmetric Dp brane action

$$S_{\text{DBI}} + S_{\text{WZ}} = -\frac{1}{\alpha^2} \int d^{p+1} \sigma \sqrt{-\det(G_{\mu\nu} + \alpha \mathcal{F}_{\mu\nu})} + \frac{1}{\alpha^2} \int \Omega_{p+1}$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} , \qquad \Pi^m_{\mu} = \partial_{\mu} X^m - \bar{\theta} \Gamma^m \partial_{\mu} \theta$$
$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha^{-1} \bar{\theta} \sigma_3 \Gamma_m \partial_{[\mu} \theta \left(\partial_{\nu]} X^m - \frac{1}{2} \bar{\theta} \Gamma^m \partial_{\nu]} \theta \right)$$

Dp brane: IIB theory m=0,..., 9 and $\mu=0,..., p=2n+1$ space-time coördinates X^m ; θ is doublet of MW spinors; $F_{\mu\nu}$ Abelian field strength

Symmetries:

rigid susy doublet ϵ^1 ; ϵ^2

local κ symmetry doublet (effectively only half (reducible symmetry) world volume gct $\delta_{\kappa}\theta = (1 + \Gamma)\kappa$

Dp-brane action

Start with κ -symmetric Dp brane action

$$S_{\text{DBI}}+S_{\text{WZ}} = -\frac{1}{\alpha^2} \int d^{p+1}\sigma \sqrt{-\det(G_{\mu\nu} + \alpha F_{\mu\nu})} + \frac{1}{\alpha^2} \int \Omega_{p+1}$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu}, \qquad \Pi^m_{\mu} = \partial_{\mu} X^m - \bar{\theta} \Gamma^m \partial_{\mu} \theta$$

$$F_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha^{-1} \bar{\theta} \sigma_3 \Gamma_m \partial_{[\mu} \theta \left(\partial_{\nu]} X^m - \frac{1}{2} \bar{\theta} \Gamma^m \partial_{\nu]} \theta \right)$$
Dp brane: IIB theory $m=0,...,9$ and $\mu=0,...,p=2n+1$
space-time coördinates X^m ; θ is doublet of MW spinors;
 $F_{\mu\nu}$ Abeli Same applies for $D=6$ (2,0) (also called iib):
 $m=0,...,5$
rigid susy debrane interpretation: see talk Eric Bergshoeff
local κ symm
Also $D=4$ N=2, $m=0,...,3$ (BH solutions)

Gauge fixing

 $X^{m} = \{\delta^{m'}_{\mu}\sigma^{\mu}, \phi^{I}\}, \quad m' = 0, 1, \dots, p, \quad I = 1, \dots, 9 - p$ $\theta = (\theta^{1} = 0, \ \theta^{2} \equiv \alpha\lambda)$

worldvolume gct $\xi^{m'}$ and κ symmetry gauge-fixed

to stay in the gauge ('decomposition laws'): parameters become function of parameters of other symmetries

 \Rightarrow the two deformed ϵ^1 and ϵ^2 supersymmetries preserved suitable combinations are called ϵ and ζ

Complete DBI-VA model
for the p=9 case (no scalars
$$\phi^{I}$$
)
$$S = -\frac{1}{\alpha^{2}} \int d^{10}x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha \mathcal{F}_{\mu\nu})} - 1 \right\}$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} , \qquad \Pi^m_{\mu} = \delta^m_{\mu} - \alpha^2 \bar{\lambda} \Gamma^m \partial_{\mu} \lambda ,$$

$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} + 2\alpha \bar{\lambda} \Gamma_{[\nu} \partial_{\mu]} \lambda , \qquad \mu = 0, 1, ..., 9 , \qquad m = 0, 1, ..., 9 ,$$

16 ϵ transformations, deformation of the Maxwell supermultiplet supersymmetries

$$\delta_{\epsilon}\lambda = -\frac{1}{2\alpha}(\mathbb{1}-\beta)\epsilon - \frac{1}{2}\alpha\partial_{\mu}\lambda\bar{\lambda}\Gamma^{\mu}(\mathbb{1}+\beta)\epsilon,$$

$$\delta_{\epsilon}A_{\mu} = -\frac{1}{2}\bar{\lambda}\Gamma_{\mu}(\mathbb{1}+\beta)\epsilon + \frac{1}{2}\alpha^{2}\bar{\lambda}\Gamma_{m}(\frac{1}{3}\mathbb{1}+\beta)\epsilon\bar{\lambda}\Gamma^{m}\partial_{\mu}\lambda - \frac{1}{2}\alpha\bar{\lambda}\Gamma^{\rho}(\mathbb{1}+\beta)\epsilon F_{\rho\mu}$$

