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Motivation
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• How to deform an action S without breaking its symmetries?

• Which deformations can be added in a way, such that duality symmetry can be

restored order by order in a deformation parameter?

• Why: duality symmetries might play a role in explaining UV-properties of super-

gravities

• main tool:

conservation of

duality current

duality transformation

of the action S

a

This talk:

• formalize the way to obtain duality-invariant theories starting from an initial defor-

mation

• apply the formalized method to abelian N = 2 supersymmetric gauge theory



Outline
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a

From Maxwell to Born-Infeld

• duality symmetry in U(1) gauge theory

• twisted self-duality constraint

• how to obtain a duality invariant action starting from a deformation?

• Born-Infeld example

a

N = 2 gauge theory and U(1)-duality

• N = 2 theories

• different sources of deformation

• N = 2 Born-Infeld action



Duality symmetry in U(1) gauge theory
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Rotating the electric and magnetic fields

δ

(

E

B

)

=

(

cosα − sinα
sinα cosα

) (

E

B

)

in the source-free Maxwell equations

∂tB = −∇×E , ∇ ·B = 0

∂tD = ∇×H , ∇ ·D = 0

with

D = E , H = B

leaves the Hamiltonian

H =
1

2
(E2 +B

2)

unchanged, but alters the Lagrangian

L =
1

2
(E2 −B

2) .



Duality symmetry in U(1) gauge theory
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In the presence of matter, the equations are still valid

∂tB = −∇×E , ∇ ·B = 0

∂tD = ∇×H , ∇ ·D = 0

however,

D = D(E,B) , and H = H(B,E)

are non-linear .

• which (duality) transformations leave the above non-linear system invariant?

• how can one generalize to different (supersymmetric) theories with more fields?



Duality symmetry in U(1) gauge theory
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More precisely: search for theories admitting a Lagrangian formulation

varying the usual Maxwell Lagrangian for matter with respect to the gauge potential

leads to

D =
∂L(E,B)

∂E
, and H = −∂L(E,B)

∂B
.

Prepare for treating more general theories: switch to four-component notation:

{E,B} → {F, F̃ ,G, G̃}

leads to the (constitutive) relation:

G̃µν = 2
∂L(F )

∂Fµν

where G̃µν = 1
2ε

µνρσGρσ.

Describe duality tranformation as Legendre-transformation:

L̃(F,G) = L(F )− 1

2
εµνρσFµν∂ρÃσ where Gµν = ∂µÃν − ∂νÃµ

The above Legendre transformation is a duality rotation if and only if the symmetry

condition is met. Otherwise one obtains just a different formulation of the theory.



Duality symmetry in U(1) gauge theory
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Shall be preserved under duality:

∂µF̃
µν = 0 Bianchi identities

∂µG̃
µν = 0 equations of motion

aGeneral duality rotations

δ

(

F
G

)

=

(

A B
C D

) (

F
G

)

exchanges the role of Bianchi identity and the equation of motion.

Too general :

• the functional form of shall not change, i.e.

G̃′µν = 2
∂L(F ′)

∂F ′
µν

where F ′ = F + δF, G′ = G+ δG

• deformed theory shall reduce to Maxwell in the weak field limit (F 4 ≪ F 2)

Under those conditions: GL(2,R) → SO(2,R), maximal connected Lie group of

duality rotations in pure non-linear electromagnetism [Aschieri, Ferrara
Zumino ]



NGZ current conservation
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Thus, the infinitesimal duality transformations to consider read:

δ

(

F
G

)

=

(

0 B
−B 0

) (

F
G

)

Equivalent formulation: Noether-Gaillard-Zumino (NGZ) current conservation:

FF̃ +GG̃ = 0
[Gibbons

Rasheed]

[Gaillard
Zumino]

a
Formulation is not symmetric in field F and G: find a more general language.

Define:
T = F − iG T = F + iG

and their self-dual and anti-self-dual components

T± =
1

2
(T ± iT̃ ) T

±
=

1

2
(T ± iT̃ )

Maxwell theory in vacuum:

T+ = F+ − iG+ = 0 is equivalent to FF̃ +GG̃ = 0



Born-Infeld theory
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Best known deformation of Maxwell Born-Infeld theory : [ Born
Infeld]

LBI = g−2
(

1−
√
∆
)

where ∆ = 1 + 2g2
(

F 2

4

)

− g4

(

FF̃

4

)

with dual field G̃

Gµν = −εµνρσ
∂L(F )

∂Fρσ

=
1√
∆

(

F̃µν +
g2

4
(FF̃ )Fµν

)

.

Short calculation: FF̃ +GG̃ = 0.

However, there is a different formulation in form of the non-linear constraint : [Schrödinger]

T+ +
g2

16

T
+
(T T̃ )2

(T−)2
= 0 LSch(T ) = 4

T 2

(T T̃ )
, LSch = −L∗

Sch .

