The Beauty of the Brown Muck -- News from the Heavy Quark Expansion

> Ikaros Bigi Notre Dame du Lac

(0) Status '04

$$\begin{split} m_b(1 \ GeV) &= (4.61 \pm 0.068) \ GeV & \Leftarrow 1.5 \ \% \\ m_c(1 \ GeV) &= (1.18 \pm 0.092) \ GeV & \Leftarrow 7.8 \ \% \\ m_b(1 \ GeV) &= 0.74 \ m_c(1 \ GeV) &= (3.74 \pm 0.017) \ GeV & \Leftarrow 0.5 \ \% \\ |V(cb)| &= (41.390 \pm 0.870) \times 10^{-3} & \Leftarrow 2.1 \ \% \\ VS. \\ |V(us)|_{KTeV} &= 0.2252 \pm 0.0022 & \Leftarrow 1.1 \ \% \end{split}$$

7/'04

lessons form a paradigm (the tale behind these numbers):

- robust theory coupled with
- ➡ high quality data
 - precision, i.e. small defensible uncertainties

Outline

- (I) Heavy Quark Expansions
- (II) Master Formulae for SL Width
- (III) Heavy Quark Parameters
- (IV) Theoretical Uncertainties
- (V) Cut-induced `Biases'

(VI) |V(cb)| & |V(ub)| Lessons & Outlook

emphasis on the whole program

- -- its elements, its self consistency and cross checks -- rather than numbers
- You can ignore recent PDG `review' on V(cb)!

(I) H(eavy) Q(uark) E(xpansions)

hopes & goals (largely realized!)

- o deepen understanding of QCD
 - new conceptual insights (quark masses, duality, ...)
 - previously unanticipated precision in describing hadronic processes
- refine & sharpen SM predictions for \$\vec{\mathcal{P}}\$ in B decays, rates, distributions
- `inverse theoret. engineering': interprete deviations from SM predictions in terms of a specific NP scenario

 \odot the hope: $m_b \gg \Lambda_{QCD}$ Methodology dynamical approach symmetry principle asymptotic limit pre-asymptotia • chiral invariance: $m_a=0$, $m_{\pi}=0$ + chiral pert. theory: $(m_a/4\pi f_{\pi})^{2n}$ Heavy Quark Symmetry + Heavy Quark Expans. $H_{O}=[Qq]$ energy-X with soft medium ~ Λ ~ 1/2 GeV cloud of light d.o.f. ~ no QQ fluctuations Q QFTh for light d.o.f.: Q static QM for Q $(\Lambda/m_{\Omega})^{n}$ 5

~
$$\mathcal{H}_{\text{Pauli}} = -A_0 + (i\partial - A)^2 / 2m_Q + \sigma B / 2m_Q \rightarrow -A_0$$
 as $m_Q \rightarrow \infty$

i.e.,

infinitely heavy static quark, without spin dynamics, only colour Coulomb potential!

hadrons H_Q labeled by total spin S and by j_q =l_q+s_q:
 ground states: [S|l_q|j_q] = [0,1|0|1/2]: P & V
 1st excit. states: [0,1|1|1/2] & [1,2 |1|3/2]

$$rate(H_Q \rightarrow f_{incl}) = K(CKM, m_Q) \Sigma_{i=0} c_i(\alpha_S) (\Lambda/m_Q)^i$$

complication in weak decays:

$$\Gamma(H_Q) \propto m_Q^{(5)}(\mu) [z_3(m,\mu,\alpha_5)+...]$$

tool chest to implement idea:

- operator product expansion (OPE)
- o dispersion relations
- o sum rules

when is a quark heavy -- when light? u & d quarks clearly light, b quarks heavy! need a yard stick

- 1st guess: Λ_{NonPD} ~ Λ_{QCD} ~ 200 MeV
 - c quarks clearly heavy, yet s quarks ??
- 2nd guess: $\Lambda_{NonPD} \sim 700 \text{ MeV} (\sim N_C \times \Lambda_{QCD} ?)$

c quarks: iffy -- need case-by-case study!