16 VA-type ζ transformations

$$\delta_{\zeta}\lambda = \alpha^{-1}\zeta + \alpha\partial_{\mu}\lambda\bar{\lambda}\Gamma^{\mu}\zeta,$$

$$\delta_{\zeta}A_{\mu} = \bar{\lambda}\Gamma_{\mu}\zeta + \alpha\bar{\lambda}\Gamma^{\rho}\zeta F_{\rho\mu} - \frac{1}{3}\alpha^{2}\bar{\lambda}\Gamma_{m}\zeta\bar{\lambda}\Gamma^{m}\partial_{\mu}\lambda$$

$$\beta = [\det\left(\delta_{\mu}{}^{\nu} + \alpha\mathcal{F}_{\mu\rho}G^{\rho\nu}\right)]^{-1/2}\sum_{k=0}^{5}\frac{\alpha^{k}}{2^{k}k!}\widehat{\Gamma}^{\mu_{1}\nu_{1}\cdots\mu_{k}\nu_{k}}\mathcal{F}_{\mu_{1}\nu_{1}}\cdots\mathcal{F}_{\mu_{k}\nu_{k}} = 1 + \mathcal{O}(\alpha)$$

Complete DBI-VA model
for the p=9 case (no scalars
$$\phi^{I}$$
)
$$S = -\frac{1}{\alpha^{2}} \int d^{10}x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha \mathcal{F}_{\mu\nu})} - 1 \right\}$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} , \qquad \Pi^m_{\mu} = \delta^m_{\mu} - \alpha^2 \bar{\lambda} \Gamma^m \partial_{\mu} \lambda ,$$

$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} + 2\alpha \bar{\lambda} \Gamma_{[\nu} \partial_{\mu]} \lambda , \qquad \mu = 0, 1, ..., 9 , \qquad m = 0, 1, ..., 9 ,$$

16 ϵ transformations, deformation of the Maxwell supermultiplet supersymmetries

$$\delta_{\epsilon}\lambda = -\frac{1}{2\alpha}(\mathbb{1}-\beta)\epsilon - \frac{1}{2}\alpha\partial_{\mu}\lambda\bar{\lambda}\Gamma^{\mu}(\mathbb{1}+\beta)\epsilon,$$

$$\delta_{\epsilon}A_{\mu} = -\frac{1}{2}\bar{\lambda}\Gamma_{\mu}(\mathbb{1}+\beta)\epsilon + \frac{1}{2}\alpha^{2}\bar{\lambda}\Gamma_{m}(\frac{1}{3}\mathbb{1}+\beta)\epsilon\bar{\lambda}\Gamma^{m}\partial_{\mu}\lambda - \frac{1}{2}\alpha\bar{\lambda}\Gamma^{\rho}(\mathbb{1}+\beta)\epsilon F_{\rho\mu}$$

16 VA-type ζ transformations

$$\delta_{\zeta}\lambda = \alpha^{-1}\zeta + \alpha\partial_{\mu}\lambda\bar{\lambda}\Gamma^{\mu}\zeta ,$$

$$\delta_{\zeta}A_{\mu} = \bar{\lambda}\Gamma_{\mu}\zeta + \alpha\bar{\lambda}\Gamma^{\rho}\zeta F_{\rho\mu} - \frac{1}{3}\alpha^{2}\bar{\lambda}\Gamma_{m}\zeta\bar{\lambda}\Gamma^{m}\partial_{\mu}\lambda$$

Note: VA susys: do not transform fermion to boson states; are not the regular susys

