
The simplicity of maximally supersymmetric field theories

Martin Cederwall

Breaking of supersymmetry and ultraviolet divergences in extended supergravity
Frascati, March 28, 2013



Plan

0. Background

1. From superspace to pure spinors

On-shell superfields

BRST operator

Cohomologies and linearised fields

Towards an action

2. Pure spinors

Pure spinor space (D=10, D=11)

Non-minimal variables and integration

3. Supersymmetric actions (D=10 SYM, D=11 SG)

Linearised action

Batalin–Vilkovisky formalism

Operators and full actions

Gauge fixing and the b operator

4. Higher derivatives and D=10 Born–Infeld

5. Conclusions



0. Background

Maximally supersymmetric models have on-shell supermultiplets.

There is no finite set of auxiliary fields.

Examples:

D = 10 super-Yang–Mills theory

N = (2,0) model in D = 6

IIB supergravity in D = 10

D = 11 supergravity

BLG model in D = 3

Dimensional reductions of above

How does one formulate an action principle preserving manifest

supersymmetry? This is of course desirable, especially for exam-

ining quantum properties.

Pure spinors provide an answer (in the cases self-dual fields are

not present).



1. From superspace to pure spinors

On-shell superfields

Pure spinor arise naturally as a “book-keeping device” in the

traditional superspace formulation of maximally supersymmetric

gauge and gravity theories.

I will start with the canonical example, a D = 10 vector multiplet,

to show how this works, and then continue toD = 11 supergravity.

D = 10 SYM has a formulation as gauge theory on superspace.

One introduces

AM (x, θ) = EM
AAA(x, θ)

where M = (m,µ), A = (a, α).



1. From superspace to pure spinors

On-shell superfields

AM (x, θ) = EM
AAA(x, θ)

EM
A encodes the background supergeometry, which for simplicity

can be thought of as flat. The superspace torsion is a gamma

matrix,

{Dα, Dβ} = −T
a
αβDa = −2γaαβDa

Demanding Fαβ = 0 implies the equations of motion for the com-

ponent fields.



1. From superspace to pure spinors

On-shell superfields

More precisely:

γαβa Fαβ = 0 is a conventional constraint, relating the superfield

Aa(x, θ) to the vector which also exists at order θ in Aα(x, θ).

γαβabcdeFαβ = 0 is the equation of motion, which puts the theory

on-shell.



1. From superspace to pure spinors

On-shell superfields

More precisely:

γαβa Fαβ = 0 is a conventional constraint, relating the superfield

Aa(x, θ) to the vector which also exists at order θ in Aα(x, θ).

γαβabcdeFαβ = 0 is the equation of motion, which puts the theory

on-shell.

The lesson is:

Everything is contained in Aα, the lowest-dimensional superfield.

The linearised field equations are γαβabcdeDαAβ = 0.

From this the component equations of motion arise by checking

the superspace Bianchi identities.



1. From superspace to pure spinors

BRST operator

Consider introducing a bosonic spinor λα, and forming

q = λαDα

If λ is pure, i.e., if (λγaλ) = 0, then q2 = 0.

(Remember: {Dα, Dβ} = −2γ
a
αβDa.)

Form the fermionic scalar field Ψ = λαAα.

The linearised field equations are

qΨ = λαDα · λ
βAβ ∝ (λγabcdeλ)(DγabcdeA) = 0



1. From superspace to pure spinors

Cohomologies and linearised fields

The equations of motion are qΨ = 0.

The gauge symmetry δΛAα = DαΛ is written δΛΨ = qΛ.

So, physical states (with linearised field equations) are identified

as cohomology of q.

We think of λ as a ghost variable, with gh# 1, and thus Ψ(x, θ, λ)

is a field of gh# 1.

There is cohomology also at other ghost numbers, i.e., at other

powers of λ. The interpretation is as ghosts and antifields.



1. From superspace to pure spinors

Cohomologies and linearised fields

gh # = 1 0 −1 −2 −3

dim = 0 c
1
2 • •

1 • Aa •
3
2 • χα • •

2 • • • • •
5
2 • • χ∗

α • •

3 • • A∗a • •
7
2 • • • • •

4 • • • c∗ •
9
2 • • • • •



1. From superspace to pure spinors

On-shell superfields (SG)

Supergravity is formulated as Cartan geometry on superspace

(analogous statements true for other supersymmetric gauge theo-

ries).