semileptonic transitions -- like ~ DIS

"structure functions" $w_i = 2 \text{ Im } h_i$

O(perator)P(roduct)E(xpansion)

 $\Gamma(H_Q \rightarrow f) = \Sigma_i c_i^{(f)} (KM, M_W, m_Q, \alpha_S, \mu) < H_Q | O_i | H_Q > \mu$

- short distance dynamics \rightarrow coeff. c_i ^(f)
- universal cast of local operators O_i
- <H_Q|O_i|H_Q> inferred from other observables or lattice QCD!
- expansion parameter

$$A = \begin{cases} 1/(m_b - m_c) & b \to c \\ 1/m_b & \text{for} \\ b \to u \end{cases}$$

Wilson: auxiliary scale µ s.t.

short distance < μ^{-1} < long distance

- $c_i \Leftrightarrow$ short distance dynamics
- → O_i active fields long distance dynamics

term of order 1/m_Q anathema! *no independent* dim-4 operator!

13

- phase space correct. ~ 1/m_Q in initial & final state
 yet cancel since colour charge of Q and q identical
 - □ local colour gauge symmetry essential: single operator $Q\gamma_{\mu}D_{\mu}Q$, D=covariant derivative global colour symmetry would allow 1/m_Q term:

 $Q\gamma_{\mu}\partial_{\mu}Q$ and $g Q \gamma_{\mu}A_{\mu}Q$ disconnected

- need for 1/m_Q contrib. =violation of quark-hadron duality!
- replacing m_Q by M(H_Q) = duality violation!

2 leading nonperturb. contrib. ~ $O(1/m_Q^2)$:

~ O(5 %) for Q = b

weight of nonpert. effects greatly reduced in beauty decays

perturb. contributions numerically important

• with `smart' pert. treatment Γ_{parton} good estimate

often find O(1/m_Q²) ~ O(1/m_Q³):
 what about O(1/m_Q⁴) -- no convergence?
 No!

□ complete cancellation in $O(1/m_Q)$; partial cancellation in $O(1/m_Q^2)$; $O(1/m_Q^2)$ reduced no cancellation in $O(1/m_Q^3)$

• one-time enhancem. of $O(1/m_Q^3)$ by " $16\pi^2$ " ¹⁴

Dispersion relations

OPE defined and constructed in Euklidean regime

extrapolate to Minkowskian regime via dispersion relations

- assume: QCD creates no unphysical singularity
- intrinsic limitation of algorithm
 - Iimitations to duality!

Sum rules

not to be confused with `the SVZ QCD sum rules

- different regimes, observables ...
- those are an art rather than a technology

their irreducible theor. uncert. ~ 20 - 30 %

sum rules to be sketched here

- o lead to novel conceptual insights
- imply rigorous inequalities
- $_{\rm O}$ allow translation of experim. info into constraints on HQP
 - impact from charm spectroscopy (s. later)
- with an intrinsic accuracy not limited to 20 %

harnessing additional theoret. tool: HQE!

SV sum rules, Spin/Uraltsev sum rules, D'Orsay sum rules

 $\rho^{2}(\mu) - 1/4 = \sum_{n} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} |\tau_{3/2}|^{(m)} |^{2}$ $1/2 = -2 \sum_{n} |\tau_{1/2}|^{(n)} |^{2} + \sum_{m} |\tau_{3/2}|^{(m)} |^{2}$ $\overline{\Lambda}(\mu) = 2 \left(\sum_{n} \epsilon_{n} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} \epsilon_{m} |\tau_{3/2}|^{(m)} |^{2} \right)$ $\mu^{2}_{\pi}(\mu)/3 = \sum_{n} \epsilon_{n}^{2} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} \epsilon_{m}^{2} |\tau_{3/2}|^{(m)} |^{2}$ $\mu^{2}_{G}(\mu)/3 = -2 \sum_{n} \epsilon_{n}^{2} |\tau_{1/2}|^{(n)} |^{2} + 2 \sum_{m} \epsilon_{m}^{2} |\tau_{3/2}|^{(m)} |^{2}$ \dots

