$\mathcal{N}=2$ Supersymmetry and $U(1)$-Duality

Johannes Brödel
in collaboration with J.J. Carrasco, S. Ferrara, R. Kallosh and R. Roiban

ETH Zürich

Breaking of supersymmetry and ultraviolet divergences in extended supergravities

INFN Frascati
March 25th, 2013

Motivation

- How to deform an action \mathcal{S} without breaking its symmetries?
- Which deformations can be added in a way, such that duality symmetry can be restored order by order in a deformation parameter?
- Why: duality symmetries might play a role in explaining UV-properties of supergravities
- main tool:

This talk:

- formalize the way to obtain duality-invariant theories starting from an initial deformation
- apply the formalized method to abelian $\mathcal{N}=2$ supersymmetric gauge theory

Outline

From Maxwell to Born-Infeld

- duality symmetry in $U(1)$ gauge theory
- twisted self-duality constraint
- how to obtain a duality invariant action starting from a deformation?
- Born-Infeld example
$\mathcal{N}=2$ gauge theory and $U(1)$-duality
- $\mathcal{N}=2$ theories
- different sources of deformation
- $\mathcal{N}=2$ Born-Infeld action

Duality symmetry in $U(1)$ gauge theory

Rotating the electric and magnetic fields

$$
\delta\binom{\boldsymbol{E}}{\boldsymbol{B}}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{\boldsymbol{E}}{\boldsymbol{B}}
$$

in the source-free Maxwell equations

$$
\begin{aligned}
\partial_{t} \boldsymbol{B} & =-\nabla \times \boldsymbol{E}, & \nabla \cdot \boldsymbol{B}=0 \\
\partial_{t} \boldsymbol{D} & =\nabla \times \boldsymbol{H}, & \nabla \cdot \boldsymbol{D}=0
\end{aligned}
$$

with

$$
D=E, \quad H=B
$$

leaves the Hamiltonian

$$
\mathcal{H}=\frac{1}{2}\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right)
$$

unchanged, but alters the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\boldsymbol{E}^{2}-\boldsymbol{B}^{2}\right) .
$$

Duality symmetry in $U(1)$ gauge theory

In the presence of matter, the equations are still valid

$$
\begin{aligned}
\partial_{t} \boldsymbol{B} & =-\nabla \times \boldsymbol{E}, & \nabla \cdot \boldsymbol{B}=0 \\
\partial_{t} \boldsymbol{D} & =\nabla \times \boldsymbol{H}, & \nabla \cdot \boldsymbol{D}=0
\end{aligned}
$$

however,

$$
\boldsymbol{D}=\boldsymbol{D}(\boldsymbol{E}, \boldsymbol{B}), \quad \text { and } \quad \boldsymbol{H}=\boldsymbol{H}(\boldsymbol{B}, \boldsymbol{E})
$$

are non-linear.

- which (duality) transformations leave the above non-linear system invariant?
- how can one generalize to different (supersymmetric) theories with more fields?

Duality symmetry in $U(1)$ gauge theory

More precisely: search for theories admitting a Lagrangian formulation varying the usual Maxwell Lagrangian for matter with respect to the gauge potential leads to

$$
\boldsymbol{D}=\frac{\partial \mathcal{L}(\boldsymbol{E}, \boldsymbol{B})}{\partial \boldsymbol{E}}, \quad \text { and } \quad \boldsymbol{H}=-\frac{\partial \mathcal{L}(\boldsymbol{E}, \boldsymbol{B})}{\partial \boldsymbol{B}} .
$$