$\begin{array}{l} Comparing bottom-up \\ \hline with top-down \\ S &= \int d^{D}x \left\{ -\frac{1}{4}F^{2} + \bar{\lambda}\partial\lambda \right\} - 2\alpha c_{4}F^{\mu\nu}\bar{\lambda}\Gamma_{\mu}\partial_{\nu}\lambda \\ &+ \frac{1}{8}\alpha^{2}[\operatorname{Tr} F^{4} - \frac{1}{4}\left(F^{2}\right)^{2} + 4(1 + 4c_{4}^{2})(F^{2})^{\mu\nu}\bar{\lambda}\Gamma_{\mu}\partial_{\nu}\lambda \\ &+ (1 - 4c_{4}^{2})F_{\mu}^{\lambda}(\partial_{\lambda}F_{\nu\rho})\bar{\lambda}\Gamma^{\mu\nu\rho}\lambda + \frac{1}{2}(c_{1} + 8c_{4}^{2})F^{2}\bar{\lambda}\partial\lambda \\ &- \frac{1}{2}c_{2}F_{\mu\nu}(\partial_{\lambda}F^{\lambda}{}_{\rho})\bar{\lambda}\Gamma^{\mu\nu\rho}\lambda - \frac{1}{2}(c_{3} + 4c_{4}^{2})F_{\mu\nu}F_{\rho\sigma}\bar{\lambda}\Gamma^{\mu\nu\rho\sigma}\partial\lambda] + \mathcal{O}(\alpha^{2}\lambda^{4}) + \mathcal{O}(\alpha^{3}) \end{array}$

- Expanding the all-order result, one re-obtains indeed the result that was obtained in the bottom-up calculation to order α² using a particular field definition (choice of coefficients c_i : such that no ∂ F terms: c₁=2, c₂=0, c₃=-1, c₄=-1/2).
- For the transformation laws: agree modulo a 'zilch symmetry':
 (on-line trivial symmetry)
 (ζ is linear combination of ε and η)
- This proves that our all-order result is indeed the full deformation that we were looking for !

The map: dimensions and # of supersymmetries

Complete DBI-VA model for the p=3 case

$$S = -\frac{1}{\alpha^2} \int d^4 x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha \mathcal{F}_{\mu\nu})} - 1 \right\}, \quad \mu = 0, 1, 2, 3$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} = \eta_{m'n'} \Pi^{m'}_{\mu} \Pi^{n'}_{\nu} + \delta_{IJ} \Pi^I_{\mu} \Pi^J_{\nu}, \qquad m' = 0, 1, 2, 3, \qquad I = 1, ..., 6$$

$$\Pi^{m'}_{\mu} = \delta^{m'}_{\mu} - \alpha^2 \bar{\lambda} \Gamma^{m'} \partial_{\mu} \lambda, \qquad \Pi^I_{\mu} = \partial_{\mu} \phi^I - \alpha^2 \bar{\lambda} \Gamma^I \partial_{\mu} \lambda$$

$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha \bar{\lambda} \Gamma_{[\mu} \partial_{\nu]} \lambda - 2\alpha \bar{\lambda} \Gamma_I \partial_{[\mu} \lambda \partial_{\nu]} \phi^I$$

16 ϵ and 16 ζ symmetries and shift symmetry of scalars

Can be compared with N = 4, D=4

N=4, D=4

$$S_{Maxw} = \int d^{4}x \left(-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+2\bar{\psi}_{i}\partial\psi^{i}-\frac{1}{8}\partial_{\mu}\varphi_{ij}\partial^{\mu}\varphi^{ij}\right)$$
one vector; 4 Majorana (or Weyl) spinors and 6 scalars)
recognized as $\alpha=0$ part of all order action and transformations when
 $\alpha\varphi_{ij} = \phi_{a}\beta_{ij}^{a} - i\phi_{a+3}\alpha_{ij}^{a}$, $a = 1, 2, 3$
 \downarrow Gliozzi, Scherk, Olive 4× 4 matrices
rewriting the D=10 Majorana-Weyl fermion as
 $\lambda = \begin{pmatrix} \psi^{i} \\ \psi_{i} \end{pmatrix}$
 $\Gamma^{\mu} = \gamma^{\mu} \otimes \mathbb{1}_{8}$, $\Gamma^{a} = \gamma_{*} \otimes \begin{pmatrix} 0 & \beta^{a} \\ -\beta^{a} & 0 \end{pmatrix}$, $\Gamma^{a+3} = \gamma_{*} \otimes \begin{pmatrix} 0 & i\alpha^{a} \\ i\alpha^{a} & 0 \end{pmatrix}$
 $C_{10} = C_{4} \otimes \begin{pmatrix} 0 & \mathbb{1}_{4} \\ \mathbb{1}_{4} & 0 \end{pmatrix}$, $\Gamma_{*} = \gamma_{*} \otimes \begin{pmatrix} \mathbb{1}_{4} & 0 \\ 0 & -\mathbb{1}_{4} \end{pmatrix}$