where: $\tau_{1/2} \& \tau_{3/2}$ denote transition amplitudes for B \rightarrow IvD(s_q=1/2[3/2]) with excit. energy $\epsilon_k = M(B)-M(D_k), \epsilon_k \leq \mu$

rigorous inequalities + experim. constraints: e.g.,

$$\sum_{n} \epsilon_{n}^{2} |\tau_{1/2}^{(n)}|^{2} \leq \sum_{m} \epsilon_{m}^{2} |\tau_{3/2}^{(m)}|^{2}$$

$$= \mu_{\pi}^{2}(\mu) - \mu_{G}^{2}(\mu) = 9 \sum_{n} \epsilon_{n}^{2} |\tau_{1/2}^{(n)}|^{2}$$

- 2 step procedure
- express observable in terms of HQP
- Observable determine HQP from independent observable both with commensurate accuracy & reliability!
 - \square m_b,m_c: external to QCD
 - $\mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{LS}^{3}$: intrinsic to QCD
 - sensitive tests for lattice QCD

will focus on semileptonic (& radiative) B decays

(II) Master Formulae for $\Gamma_{SL}(B)$

 $\Gamma_{\rm SL}({\rm B}) = \Gamma_0({\rm b})$

 $\{ f(z) [1 - (2/3)(\alpha_{\rm S}/\pi)(g(z)/f(z)) + c_2 \alpha_{\rm S}^2 + c_3 \alpha_{\rm S}^3 + ..] \times [1 - (\mu_{\pi}^2(\mu) - \mu_{\rm G}^2(\mu))/2m_{\rm b}^2] - 2(1 - z)^4 \mu_{\rm G}^2(\mu) / m_{\rm b}^2$

+[d(z) $\rho_{\rm D}^{3}(\mu)$ +l(z) $\rho_{\rm LS}^{3}(\mu)$]/m_b³+O(1/m_b⁴)}

 $\Gamma_0(b) = G_F^2 m_b^5(\mu) |V(cb)|^2 / 192\pi^3$

f(z), g(z), d(z), l(z): phase space function of $z=m_c^2/m_b^2$

c₂: BLM $\alpha_s^2\beta_0$ + estimate for non-BLM, $\beta_0 = 11N_c/3 - 2N_f/3 = 9$

19

c₃: BLM $\alpha_{s}^{3}\beta_{0}^{2}$, [BLM known to all orders $\alpha_{s}^{n}\beta_{0}^{n-1}$]

$$\begin{split} & \mu_{\pi}^{2}(\mu) = \langle \text{Blb}(\text{i}\mathbf{D})^{2}\text{blB} \rangle |_{\mu}/2M_{\text{B}} & \text{kinetic energy} \\ & \mu_{\text{G}}^{2}(\mu) = \langle \text{Blb}(\text{i}/2)\sigma_{\mu\nu}\text{G}^{\mu\nu}\text{blB} \rangle |_{\mu}/2M_{\text{B}} & \text{chromomagn. moment} \\ & \rho_{\text{D}}^{3}(\mu) = \langle \text{Blb}(-1/2\mathbf{D}\cdot\mathbf{E})\text{blB} \rangle |_{\mu}/2M_{\text{B}} & \text{Darwin term} \\ & \rho_{\text{LS}}^{3}(\mu) = \langle \text{Blb}(\sigma\cdot\mathbf{E}\times\pi)\text{blB} \rangle |_{\mu}/2M_{\text{B}} & \text{LS term} \end{split}$$

analysis by Benson et al., Nucl. Phys. B665('03)367

 perturb. BLM correct. to all orders for realistic values of quark masses with Wilsonian cut-off μ:

 $\alpha_{\rm S} \{1 + \sum_{n=1}^{\infty} c_n (\beta_0 \alpha_{\rm S})^n\}, \beta_0 = 11 - 2n_{\rm f}/3 = 9 >> 1$