Prepare for treating more general theories: switch to four-component notation:

$$
\{\boldsymbol{E}, \boldsymbol{B}\} \quad \rightarrow \quad\{F, \tilde{F}, G, \tilde{G}\}
$$

leads to the (constitutive) relation:

$$
\tilde{G}^{\mu \nu}=2 \frac{\partial \mathcal{L}(F)}{\partial F_{\mu \nu}}
$$

where $\tilde{G}^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} G_{\rho \sigma}$.
Describe duality tranformation as Legendre-transformation:

$$
\tilde{\mathcal{L}}(F, G)=\mathcal{L}(F)-\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu} \partial_{\rho} \tilde{A}_{\sigma} \quad \text { where } \quad G_{\mu \nu}=\partial_{\mu} \tilde{A}_{\nu}-\partial_{\nu} \tilde{A}_{\mu}
$$

The above Legendre transformation is a duality rotation if and only if the symmetry condition is met. Otherwise one obtains just a different formulation of the theory.

Duality symmetry in $U(1)$ gauge theory

Shall be preserved under duality:

$$
\begin{aligned}
& \partial_{\mu} \tilde{F}^{\mu \nu}=0 \\
& \partial_{\mu} \tilde{G}^{\mu \nu}=0 \text { Bianchi identities } \\
& \text { equations of motion }
\end{aligned}
$$

General duality rotations

$$
\delta\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

exchanges the role of Bianchi identity and the equation of motion.
Too general:

- the functional form of shall not change, i.e.

$$
\tilde{G}^{\prime \mu \nu}=2 \frac{\partial \mathcal{L}\left(F^{\prime}\right)}{\partial F_{\mu \nu}^{\prime}} \quad \text { where } \quad F^{\prime}=F+\delta F, \quad G^{\prime}=G+\delta G
$$

- deformed theory shall reduce to Maxwell in the weak field limit ($F^{4} \ll F^{2}$) Under those conditions: $G L(2, \mathbb{R}) \rightarrow S O(2, \mathbb{R})$, maximal connected Lie group of duality rotations in pure non-linear electromagnetism

NGZ current conservation

Thus, the infinitesimal duality transformations to consider read:

$$
\delta\binom{F}{G}=\left(\begin{array}{cc}
0 & B \\
-B & 0
\end{array}\right)\binom{F}{G}
$$

Equivalent formulation: Noether-Gaillard-Zumino (NGZ) current conservation:

$$
F \tilde{F}+G \tilde{G}=0
$$

Formulation is not symmetric in field F and G : find a more general language. Define:

$$
T=F-\mathrm{i} G \quad \bar{T}=F+\mathrm{i} G
$$

and their self-dual and anti-self-dual components

$$
T^{ \pm}=\frac{1}{2}(T \pm \mathrm{i} \tilde{T}) \quad \bar{T}^{ \pm}=\frac{1}{2}(\bar{T} \pm \mathrm{i} \tilde{\bar{T}})
$$

Maxwell theory in vacuum:

$$
T^{+}=F^{+}-\mathrm{i} G^{+}=0 \quad \text { is equivalent to } \quad F \tilde{F}+G \tilde{G}=0
$$

Born-Infeld theory

Best known deformation of Maxwell Born-Infeld theory:

$$
\mathcal{L}_{\mathrm{BI}}=g^{-2}(1-\sqrt{\Delta}) \quad \text { where } \quad \Delta=1+2 g^{2}\left(\frac{F^{2}}{4}\right)-g^{4}\left(\frac{F \tilde{F}}{4}\right)
$$

with dual field \tilde{G}

$$
G_{\mu \nu}=-\varepsilon_{\mu \nu \rho \sigma} \frac{\partial \mathcal{L}(F)}{\partial F_{\rho \sigma}}=\frac{1}{\sqrt{\Delta}}\left(\tilde{F}_{\mu \nu}+\frac{g^{2}}{4}(F \tilde{F}) F_{\mu \nu}\right) .
$$

Short calculation: $F \tilde{F}+G \tilde{G}=0$. However, there is a different formulation in form of the non-linear constraint: [schrodinger]

$$
T^{+}+\frac{g^{2}}{16} \frac{\bar{T}^{+}(T \tilde{T})^{2}}{\left(T^{-}\right)^{2}}=0 \quad \mathcal{L}_{\mathrm{Sch}}(T)=4 \frac{T^{2}}{(T \tilde{T})}, \quad \mathcal{L}_{\mathrm{Sch}}=-\mathcal{L}_{\mathrm{Sch}}^{*}
$$

- one can readily recover the Born-Infeld action from this constraint.
- constraint contains complete information about the theory.