Coordinates: ZM = (xm, θµ).

Vielbein: EA = dZMEM
A.

Spin connection 1-form (Lorentz valued): ΩA
B .

Torsion 2-form: TA = DEA = dEA + EB ∧ ΩB
A.

Curvature 2-form: RA
B = dΩA

B +ΩA
C ∧ ΩC

B .

Bianchi identities: DTA = EB ∧RB
A, DRA

B = 0.

(M = (m,µ), A = (a, α).)

[Cremmer, Ferrara 1980; Brink, Howe 1980]



1. From superspace to pure spinors

On-shell superfields

Too many superfields. Conventional constraints remove all inde-

pendent superfield except the lowest-dimensional one, Eµ
a.

They are used to set all of the dimension-0 torsion to zero, except

Tαβ
c = 2γcαβ + 1

2U
c
e1e2γ

e1e2
αβ + 1

5!V
c
e1...e5γ

e1...e5
αβ
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1. From superspace to pure spinors

On-shell superfields

Too many superfields. Conventional constraints remove all inde-

pendent superfield except the lowest-dimensional one, Eµ
a.

They are used to set all of the dimension-0 torsion to zero, except

Tαβ
c = 2γcαβ + 1

2U
c
e1e2γ

e1e2
αβ + 1

5!V
c
e1...e5γ

e1...e5
αβ

If U and V are set to 0, the torsion BI imply the equations of

motion.

All physical fields are contained in the supergeometry. For exam-

ple,

Taβ
γ ∼ Hae1e2e3(γ

e1e2e3)β
γ − 1

8H
e1e2e3e4(γae1e2e3e4)β

γ



1. From superspace to pure spinors

Cohomologies and linearised fields

A similar BRST operator q = λαDα can be used, now acting on

a linearised field

Φa = λαEα
a

Again, if (λγaλ) = 0, q is nilpotent. The linearised supergrav-

ity equations of motion are encoded in qΦa ≈ 0 (implying the

vanishing of U and V ), and δξΦ
a = qξa contains the linearised

diffeomorphisms and local supersymmetry.

Φa is considered modulo a “shift symmetry” Φa → Φa + (λγaρ).



1. From superspace to pure spinors

Cohomologies and linearised fields

An alternative linearised superspace description of the D = 11

supergravity is provided by the 3-form potential on superspace.

Again, its lowest-dimensional part, Cαβγ , contains all the fields,

including the geometric degrees of freedom.

Then one forms Ψ = λαλβλγCαβγ , and qΨ = 0 implies the lin-

earised equations of motion.

I will not show a table of cohomologies. They contain all fields,

ghosts and antifields, as for SYM.

The field Ψ is more fundamental than Φa, since it contains the

3-form potential, while Φa only contains H = dC.

One would expect a relation of the form Φa = RaΨ. I will come

back to this.



1. From superspace to pure spinors

Towards an action

The only thing lacking for an off-shell formulation and an action

is a measure. If it can be formed, a linearised action is

S =

∫

[dZ](ΨQΨ+ . . .)
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1. From superspace to pure spinors

Towards an action

The only thing lacking for an off-shell formulation and an action

is a measure. If it can be formed, a linearised action is

S =

∫

[dZ](ΨQΨ+ . . .)

In the SYM case, a “measure” picking the coefficient of the coho-

mology at λ3θ5 has correct gh# and dimension.

The corresponding top cohomology in D = 11 SG is at λ7θ9.

Such a measure is however degenerate, and and action based on

it does not give correct equations of motion.



2. Pure spinors

Pure spinor space

The solution to the pure spinor constraint (λγaλ) = 0 requires λ

to be complex.

In D = 10, the space of pure spinors is 11C-dimensional (out of

the original 16),

and in D = 11 23C-dimensional (out of the original 32).

A D = 11 pure spinor does not contain two 10-dimensional ones.