 $c_1\beta_0\alpha_S \ [c_2(\beta_0\alpha_S)^2] \ second[third] BLM \ correct.$

- estimates for non-BLM α_s^2 term included
- detailed [some] consideration of 1/m_Q³[1/m_Q⁴]
- keeping track of μ dependence
- only local operators employed
- expansions in 1/(m_b-m_c) and 1/m_b, not in 1/m_c
 do not impose constraint a priori

 $m_b-m_c = <M_B > - <M_D > +\mu_{\pi}^2(1/2m_c-1/2m_b) + nonlocal operat.$

include <BI(b...c)(c...b)IB> -otherwise terms 1/m_b³m_cⁿ⁻³, n>2, arise unknown higher order contributions:

- o perturbative
 - partonic term: non-BLM ~ α_{s}^{n} , n ≥ 3
 - $O(\alpha_{\rm S})$ correct. to nonpert. contrib. ~ $1/m_{\rm b}^{3,4}$
- nonperturbative ~ $1/m_b^4$ [(~ 1 / 5)⁴ ~ 10⁻³]
- o duality violations: < 0.5 % [see later]</pre>
- limiting factor: size of perturb. corrections!

►
$$\Gamma_{SL}(B \rightarrow IvX_c) =$$

 $F(HQP) \pm 1\%|_{pert} \pm 2.4\%|_{hWc} \pm 0.8\%|_{hpc} \pm 1.4\%|_{IC} =$
 $F(HQP) \pm 3\%|_{th}$

 $|V(cb)|/0.0417 = (1+\delta_{tb}) \times [1+0.30(\alpha_{s}(m_{b}) - 0.22)] \times$ $[1-0.66x(m_{h}(1 \text{ GeV}) - 4.6 \text{ GeV}) + 0.39x(m_{c}(1 \text{ GeV}) - 1.15 \text{ GeV}) +$ $+0.013 \times (\mu_{\pi}^{2} - 0.4 \text{ GeV}^{2}) + 0.05 \times (\mu_{G}^{2} - 0.35 \text{ GeV}^{2}) +$ $+0.09x(\rho_{0}^{3} - 0.2 \text{ GeV}^{3}) + 0.01x(\rho_{1}^{3} + 0.15 \text{ GeV}^{3})];$ $\delta_{\text{th}} = \pm 0.5 \, \% |_{\text{pert}} \pm 1.2 \, \% |_{\text{hWc}} \pm 0.4 \, \% |_{\text{hpc}} \pm 0.7 \, \% |_{\text{IC}}$ $|V(cb)|/0.0417 = (1+\delta_{tb}) x$ $[1-0.14x(\langle M_{\chi}^{2} \rangle -4.54 \text{ GeV}^{2}) + 0.03x(m_{c}(1 \text{ GeV}) -1.15 \text{ GeV}) +$ $+0.1 \times (\mu_2^2 - 0.4 \text{ GeV}^2) + 0.01 \times (\mu_2^2 - 0.35 \text{ GeV}^2) +$ $+0.1 \times (\rho_{13}^{3} - 0.2 \text{ GeV}^{3}) + (0.06 \times (\rho_{13}^{3} + 0.15 \text{ GeV}^{3})];$

 $\Gamma (\mathsf{B} \to \mathsf{I} \nu \mathsf{X}_{\mathsf{u}}): \mathsf{V}(\mathsf{cb}) \to \mathsf{V}(\mathsf{ub})$

(even) better theoretical control

- $\sim 1/m_b < 1/(m_b m_c)$
- HQP known from $B \rightarrow I \nu X_c$

Yet experimentally ...

(III) Heavy Quark Parameters (HQP)

Second task --

determine HQP without compromising advantages of OPE:

- expansions in terms of local operators
- with expansion parameter at least 1/(m_b m_c), not 1/m_c
- primary goal: determine V(cb) rather than m_b, m_c, ...
- since $\Gamma_{SL} = |V(cb)|^2 F(HQP) \pm (\leq 3\%)$

want to determine HQP s.t.

value of F(HQP) induces at most $\pm (\leq 1-2\%)$

- 2 different classes of HQP
- m_b, m_c -- external to QCD, i.e. can never be calculated by LQCD without experimental input
- μ_{π}^2 , ρ_D^3 , ... internal to QCD, i.e. can be calculated by LQCD without experimental input

first need definitions of HQP that can pass muster by quantum field theory!