Deformation

How can one construct an action from an initial deformation?

$$
\begin{aligned}
T^{+} & =0 \quad \text { Maxwell } \\
T^{+}+\frac{g^{2}}{16} \frac{\bar{T}^{+}(T \tilde{T})^{2}}{\left(T^{-}\right)^{2}} & =0 \quad \text { Born-Infeld }
\end{aligned}
$$

Information about the deformation is contained in the constraint.
How to obtain the constraint and the corresponding action?

- start from a deformation $\mathcal{I}\left(T^{-}, \bar{T}^{+}, g\right)$ invariant under the classical (unperturbed) equations of motion
- set

$$
T^{+}=\frac{\delta \mathcal{I}\left(T^{-}, \bar{T}^{+}, \lambda\right)}{\delta \bar{T}^{+}}
$$

- solve the above equation iteratively (e.g. in terms of the dual field). Start from the classical solution. Ensure validity of the NGZ constraint in every step.
- reconstruct the action using $\tilde{G}^{\mu \nu}=2 \frac{\partial \mathcal{L}(F)}{\partial F_{\mu \nu}}$.

Reconsider Born-Infeld theory

Consider the following ansatz for a deformation:

$$
\begin{gathered}
\mathcal{I}\left(T^{-}, \bar{T}^{+}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{8 g^{2}}\left(\frac{1}{4} g^{4}\left(\bar{T}^{-}\right)^{2}\left(T^{-}\right)^{2}\right)^{n+1} \\
T_{\mu \nu}^{+}=\frac{g^{2}}{16} \bar{T}_{\mu \nu}^{+}\left(T^{-}\right)^{2}\left[1+\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{4} g^{4}\left(\bar{T}^{+}\right)^{2}\left(T^{-}\right)^{2}\right)^{n}\right],
\end{gathered}
$$

where $a_{n}=\frac{d_{n}}{n+1}$ and $a_{0}=1+d_{0}$.
Constraining the the coefficients to yield the Born-Infeld action leads to

$$
\mathcal{I}\left(T^{-}, \bar{T}^{+}, g\right)=\frac{6}{g^{2}}\left(1-{ }_{3} F_{2}\left(-\frac{1}{2},-\frac{1}{4}, \frac{1}{4} ; \frac{1}{3}, \frac{2}{3} ;-\frac{1}{27} g^{4}\left(\bar{T}^{+}\right)^{2}\left(T^{-}\right)^{2}\right) .\right)
$$

- infinite number of deformations necessary to reproduce Born-Infeld
- method allows application to other sources and in other theories
- the hypergeometric function leading to the Born-Infeld theory satisfies a hidden fourth-order constraint
\Rightarrow apply to $\mathcal{N}=2$ abelian gauge theory

$\mathcal{N}=2$ supersymmetric theory

$\mathcal{N}=2$ superspace: $\mathcal{Z}^{A}=\left(x^{a}, \theta_{i}^{\alpha}, \bar{\theta}_{\dot{\alpha}}^{i}\right)$
Chiral and antichiral superfield strength \mathcal{W} and $\overline{\mathcal{W}}$ satisfy Bianchi identities

$$
\begin{aligned}
\mathcal{D}^{i j} \mathcal{W}=\overline{\mathcal{D}}^{i j} \overline{\mathcal{W}} \quad \text { where } \quad \mathcal{W} & =\overline{\mathcal{D}}^{4} \mathcal{D}^{i j} V_{i j} \\
\overline{\mathcal{W}} & =\mathcal{D}^{4} \overline{\mathcal{D}}^{i j} V_{i j}
\end{aligned}
$$