2. Pure spinors

Pure spinor space

D = 10:

dimC = 11



2. Pure spinors

Pure spinor space

D = 10:

dimC = 11

λ = 0⇔ ξ = (λλ̄) = 0



2. Pure spinors

Pure spinor space

D = 11:

dimC = 23

λ = 0⇔ ξ = (λλ̄) = 0



2. Pure spinors

Pure spinor space

D = 11:

dimC = 23

λ = 0⇔ ξ = (λλ̄) = 0

(λγabλ) = 0⇔ η = (λγabλ)(λ̄γabλ̄) = 0

16C-dimensional subspace

of D = 12 pure spinors



2. Pure spinors

Non-minimal variables and integration

We would like to integrate over the complex manifolds, with some

natural measure that effectively reproduces the top cohomology

mentioned before.

We must include λ̄α as a variable. But in order not to destroy

cohomology, it must be accompanied by a fermionic variable rα,

and the new non-minimal variables must be included in the BRST

operator:

Q = q + ∂̄ = λαDα + rα
∂

∂λ̄α

r obeys (λ̄γar) = 0, and has as many indep. components as λ. It

can be thought of as the differential dλ̄α (hence the notation ∂̄).

[Berkovits]



2. Pure spinors

Non-minimal variables and integration

The most elegant way to understand the measure is to think of

Ψ(x, θ;λ, λ̄, r) as a cochain,

Ψ =

11 or 23
∑

k=0

ψα1...αk(x, θ;λ, λ̄)dλ̄α1
∧ . . . ∧ dλ̄α1

There is a unique Calabi–Yau metric on the pure spinor space.

The corresponding holomorphic top form Ω can be used to define

integration:
∫

[dZ]F =

∫

[dx]

∫

[dθ]

∫

Ω ∧ F

[Berkovits; Cederwall]



2. Pure spinors

Non-minimal variables and integration

∫

[dZ]F =

∫

[dx]

∫

[dθ]

∫

Ω ∧ F

This integration is obviously non-degenerate, and it turns out to

be BRST-equivalent to the naive top cohomology.

In D = 10, Ω ∼ λ−3d11λ.

In D = 11, Ω ∼ λ−7d23λ.

The correct integration of a minimal cohomology λ3θ5 or λ7θ9 is

obtained by insertion of a regulator

e−{Q,(λ̄θ)} = e−(λλ̄)−(dλ̄θ)

(note: 5 = 16− 11, 9 = 32− 23 !),

which also makes integration convergent at λ =∞ (alternatively,

a basis for cohomology with these properties is chosen).



3. Supersymmetric actions

Linearised action

A linearised action is

S =

∫

[dZ]ΨQΨ .

In order to introduce interaction, the concept of cohomology (which

is inherently linear) must be generalised. The appropriate lan-

guage is the Batalin–Vilkovisky formalism. This is already hinted

at by the fact that ghosts and antifields are included in the coho-

mology.



3. Supersymmetric actions

Batalin–Vilkovisky formalism

The action itself is the generator of “gauge transformations”, gen-

erated as δX = (S,X), where (·, ·) is the antibracket. In a com-

ponent formalism:

(A,B) =

∫

[dx]

(

A
←
δ

δφA(x)

→
δ

δφ⋆A(x)
B −A

←
δ

δφ⋆A(x)

→
δ

δφA(x)
B

)

.

The governing equation generalising Q2 = 0 is the BV master

equation (S, S) = 0.
[Batalin, Vilkovisky 1981]

For the pure spinor superfield Ψ, the antibracket takes the simple

form

(A,B) =

∫

A
←
δ

δΨ(Z)
[dZ]

→
δ

δΨ(Z)
B .

[Cederwall 2009]



3. Supersymmetric actions

Full actions

The full BV action for D = 10 super-Yang–Mills (and its dimen-

sional reductions) is the Chern–Simons-like action

S =

∫

[dZ]Tr
(

1
2ΨQΨ+ 1

3Ψ
3
)

.

implicit in [Berkovits 2001,2005; Cederwall, Nilsson, Tsimpis 2001]

Note that there is only a 3-point coupling; the quartic interaction

arises on elimination of “auxiliary fields”.

Still, the full gauge symmetry (and more) is present.