(3.1) Quark masses

unlike for QED due to confinement no `natural' definin. of quark mass

pole mass (position of pole in perturb. Green function)
 IR unstable in complete theory

 $\Delta_{\text{intrinsic}} m_{\text{pole}} \sim O(\Lambda_{\text{QCD}}) \quad \text{`renormalons'}$ $m_{Q,\text{pole}}^5 = (m_{Q,\text{pert}} + \Delta_{\text{intrinsic}} m_{\text{pole}})^5 = m_{Q,\text{pert}}^5 (1 + \Delta_{\text{intrinsic}} m_{\text{pole}} / m_{Q,\text{pert}})$ $\frac{1}{m_Q} \text{ contribution!}$

- must use running mass with IR cut-off μ to `freeze out' renormalons (pole mass: $\mu \rightarrow 0$)

intuitive picture:

 $m_Q \propto energy$ stored in chromoelectric field in a sphere of radius R \gg 1/ m_Q

 $E_{CCoul}(R) \propto \int_{1/mb \le |x| < R} d^3x |E_{CCoul}|^2 \propto \text{const.} - \alpha_{S}(R)/\pi R$

pole mass $\cong R \rightarrow \infty$; yet $\alpha_{S}(R)$ strong at R ~ 1/ Λ_{QCD}

$$\bullet \qquad \Delta_{\text{IR}} \ \mathsf{m}_{Q}^{\text{pole}} = \mathcal{O}(\Lambda_{QCD})!$$

 $dm_Q(\mu)/d\mu = -16\alpha_S(\mu)/3\pi - 4\alpha_S(\mu)/3\pi(\mu/m_Q) + ...$

- i.e., linear scale dependence in IR $\Lambda_{\text{HQET}} \approx \Lambda_{\text{kin}} (1 \text{ GeV}) 0.255 \text{ GeV}$ to one-loop
- → MS mass not a parameter in the effect. Lagrangian, rather an ad-hoc combination convenient in perturb. calc. $m_Q(\mu) = m_Q(m_Q)[1+2(\alpha_S/\pi) \log (m_Q/\mu) \rightarrow \infty \text{ as } \mu/m_Q \rightarrow 0 !$
 - $^{I\!I\!I\!I\!I\!I}$ appropriate when relevant scale μ > m_Q $_production$ process, e.g.: $Z \rightarrow \ b \ b$
 - \square inadequate for decays where $\mu < m_Q$

acceptable as reference point

 $\Upsilon(4S) \rightarrow b\overline{b}$: (4.56 ±0.06 GeV MeYe $m_{b,kin}(1 \text{ GeV}) = \begin{cases} 4.30 \pm 0.00 \text{ GeV} \\ 4.57 \pm 0.05 \text{ GeV} \\ 4.59 \pm 0.06 \text{ GeV} \\ 4.58 \pm 0.05 \text{ GeV} \end{cases} Ho$

 $(m_{b kin}(1 \text{ GeV})) = 4.57 \pm 0.08 \text{ GeV}$

 $m_b - m_c$ $m_{\rm b}-m_{\rm c} = \langle M_{\rm B} \rangle - \langle M_{\rm D} \rangle + \mu_{\pi}^2 (1/2m_{\rm c} - 1/2m_{\rm b}) + \dots$ = 3.50 GeV + 40 MeV(μ_{π}^2 - 0.5 GeV²)/0.1 GeV²

vulnerable relation since

before 2002

- expansion in 1/m_c
- nonlocal correlators at 1/m²

do not impose this relation on m_b - m_c!