in terms of the unconstrained prepotential $V_{i j}$.
Write duality transformation as a Legendre transformation

$$
\mathcal{S}_{\mathrm{inv}}=\mathcal{S}[\mathcal{W}, \overline{\mathcal{W}}]-\frac{\mathrm{i}}{8} \int d^{8} \mathcal{Z} \mathcal{W} \mathcal{M}+\frac{\mathrm{i}}{8} \int d^{8} \overline{\mathcal{Z}} \overline{\mathcal{W}} \overline{\mathcal{M}}
$$

which is only valid if

$$
\mathrm{i} \mathcal{M}=4 \frac{\delta}{\delta \mathcal{W}} \mathcal{S}[\mathcal{W}, \overline{\mathcal{W}}] \quad \text { and } \quad \mathrm{i} \overline{\mathcal{M}}=4 \frac{\delta}{\delta \overline{\mathcal{W}}} \mathcal{S}[\mathcal{W}, \overline{\mathcal{W}}] .
$$

Duality transformation:

$$
\delta \mathcal{W}=B \mathcal{M}
$$

$$
\delta \overline{\mathcal{W}}=-B \mathcal{W}
$$

$\mathcal{N}=2$ Noether-Gaillard-Zumino-condition:

$$
\int \mathrm{d}^{8} \mathcal{Z}\left(\mathcal{W}^{2}+\mathcal{M}^{2}\right)=\int \mathrm{d}^{8} \overline{\mathcal{Z}}\left(\overline{\mathcal{W}}^{2}+\overline{\mathcal{M}}^{2}\right)
$$

$\mathcal{N}=2$ supersymmetric theory

Construction of duality-compatible action for $\mathcal{N}=2$-theories
Define objetcs similar to the Maxwell case:

$$
\begin{array}{ll}
T^{+}=\mathcal{W}-\mathrm{i} \mathcal{M} & \bar{T}^{+}=\mathcal{W}+\mathrm{i} \mathcal{M} \\
T^{-}=\overline{\mathcal{W}}-\mathrm{i} \overline{\mathcal{M}} & \bar{T}^{-}=\overline{\mathcal{W}}+\mathrm{i} \overline{\mathcal{M}}
\end{array}
$$

with infinitesimal rotations

$$
\delta\binom{T^{+}}{\bar{T}^{+}}=\left(\begin{array}{cc}
\mathrm{i} B & 0 \\
0 & -\mathrm{i} B
\end{array}\right)\binom{T^{+}}{\bar{T}^{+}} \quad \delta\binom{T^{-}}{\bar{T}^{-}}=\left(\begin{array}{cc}
\mathrm{i} B & 0 \\
0 & -\mathrm{i} B
\end{array}\right)\binom{T^{-}}{\bar{T}^{-}}
$$

$\mathcal{N}=2$ Noether-Gaillard-Zumino-condition:

$$
\int \mathrm{d}^{8} \overline{\mathcal{Z}} \bar{T}^{+} T^{+}-\int \mathrm{d}^{8} \mathcal{Z} \bar{T}^{-} T^{-}=0
$$

$\mathcal{N}=2$ supersymmetric theory

In analogy to the Maxwell case, consider deformation sources:

$$
T^{+}=\frac{\delta \mathcal{I}\left(T^{-}, \bar{T}^{+}\right)}{\delta \bar{T}^{+}} \quad \bar{T}^{-}=\frac{\delta \mathcal{I}\left(T^{-}, \bar{T}^{+}\right)}{\delta T^{-}}
$$

Thus, the NGZ constraint reads:

$$
0=\int \mathrm{d} \overline{\mathcal{Z}} \bar{T}^{+} \frac{\delta}{\delta \bar{T}^{+}} \mathcal{I}\left(T^{-}, \bar{T}^{+}\right)-\int \mathrm{d} \mathcal{Z} T^{-} \frac{\delta}{\delta T^{-}} \mathcal{I}\left(T^{-}, \bar{T}^{+}\right)
$$

which translates into

$$
\left(\bar{T}^{+} \frac{\delta}{\delta \bar{T}^{+}}-T^{-} \frac{\delta}{\delta T^{-}}\right) \mathcal{I}\left(T^{-}, \bar{T}^{+}\right) .
$$

\Rightarrow measures the charge under a duality transformation.