3. Supersymmetric actions

Full actions

An analogous formulation exists for the Bagger–Lambert–Gustavsson

and Aharony–Bergman–Jafferis–Maldacena models in D = 3.

The simplification there is even more radical: The component ac-

tions contain 6-point couplings, but the pure spinor superfield

actions only have minimal coupling (i.e., 3-point interactions).

[Cederwall, 2008]

But I would like to turn to supergravity.



3. Supersymmetric actions

Operators and full actions

Remember that we had the two fields

Ψ (fermionic, gh# 3, containing C), and

Φa (fermionic, gh# 1, containing H).

A reasonable 3-point coupling is

S3 ∝

∫

[dZ](λγabλ)ΨΦaΦb

It has correct ghost number and dimension.

The factor (λγabλ) also provides the antisymmetry [ab] and in-

variance under Φa → Φa + (λγaρ).

Note the similarity with
∫

C ∧H ∧H, which it can be shown to

contain.



3. Supersymmetric actions

Operators and full actions

All that is needed now is to find an operatorRa such that [Q,Ra] ≈

0. Then the master equation will be satisfied to this order.

It is possible to relate the fields Ψ and Φa through an operator

Ra of non-trivial cohomology as

Φa = RaΨ .

where

Ra = η−1(λ̄γabλ̄)∂b + . . .

where the ellipsis represents terms with r and r2 and more singular

behaviour in η = (λγabλ)(λ̄γ
abλ̄).

[Cederwall 2009,2010]



3. Supersymmetric actions

Operators and full actions

One may expect that an expansion around flat space would be

non-polynomial. This is however not the case. Checking the master

equation to higher order in the field involves commutators of Ra’s.

The Ra’s don’t commute, but “almost”.

The master equation is exactly satisfied by

S =

∫

[dZ]
[

1
2ΨQΨ+ 1

6 (λγabλ)(1−
3
2TΨ)ΨRaΨRbΨ

]

where T is a nilpotent operator (TATB = 0).

This is a complete description of D = 11 supergravity, respecting

all local symmetries.



3. Supersymmetric actions

Operators and full actions

Operators in D = 10 will typically be singular at λ = 0 (the tip

of the pure spinor cône), while in D = 11 they are singular on the

subspace η = 0 of D = 12 pure spinors.



3. Supersymmetric actions

Gauge fixing and the b operator

An important example of operators is the b operator, or “b-ghost”.

In the pure spinor formalism, there is no constraint corresponding

to p2 = 0 (or Virasoro). This is a consequence of the on-shell

property of the supermultiplets. Therefore, there is no bc ghost

system.

In superstring or superparticle models, gauge fixing can be achieved

by imposing bΨ = 0. Here, the b operator is not fundamental, but

composite. Just like the Ra operator already encountered, it can

be derived in terms of non-minimal variables. The defining prop-

erty is

{b,Q} = �

which makes Q (the kinetic operator) invertible on a field with

bΨ = 0. The propagator becomes b�−1.
[Berkovits]



3. Supersymmetric actions

Gauge fixing and the b operator

The b operator in D = 11 has been derived,

b = 1
2η

−1(λ̄γabλ̄)(λγ
abγiD)∂i + . . .

[Cederwall, Karlsson 2012]

where the ellipsis denotes terms with η−(k+1)rk, k ≤ 3.

There is no need for introduction of extra non-minimal fields (anti-

ghost, Nakanishi–Lautrup) on gauge fixing. These are automati-

cally included in the gauge-fixed Ψ. Good for calculations.

Normally, gauge fixing in the BV framework involves expressing

the antifields in terms of fields using a gauge fixing fermion. That

procedure is not available to us, when the self-conjugate Ψ con-

tains both fields and antifields.



4. Higher derivatives and Born–Infeld

The formalism presented gives the opportunity to investigate de-

formations, e.g.. higher-derivative terms, in a systematic way.

This has been used for D = 10 SYM in order to obtain the com-

plete F 4 terms
[Cederwall, Nilsson, Tsimpis]



4. Higher derivatives and Born–Infeld

The formalism presented gives the opportunity to investigate de-

formations, e.g.. higher-derivative terms, in a systematic way.