(3.2) Hadronic expectation values

□ *dim 3*

$$\left\langle H_{Q} \left| \overline{Q} Q \right| H_{Q} \right\rangle = 1 - \frac{\left\langle H_{Q} \right| \overline{Q} \left(i \vec{D} \right)^{2} Q \left| H_{Q} \right\rangle}{2m_{Q}^{2}} + \frac{\left\langle H_{Q} \right| \overline{Q} \frac{i}{2} \sigma \cdot G Q \left| H_{Q} \right\rangle}{2m_{Q}^{2}} + \dots$$

• *dim 5*

chromomagnetic moment μ_G^2

$$\mu_{G}^{2} = \langle H_{Q} | Qi / 2\sigma_{\mu\nu} G_{\mu\nu} Q | H_{Q} \rangle / 2M(H_{Q}) = (3/2) [M^{2}(V_{Q}) - M^{2}(P_{Q})]$$
for b = Q: $\mu_{G}^{2} \approx 0.35 + 0.03_{-0.02} \text{ GeV}^{2}$
kinetic energy μ_{π}^{2}

$$\mu_{\pi}^{2} = \langle H_{Q} | Q\pi^{2}Q | H_{Q} \rangle / 2M(H_{Q}) \approx -\lambda_{1} + 0.18 \text{ GeV}^{2} \text{ to one-loop}$$
SV SR: $\mu_{\pi}^{2} > \mu_{G}^{2}$;
`QCD' SR: $\mu_{\pi}^{2} = 0.45 \pm 0.1 \text{ GeV}^{2}$

30

□ *dim* 6

Darwin term $\rho_{\rm D}{}^3$

 $\rho_{\rm D}^{3}(\mu) = \langle \text{Blb}(-1/2\mathbf{D}\cdot\mathbf{E})\text{blB}\rangle |_{\mu}/2M_{\rm B}$

 $\rho_{\rm D}{}^{3}(\mu) \sim 0.1 ~{\rm GeV^{3}}$

LS term $\rho_{\rm LS}^3$

 $\rho_{\rm LS}^{3}(\mu) = \langle {\rm Blb}(\sigma \cdot {\rm E} \times \pi) {\rm blB} \rangle |_{\mu} / 2 {\rm M}_{\rm B}$

 $-\rho_{\rm LS}{}^3(\mu) \le \rho_{\rm D}{}^3(\mu)$

hardly relevant, since very reduced contribution

(3.3) Summary on Defining & Constructing the OPE $\Gamma(H_Q) \propto (m_Q^{(s)}(\mu))[z_3(m,\mu,\alpha_s) + z_5(m,\mu,\alpha_s) < H_Q | Q\sigma \cdot GQ | H_Q > \mu + \dots]$

tasks at hand:

- pick a mass well-defined perturb. & nonperturb.
- •• decide at which scale μ to evaluate it
- employ same scale µ in other perturbative corrections and hadronic expectation values

Our theoretical framework a la Wilson very robust with smallish higher order pert. & nonpert. contributions --

not true for other implementation of the OPE (~HQET)

e.g.:

using the pole mass:

 $\begin{aligned} A_{\text{pert}}^{\text{pole}} &= 1 - 1.78 \ \alpha_{\text{S}}(\text{m}_{\text{b}})/\pi - 15.8[\alpha_{\text{S}}(\text{m}_{\text{b}})/\pi]^2 - 230[\alpha_{\text{S}}(\text{m}_{\text{b}})/\pi]^3 \\ &- 3640[\alpha_{\text{S}}(\text{m}_{\text{b}})/\pi]^4 \ ... \end{aligned}$

using kinetic mass at μ =1 GeV $A_{pert}^{kin} = 1 - 0.94 \alpha_{s}(m_{b})/\pi - 5.1[\alpha_{s}(m_{b})/\pi]^{2} - 17[\alpha_{s}(m_{b})/\pi]^{3}$ $- 63[\alpha_{s}(m_{b})/\pi]^{4} ...$ $a_{2}^{BLM} = -4.1, a_{2}^{nonBLM} = -1.0$

(3.4) Extracting Values of HQP from Moments

V(cb) & HQP $\implies \Gamma_{SL}(B \rightarrow I_{\nu}X_{c})$, i.e. integrated spectrum V(cb) & HQP \implies shape of (E₁&M_X) spectrum