• one can readily recover the Born-Infeld action from this constraint.

• constraint contains complete information about the theory.



Deformation
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How can one construct an action from an initial deformation? [Bossard
Nicolai ][Carrasco, Kallosh

Roiban ]

T+ = 0 Maxwell

T+ +
g2

16

T
+
(T T̃ )2

(T−)2
= 0 Born-Infeld

Information about the deformation is contained in the constraint.

How to obtain the constraint and the corresponding action?

• start from a deformation I(T−, T
+
, g) invariant under the classical (unperturbed)

equations of motion

• set

T+ =
δI(T−, T+, λ)

δT+
.

• solve the above equation iteratively (e.g. in terms of the dual field). Start from the

classical solution. Ensure validity of the NGZ constraint in every step.

• reconstruct the action using G̃µν = 2∂L(F )

∂Fµν

.



Reconsider Born-Infeld theory
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Consider the following ansatz for a deformation: [Carrasco, Kallosh
Roiban ]

I(T−, T
+
) =

∞
∑

n=0

an
8 g2

(

1
4 g

4(T
−
)2(T−)2

)n+1

T+
µν =

g2

16
T

+

µν(T
−)2
[

1 +

∞
∑

n=0

an

(

1
4 g

4(T
+
)2(T−)2

)n ]

,

where an = dn

n+1 and a0 = 1 + d0.

Constraining the the coefficients to yield the Born-Infeld action leads to

I(T−, T
+
, g) =

6

g2

(

1− 3F2(− 1
2 ,− 1

4 ,
1
4 ;

1
3 ,

2
3 ;− 1

27 g
4 (T+)2 (T−)2).

)

• infinite number of deformations necessary to reproduce Born-Infeld

• method allows application to other sources and in other theories

• the hypergeometric function leading to the Born-Infeld theory satisfies a hidden

fourth-order constraint [Aschieri
Ferrara ]

a ⇒ apply to N = 2 abelian gauge theory



N = 2 supersymmetric theory
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aN = 2 superspace: ZA = (xa, θαi , θ
i

α̇)
Chiral and antichiral superfield strength W and W satisfy Bianchi identities

Dij W = D ij W where W = D 4Dij Vij

W = D 4D ij
Vij

in terms of the unconstrained prepotential Vij .

Write duality transformation as a Legendre transformation

Sinv = S[W,W]− i

8

∫

d8ZWM+
i

8

∫

d8 ZWM ,

which is only valid if

iM = 4
δ

δWS[W,W] and iM = 4
δ

δWS[W,W].

Duality transformation:aaaaa δW = BM δW = −BW
N = 2 Noether-Gaillard-Zumino-condition:

∫

d8Z
(

W2 +M2
)

=

∫

d8Z
(

W2
+M2

)

,



N = 2 supersymmetric theory
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Construction of duality-compatible action for N = 2-theories

Define objetcs similar to the Maxwell case:

T+ = W − iM T
+
= W + iM

T− = W − iM T
−
= W + iM

with infinitesimal rotations

δ

(

T+

T
+

)

=

(

iB 0
0 −iB

) (

T+

T
+

)

δ

(

T−

T
−

)

=

(

iB 0
0 −iB

) (

T−

T
−

)

N = 2 Noether-Gaillard-Zumino-condition:
∫

d8Z T
+
T+ −

∫

d8Z T
−
T− = 0



N = 2 supersymmetric theory
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In analogy to the Maxwell case, consider deformation sources: [Broedel, Carrasco, Ferrara
Kallosh, Roiban ]

T+ =
δI(T−, T

+
)

δT
+ T

−
=

δI(T−, T
+
)

δT−

Thus, the NGZ constraint reads:

0 =

∫

dZ T
+ δ

δT
+ I(T−, T

+
)−

∫

dZT− δ

δT−
I(T−, T

+
)

which translates into
(

T
+ δ

δT
+ − T− δ

δT−

)

I(T−, T
+
).

a

⇒ measures the charge under a duality transformation.



N = 2 supersymmetric theory

February 14th, 2013, N = 2 Supersymmetry and U(1)-Duality 15 / 21

How to efficiently solve [Bossard
Nicolai ][

Broedel, Carrasco, Ferrara
Kallosh, Roiban ]

T+ =
δI(T−, T

+
)

δT
+ T

−
=

δI(T−, T
+
)

δT−
?

Ansatz:

M = M(0) +
∑

n≥1

λnM(n)(W,W)

Any higher orders can be obtained recursively (I is of order λ):

M(n) ≡ λ−n





δ

δT
+ I
[

T−(W,M(n−1)), T +(W,M(n−1)
)
]

−
n−1
∑

j=1

λjM(j)





with λm>n → 0.