$\mathcal{N}=2$ supersymmetric theory

How to efficiently solve

$$
T^{+}=\frac{\delta \mathcal{I}\left(T^{-}, \bar{T}^{+}\right)}{\delta \bar{T}^{+}} \quad \bar{T}^{-}=\frac{\delta \mathcal{I}\left(T^{-}, \bar{T}^{+}\right)}{\delta T^{-}}
$$

Ansatz:

$$
\mathcal{M}=\mathcal{M}^{(0)}+\sum_{n \geq 1} \lambda^{n} \mathcal{M}^{(n)}(\mathcal{W}, \overline{\mathcal{W}})
$$

Any higher orders can be obtained recursively (\mathcal{I} is of order λ):

$$
\mathcal{M}^{(n)} \equiv \lambda^{-n}\left(\frac{\delta}{\delta \bar{T}^{+}} \mathcal{I}\left[T^{-}\left(\mathcal{W}, \mathcal{M}^{(n-1)}\right), \bar{T}^{+}\left(\overline{\mathcal{W}}, \overline{\mathcal{M}}^{(n-1)}\right)\right]-\sum_{j=1}^{n-1} \lambda^{j} \mathcal{M}^{(j)}\right)
$$

with $\lambda^{m>n} \rightarrow 0$.
From a solution to the above equation one can reconstruct a duality invariant action:

$$
\mathcal{S}=\mathrm{i} \int \mathrm{~d}^{8} \mathcal{Z} \mathcal{W} \sum_{n=0} \frac{\lambda^{n}}{8(n+1)} \mathcal{M}^{(n)}[\mathcal{W}, \overline{\mathcal{W}}]+\text { h.c. }
$$

(follows from integrating the $\mathcal{N}=2$-analogue of $\tilde{G}^{\mu \nu}=2 \frac{\partial \mathcal{L}(F)}{\partial F_{\mu \nu}}$)

$\mathcal{N}=2$ Bl solution from Kuzenko/Theisen

Various actions of Born-Infeld type for $\mathcal{N}=2$ theories have been constructed.

Here: Kuzenko/Theisen proposal with an additional condition beyond NGZ:

$$
\mathcal{W}(\mathcal{Z}) \rightarrow \mathcal{W}(\mathcal{Z})+\sigma+\mathcal{O}(\mathcal{W}, \overline{\mathcal{W}})
$$

Susy analogue of the $D 3$-brane shift symmetry of the transverse coordinates:

$$
\begin{aligned}
\mathcal{S}_{\text {BI }}= & \mathcal{S}_{\text {free }}+\mathcal{S}_{\text {int }} \\
\mathcal{S}_{\text {int }}= & \frac{1}{8} \int \mathrm{~d}^{12} \mathcal{Z}\left\{\mathcal { W } ^ { 2 } \overline { \mathcal { W } } ^ { 2 } \left[\lambda+\frac{\lambda^{2}}{2}\left(\mathcal{D}^{4} \mathcal{W}^{2}+\overline{\mathcal{D}}^{4} \overline{\mathcal{W}}^{2}\right)\right.\right. \\
& \left.+\frac{\lambda^{3}}{4}\left(\left(\mathcal{D}^{4} \mathcal{W}^{2}\right)^{2}+\left(\overline{\mathcal{D}}^{4} \overline{\mathcal{W}}^{2}\right)^{2}\right)+3\left(\mathcal{D}^{4} \mathcal{W}^{2}\right)\left(\overline{\mathcal{D}}^{4} \overline{\mathcal{W}}^{2}\right)\right] \\
& +\frac{\lambda^{2}}{9} \mathcal{W}^{3} \square \overline{\mathcal{W}}^{3}+\frac{\lambda^{3}}{6}\left(\left(\mathcal{W}^{3} \square \overline{\mathcal{W}}^{3}\right) \overline{\mathcal{D}}^{4} \overline{\mathcal{W}}^{2}+\left(\overline{\mathcal{W}}^{3} \square \mathcal{W}^{3}\right) \mathcal{D}^{4} \mathcal{W}^{2}\right) \\
& \left.+\frac{\lambda^{3}}{144} \mathcal{W}^{4} \square^{2} \overline{\mathcal{W}}^{4}+\mathcal{O}\left(\mathcal{W}^{10}\right)\right\}
\end{aligned}
$$

What are the sources reproducing this particular action up to the given order?

Example 1

Let us have look to a first deformation:

$$
\mathcal{I}_{1}=a \lambda \int \mathrm{~d}^{12} \mathcal{Z}\left(T^{-}\right)^{2}\left(\bar{T}^{+}\right)^{2}
$$

leads to the equation

$$
\mathcal{M}=-\mathrm{i} \mathcal{W}+2 a \lambda i\left(\overline{\mathcal{D}}^{4}(\overline{\mathcal{W}}-\mathrm{i} \overline{\mathcal{M}})^{2}\right)(\mathcal{W}+\mathrm{i} \mathcal{M})
$$

Solving iteratively yields:

$$
\begin{aligned}
\mathcal{M}^{(0)} & =-\mathrm{i} \mathcal{W}, \\
\left.\mathcal{M}^{(n)}\right|_{n>0} & =(-2)^{5-n} a \sum_{l=0}^{n-1} \sum_{q=0}^{n-(1+l)} \alpha(l, q ; n) \overline{\mathcal{D}}^{4}\left[\overline{\mathcal{M}}^{(n-(1+q+l))} \overline{\mathcal{M}}^{(q)} \mathcal{M}^{(l)}\right]
\end{aligned}
$$

with

$$
\begin{aligned}
\alpha(q, l ; n) & \equiv \xi_{2}(q) \xi_{2}(l) \xi_{2}(n-l-q-1) . \\
\left.\xi_{2}(x)\right|_{x>0} & \equiv(-2)^{x} / 2, \\
\left.\xi_{2}(x)\right|_{x=0} & \equiv 1 .
\end{aligned}
$$

Example 1 - continued

$$
\mathcal{M}=-\mathrm{i} \mathcal{W}+16 a \mathrm{i} \lambda \mathcal{W} \overline{\mathcal{D}}^{4}\left(\overline{\mathcal{W}}^{2}\right)-\frac{\mathrm{i}}{2}(16 a)^{2} \lambda^{2} \mathcal{W}\left(\left(\overline{\mathcal{D}}^{4}\left(\overline{\mathcal{W}}^{2}\right)\right)^{2}+2 \mathcal{D}^{4}\left(\mathcal{W}^{2} \overline{\mathcal{D}}^{4} \overline{\mathcal{W}}^{2}\right)\right)
$$