> normalized moments \iff shape of spectrum \Rightarrow normalized moments \implies HQP

Lepton energy and hadronic mass moments:

$$\begin{split} M_1(E_l) &= \Gamma^{-1} \int dE_l \, E_l \, d \, \Gamma/d \, E_l \\ M_n(E_l) &= \Gamma^{-1} \int dE_l \, [E_l^- \, \overline{M}_1(E_l)]^n d \, \Gamma/d \, E_l \, , \, n > 1 \\ M_1(M_X) &= \Gamma^{-1} \int dM_X^2 (M_X^{2-} M_D^2) d \, \Gamma/dM_X^2 \\ M_n(M_X) &= \Gamma^{-1} \int dM_X^2 (M_X^{2-} <M_X^2 >)^n d \, \Gamma/dM_X^2 \, , \, n > 1 \end{split}$$

general considerations

- moments can/must be calculated in terms of same HQP & to same order (at least) in a_s & 1/m_Q
- higher moments more sensitive to higher order contrib.
- need more moments to extract more HQP
 - 1 more moment does not always yield 1 more HQP correlations -- dependance on same combination of HQP
- aim for overconstraints
- optimize total error, not just experimental error
 - Iower cut on lepton energy as low as possible --

otherwise: biases in theoret. interpretation (s. later)

special considerations

- $M_{1-3}(E_1) \& M_1(M_X)$ depend on similar combination of HQP
 - $M_{2,3}(M_X)$ essential
- treat $m_b m_c$ as free parameters --

do not impose constraint on $m_b - m_c$ a priori

excellent description of large set of data points in terms of 6 or even merely 4 parameters: m_b , m_c , μ_{π}^2 , ρ_D^3 , (μ_G^2 , ρ_{LS}^3)

$$\begin{split} m_b(1 \ GeV) &= (4.61 \pm 0.068) \ GeV \quad m_{b,kin}(1 \ GeV)|_{bb} = 4.57 \pm 0.08 \ GeV \\ m_c(1 \ GeV) &= (1.18 \pm 0.092) GeV \\ m_b(1 \ GeV) - m_c(1 \ GeV) = (3.436 \pm 0.032) GeV \\ m_b(1 \ GeV) - m_c(1 \ GeV)|_{MB-MD} = (3.48 \pm 0.02 \pm ?) \ GeV \\ m_b(1 \ GeV) - 0.74m_c(1 \ GeV) = (3.737 \pm 0.017) \ GeV \end{split}$$

 $\mu_{G}^{2}(1 \text{ GeV}) = (0.267 \pm 0.067) \text{ GeV}^{2} \\ \mu_{\pi}^{2}(1 \text{ GeV}) = (0.447 \pm 0.053) \text{ GeV}^{2} \\ \rho_{D}^{3}(1 \text{ GeV}) = (0.195 \pm 0.029) \text{ GeV}^{3}$

 $\mu_{\rm G}{}^{2}{\rm I}_{\rm HF} \approx 0.35 \pm 0.03 \ GeV^{2}$ $\mu_{\pi}{}^{2}{\rm I}_{\rm QCDSR} = 0.45 \pm 0.1 \ GeV^{2}$ $\rho_{\rm D}{}^{3}(1 \ GeV) \sim 0.1 \ GeV^{3}$

(IV) Theoretical Uncertainties

- 3 classes of theoret. uncertainties
- uncertainties in input parameters: α_s , ...
- e " due to truncation in expansions
- Imitations to quark-hadron duality
- straightforward
- **2** uncalculated terms of higher order in $\alpha_{\rm S}$, m_Q, ...
 - mostly systematic in nature
 - numerically largest uncertainty in general
 - encounter all the time
- Ifear of the unfamiliar"

critics of duality in $\Gamma_{SL}(B)$ often silent about $\Delta\Gamma(B_s)$ 39

ancient concept, yet long period of stagnation

- pre-requisite for analyz. duality & its limitations:
 control over nonperturb. effects often not achieved -yet in general can be evaded by going to higher energy scales: Q², p_t, etc.
- this option does not exist for B decays -- yet for a long time data insufficiently precise to push theory!

new paradigm:

- hadronic observables = quark-gluon results -provided all possible sources of corrections to the parton
 picture are properly accounted for!