From a solution to the above equation one can reconstruct a duality invariant action:

S = i

∫

d8ZW
∑

n=0

λn

8(n+ 1)
M(n)[W,W] + h.c.

a(follows from integrating the N = 2-analogue of G̃µν = 2∂L(F )

∂Fµν

)



N = 2 BI solution from Kuzenko/Theisen
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Various actions of Born-Infeld type for N = 2 theories have been constructed.a

a [Ketov][Bellucci, Ivanov
Krivonos ][Kuzenko

Theisen ]

Here: Kuzenko/Theisen proposal with an additional condition beyond NGZ:

W(Z) → W(Z) + σ +O(W,W)

Susy analogue of the D3-brane shift symmetry of the transverse coordinates:

SBI = Sfree + Sint

Sint =
1

8

∫

d12Z
{

W2 W2

[

λ+
λ2

2

(

D4W2 +D 4W2
)

+
λ3

4

(

(D4W2)2 + (D 4W2
)2
)

+ 3(D4W2)(D 4W2
)

]

+
λ2

9
W3

�W3
+

λ3

6

(

(W3
�W3

)D 4W2
+ (W3

�W3)D4W2
)

+
λ3

144
W4

�
2W4

+O(W10)

}

aWhat are the sources reproducing this particular action up to the given order?



Example 1
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Let us have look to a first deformation:

I1 = a λ

∫

d12Z (T−)2(T
+
)2

leads to the equation

M = −iW + 2a λi
(

D4
(W − iM)2

)

(W + iM)

Solving iteratively yields:

M(0) = −i W ,

M(n)|n>0 = (−2)5−na

n−1
∑

l=0

n−(1+l)
∑

q=0

α(l, q;n)D4
[M(n−(1+q+l))M(q)M(l) ]

with

α(q, l;n) ≡ ξ2(q)ξ2(l)ξ2(n− l − q − 1) .

ξ2(x)|x>0 ≡ (−2)x/2 ,

ξ2(x)|x=0 ≡ 1 .



Example 1 - continued
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M = −iW + 16a iλW D4
(W2

)− i

2
(16a)2λ2W

(

(

D4
(W2

)
)2

+ 2D4
(

W2D4W2
)

)

which results in the action

S int
1 =

∫

d12ZW2W2

{

− 2aλ+ 16a2λ2(D4(W2) +D4
(W2

))

− 128a3λ3
(

(D4(W2))2 + 2D4
(

W2D4W2
)

+ (D4
(W2

))2 + 2D4
(

W2D4W2
))

+O(λ4)



Examples 2,3,4
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Deformation Action

b λ
2

∫

d12
Z(T−)3�(T

+
)3

∫

d12
Z

{

− 4bλ2
(

W
3
�

(

W
3
)

+W
3
�
(

W
3
)

)

+ . . .

}

c λ
3

∫

d12
Z(T−)4�2(T

+
)4

∫

d12
Z

{

− 16cλ3
(

W
4
�

(

�(W
4
)
)

+W
4
�
(

�(W4)
)

)

. . .

}

d λ
2

∫

d12
Z(T−)2(T

+
)2×

D
4
((T−)2)D4((T

+
)2)

∫

d12
Z

{

− 16dλ3
(

D
4[W2

D
4
(W)2] +D

4
[W

2
D

4(W)2]
)

+ . . .

}

• choosing a = −2−4, b = −2−63−2, c = −2−123−2 and d = 2−10 one recovers the

first terms in the BI action with D3-brane condition.

• deformations and coefficients for the next order O(W10) reproducing the action of

Bellucci, Ivanov and Krivonos have been published today [Bellucci, Ivanov
Krivonos ][Carrasco

Kallosh ]



Conclusions
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• for an initial deformation I one can iteratively solve for higher order deformations

necessary to maintain duality invariance

• there is an infinite space of possible duality compatible deformations of N = 2
supersymmetric gauge theory

• a plethora of valid deformations exists, necessary e.g. for finding the N = 2 Born-

Infeld action at higher orders

• method can be applied to a variety of other (supergravity) theories [Chemissany, Ferrara
Kallosh, Shabazi ]



Conclusions

February 14th, 2013, N = 2 Supersymmetry and U(1)-Duality 21 / 21

• for an initial deformation I one can iteratively solve for higher order deformations

necessary to maintain duality invariance

• there is an infinite space of possible duality compatible deformations of N = 2
supersymmetric gauge theory

• a plethora of valid deformations exists, necessary e.g. for finding the N = 2 Born-

Infeld action at higher orders

• method can be applied to a variety of other (supergravity) theories [Chemissany, Ferrara
Kallosh, Shabazi ]

nothing

THANKS !
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