This has been used for D = 10 SYM in order to obtain the com-

plete F 4 terms
[Cederwall, Nilsson, Tsimpis]

L = − 1
4F

AijFA
ij + 1

2χ
AD/χA

− 6α′2MABCD

[

tr(FAFBFCFD)− 1
4 tr(F

AFB)tr(FCFD)

− 2FA i
kF

B jk(χCγiDjχ
D) + 1

2F
A ilDlF

B jk(χCγijkχ
D)

+ 1
180 (χ

AγijkχB)(Dlχ
CγijkD

lχD) + 3
10 (χ

AγijkχB)(Diχ
CγjDkχ

D)

+ 7
60f

D
EFF

A ij(χBγijkχ
C)(χEγkχF )

− 1
360f

D
EFF

A ij(χBγklmχC)(χEγijklmχ
F )

]

+O(α′3) .



4. Higher derivatives and Born–Infeld

The formalism presented gives the opportunity to investigate de-

formations, e.g.. higher-derivative terms, in a systematic way.

This has been used for D = 10 SYM in order to obtain the com-

plete F 4 terms
[Cederwall, Nilsson, Tsimpis]

and for the generic deformations of D = 11 supergravity

[Howe; Cederwall, Gran, Nielsen, Nilsson; Howe, Tsimpis,...]

This earlier work was done at the level of field equations (as su-

perspace constraints).

An action principle and a master equation give more powerful

tools.



4. Higher derivatives and Born–Infeld

The F 4 terms of D = 10 SYM were obtained by replacing the

constraint Fαβ = 0 by Fαβ ∼ χ2F . The expression was unique

modulo trivial terms, and led to deformed equations of motion,

which could be integrated to terms in a component action

Analogously, deformation of Tαβ
a = 2γaαβ is necessary for higher-

derivative terms in maximal supergravity.

When we now have an action, it is useful to work at that level,

letting the master equation do the job.



4. Higher derivatives and Born–Infeld

The F 4 deformation of SYMwas reconsidered in [Cederwall, Karls-

son 2011].

Much in the spirit of the construction of operators we have already

encountered, we construct “physical operators” of negative ghost

number, the effect of which is to form fields “starting with” a

certain physical field, say χα or Fab, from the pure spinor field Ψ.

Using the properties of such operators we could show that a de-

formation with

S4 ∼

∫

[dZ]Ψ(λγaχ̂)Ψ(λγbχ̂)ΨF̂abΨ

provides the F 4 deformation of super-Maxwell theory.



4. Higher derivatives and Born–Infeld

The situation is even better. It turns out that the action

S =

∫

[dZ]
(

ΨQΨ+ kα′2Ψ(λγaχ̂)Ψ(λγbχ̂)ΨF̂abΨ
)

satisfies the master equation (S, S) = 0 to all orders, and we

conjecture that it is gives the full D = 10 BI dynamics.

In a non-abelian situation, it provides the complete answer for the

totally symmetric part in adjoint indices.

It would of course be informative to see how the non-polynomial

equations of motion for component fields arise. We have not been

able to do this in detail.



5. Conclusions

The framework described resolves the issue of supersymmetric actions for

maximally supersymmetric theories.

The interaction terms are generically much simpler and of lower order than

in a component language; for supergravity and abelian BI to the extent that

the actions becomes polynomial.
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The framework described resolves the issue of supersymmetric actions for

maximally supersymmetric theories.

The interaction terms are generically much simpler and of lower order than

in a component language; for supergravity and abelian BI to the extent that

the actions becomes polynomial.

Although the supergravity action respects the local symmetries, the geometric

picture is lost, and background invariance is not manifest (the BRST operator

contains information of the background).

Still, the formalism is suitable for perturbation theory and amplitude calcu-

lations. The presence of an action provides consistent vertices (3-point, and

“very little” 4-point) without the consistency checks necessary in the first-

quantised formalism of [Green, Björnsson; Björnsson]. The D=11 formalism

seems however to be less connected to KLT or “double-copy”.

[Cederwall, Karlsson 2012, see talk by Anna Karlsson]

We do not yet know how to implement U-duality.

The superspace formalism may be useful in models with less supersymmetry.