Quark-hadron duality not an `ab initio' assumption!

duality violation = correction not accounted for due to

- truncation in expansion
- limitation in algorithm employed!

 no complete theory yet for duality and its limitations -but we have moved beyond the folkloric stage in the last few years

 need OPE formulation to talk about duality & its limitations

- we understand physical origins
 - hadronic thresholds
 - 1/m_c expansions

• we have identified mathematical portals Euclidean $exp\{-m_Q/\Lambda\} \longrightarrow Minkowskian sin(m_Q/\Lambda)$

o findings

fundamental question:

is there an OPE -- or not!

□ duality cannot be exact at finite scales; limitations to duality will depend on the process: $\sim \sin(m_0/\Lambda)/m_0^k$, k > 1

 violations of local duality have the form of an oscillating function of the scale; duality violation cannot be blamed for a systematic excess or deficit in rates

duality violations larger in NL than SL decays, but no fundamental difference!

difference between local and other versions of duality quantitative rather than qualitative

a proliferation of decay channels not necessary for the onset of duality: in SV limit 1 or 2 channels will saturate inclusive width.

• duality violation in $\Gamma_{SL}(B) < 0.5 \%$!

final arbiter \Rightarrow redundant determinations!

checks systematics -- whether higher orders or duality

determine m_b , $m_b - m_c$, μ_{π}^2 in different ways

(V) Cut-induced `Biases'

(5.1) Experimental cuts & `hardness'

Experimental cuts on energy etc. applied for practical reasons yet they degrade `hardness' Q of transition

- 3 `exponential' contributions $\exp[-cQ/\mu_{had}]$ missed in usual OPE expressions
 - quite irrelevant for $Q \gg \mu_{had}$
 - yet relevant for $Q \sim \mu_{had}!$

for
$$B \rightarrow \gamma X_q$$
: $Q = m_b - 2 E_{cut}$
e.g.: for $E_{cut} \sim 2 \text{ GeV}$, $Q \sim 1 \text{ GeV}$!

Pilot study (Uraltsev, IB)

absolute bias due to experim. cut

2 different ansaetze for distribution function [curves shown for m_b =4.6 GeV, μ_{π}^2 = 0.45 GeV²; bias depends on HQP]₄₆

Lessons:

- keep the cuts as low as possible
- bias in the meas. moments induced by cuts
 can be corrected for
 not a pretext for inflating theor. uncert.
- moments meas. as fction of cuts: important cross check!

(VI) |V(cb)| & |V(ub)| Lessons & Outlook

(6.1) Status

extract CKM parameters with accuracy seemingly unrealistic less than 10 years ago:

detailed error budgets from (some) theorists!

... CLEO ... DELPHI ...

BABAR '04:

 $V(cb)|_{incl} = (41.390 \pm 0.870) \times 10^{-3} = 41.390 \times (1 \pm 0.021) \times 10^{-3}$

DELPHI '04 preliminary

 $V(cb)|_{incl} = (42.1 \pm 1.1) \times 10^{-3} = 42.1 \times (1 \pm 0.025) \times 10^{-3}$

amazing success in quantitative control over nonperturbative dynamics

essential ingredients

- ➡ robust & multilayered theoret. framework
- broad, high-quality data base
- overconstraints:
 - certified small errors

|V(ub)|

Same HQP -- m_b , μ_{π}^2 , μ_{G}^2 , ρ_D^3 -- control $B \rightarrow 1\nu X_u$ likewise for $B \rightarrow \gamma X$

|V(td)/V(ts)|

from $B \rightarrow \gamma X_d$ vs. $B \rightarrow \gamma X_s$?

(6.3) General perspective

Heavy-flavour transitions

high sensitivity + high accuracy \longrightarrow precision probes for NP data base comprehensive high quality theoret. framwork