All-order deformations of N=4,D=4

Since the action is invariant at all orders under 16+16 supersymmetries, this is the full result !
The action has both type of supersymmetries: ordinary SUSY and VA-type
The 10-dimensional formulation is much simpler.

$$S = -\frac{1}{\alpha^2} \int d^4 x \left\{ \sqrt{-\det(G_{\mu\nu} + \alpha \mathcal{F}_{\mu\nu})} - 1 \right\}, \quad \mu = 0, 1, 2, 3$$

$$G_{\mu\nu} = \eta_{mn} \Pi^m_{\mu} \Pi^n_{\nu} = \eta_{m'n'} \Pi^{m'}_{\mu} \Pi^{n'}_{\nu} + \delta_{IJ} \Pi^I_{\mu} \Pi^J_{\nu}, \qquad m' = 0, 1, 2, 3$$

$$\Pi^{m'}_{\mu} = \delta^{m'}_{\mu} - \alpha^2 \bar{\lambda} \Gamma^{m'} \partial_{\mu} \lambda, \qquad \Pi^I_{\mu} = \partial_{\mu} \phi^I - \alpha^2 \bar{\lambda} \Gamma^I \partial_{\mu} \lambda, \qquad I = 1, ..., 6$$

$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu} - 2\alpha \bar{\lambda} \Gamma_{[\mu} \partial_{\nu]} \lambda - 2\alpha \bar{\lambda} \Gamma_I \partial_{[\mu} \lambda \partial_{\nu]} \phi^I$$

World volume theory in AdS background $S_{cl} = S_{DBI} + S_{WZ}$ $S_{DBI} = -\int d^{p+1}\sigma \sqrt{-\det(g_{\mu\nu}^{ind} + F_{\mu\nu})}$ $g_{\mu\nu}^{ind} = \partial_{\mu} X^{M} \partial_{\nu} X^{N} G_{MN}$

solution metric

rigid symmetries inherited from solution:

- AdS superisometries (incl. susys)
- isometries of sphere

local

- GCT in (p+1)-dimensional worldvolume
- *κ* symmetry

P. Claus, R. Kallosh and AVP, hep-th/9711161 and 9812066 P. Claus, R. Kallosh, J. Kumar, P. Townsend and AVP, hep-th/9711161

Gauge fixing of GCT on brane and of κ - symmetry

- After gauge fixing: remaining symmetries (from rigid super-AdS and gauge-fixed GCT and κ) appear as conformal rigid symmetries on the brane.
 fermionic ones are ε and η. (similar to ε and ζ in this new work).
- Hope to get all-order result with conformal symmetry in the cases where these superalgebras exist (as for D3)

V-branes: DBI-VA actions with 8+8 supersymmetries

- Our results apply also when we start with D=6, and then can take either p=5 or p=3: these are related to branes called V5 and V3 (see talk Eric Bergshoeff)
- Same formulas as for D=10 lead to actions in 6 and 4 dimensions with 8+8 supersymmetries

The map: dimensions and # of supersymmetries

5. Conclusions 1

Superconformal symmetry has been used as a tool for constructing classical actions of supergravity.

- also higher-derivative terms can be constructed
- Quantum calculations show that there are unknown relevant properties of supergravity theories.
- Can (broken) superconformal symmetry be such an extra quantum symmetry?
- The non-existence of (broken) superconformal-invariant counterterms and anomalies in N=4, D=4 could in that case explain 'miraculous' vanishing results.

Conclusions 2

- We do not have a systematic knowledge of higher-derivative supergravity action
- Perturbative approach: construct actions and transformation laws order by order in α .
- Starting from Dp brane actions in D=10 we can construct DBI-VA actions with 16+16 susys (p=9,7,5,3,...). For p=3 this is the deformation of N=4, D=4 with higher order derivatives
- Same can be done from D=6: DBI-VA actions (V-branes) with 8+8 susys, e.g. containing the deformation of D=4, N=2.
- Hope that this can lead also to supergravity actions using the superconformal methods.