which results in the action

$$
\begin{aligned}
& \mathcal{S}_{1}^{\text {int }}=\int \mathrm{d}^{12} \mathcal{Z} \mathcal{W}^{2} \overline{\mathcal{W}}^{2}\left\{-2 a \lambda+16 a^{2} \lambda^{2}\left(\mathcal{D}^{4}\left(\mathcal{W}^{2}\right)+\overline{\mathcal{D}}^{4}\left(\overline{\mathcal{W}}^{2}\right)\right)\right. \\
& -128 a^{3} \lambda^{3}\left(\left(\mathcal{D}^{4}\left(\mathcal{W}^{2}\right)\right)^{2}+2 \mathcal{D}^{4}\left(\mathcal{W}^{2} \overline{\mathcal{D}}^{4} \overline{\mathcal{W}}^{2}\right)+\left(\overline{\mathcal{D}}^{4}\left(\overline{\mathcal{W}}^{2}\right)\right)^{2}+2 \overline{\mathcal{D}}^{4}\left(\overline{\mathcal{W}}^{2} \mathcal{D}^{4} \mathcal{W}^{2}\right)\right) \\
& \\
& \quad+\mathcal{O}\left(\lambda^{4}\right)
\end{aligned}
$$

Examples 2,3,4

Deformation	Action
$b \lambda^{2} \int \mathrm{~d}^{12} \mathcal{Z}\left(T^{-}\right)^{3} \square\left(\bar{T}^{+}\right)^{3}$ $\int \mathrm{~d}^{12} \mathcal{Z}\left\{-4 b \lambda^{2}\left(\mathcal{W}^{3} \square\left(\overline{\mathcal{W}}^{3}\right)+\overline{\mathcal{W}}^{3} \square\left(\mathcal{W}^{3}\right)\right)+\ldots\right\}$ $c \lambda^{3} \int \mathrm{~d}^{12} \mathcal{Z}\left(T^{-}\right)^{4} \square^{2}\left(\bar{T}^{+}\right)^{4}$ $\int \mathrm{~d}^{12} \mathcal{Z}\left\{-16 c \lambda^{3}\left(\mathcal{W}^{4} \square\left(\square\left(\overline{\mathcal{W}}^{4}\right)\right)+\overline{\mathcal{W}}^{4} \square\left(\square\left(\mathcal{W}^{4}\right)\right)\right) \ldots\right\}$ $d \lambda^{2} \int \mathrm{~d}^{12} \mathcal{Z}\left(T^{-}\right)^{2}\left(\bar{T}^{+}\right)^{2} \times$ $\overline{\mathcal{D}}^{4}\left(\left(T^{-}\right)^{2}\right) \mathcal{D}^{4}\left(\left(\bar{T}^{+}\right)^{2}\right)$ $\int \mathrm{d}^{12} \mathcal{Z}\left\{-16 d \lambda^{3}\left(\mathcal{D}^{4}\left[\mathcal{W}^{2} \overline{\mathcal{D}}^{4}(\overline{\mathcal{W}})^{2}\right]+\overline{\mathcal{D}}^{4}\left[\overline{\mathcal{W}}^{2} \mathcal{D}^{4}(\mathcal{W})^{2}\right]\right)+\ldots\right\}$	

- choosing $a=-2^{-4}, b=-2^{-6} 3^{-2}, c=-2^{-12} 3^{-2}$ and $d=2^{-10}$ one recovers the first terms in the Bl action with $D 3$-brane condition.
- deformations and coefficients for the next order $\mathcal{O}\left(\mathcal{W}^{10}\right)$ reproducing the action of Bellucci, Ivanov and Krivonos have been published today

Conclusions

- for an initial deformation \mathcal{I} one can iteratively solve for higher order deformations necessary to maintain duality invariance
- there is an infinite space of possible duality compatible deformations of $\mathcal{N}=2$ supersymmetric gauge theory
- a plethora of valid deformations exists, necessary e.g. for finding the $\mathcal{N}=2$ BornInfeld action at higher orders
- method can be applied to a variety of other (supergravity) theories

Conclusions

- for an initial deformation \mathcal{I} one can iteratively solve for higher order deformations necessary to maintain duality invariance
- there is an infinite space of possible duality compatible deformations of $\mathcal{N}=2$ supersymmetric gauge theory
- a plethora of valid deformations exists, necessary e.g. for finding the $\mathcal{N}=2$ BornInfeld action at higher orders
- method can be applied to a variety of other (supergravity) theories

THANKS!

