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The Beauty of the Brown Muck  -- News from
the Heavy Quark Expansion

Ikaros Bigi
Notre Dame du Lac

7/’04

(0)  Status ‘04

mb(1 GeV) = (4.61 ± 0.068) GeV                                  1.5 %
mc(1 GeV) = (1.18 ± 0.092) GeV                                   7.8 %
mb(1 GeV) - 0.74 mc(1 GeV) = (3.74 ± 0.017) GeV        0.5 %
|V(cb)| = (41.390 ± 0.870)x10-3                                  2.1 %

vs.
|V(us)|KTeV = 0.2252 ± 0.0022                                     1.1 %
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lessons form a paradigm (the tale behind these numbers):

2  robust theory coupled with

2  high quality data

Â  precision, i.e. small defensible uncertainties
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OutlineOutline

(I)     Heavy Quark Expansions

(III) Heavy Quark Parameters

(V)  Cut-induced `Biases’

(IV)   Theoretical Uncertainties

(VI) |V(cb)| & |V(ub)| Lessons & Outlook

(II)   Master Formulae for SL Width

emphasis on the whole program
-- its elements, its self consistency and cross checks --
    rather than numbers
You can ignore recent PDG `review’ on V(cb)!
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(I)   H(eavy) Q(uark) E(xpansions)

m  deepen understanding of QCD

o   new conceptual insights (quark masses, duality, …)

o   previously unanticipated precision in describing
     hadronic processes

m   refine & sharpen SM predictions for CP in B decays,
     rates, distributions

m   `inverse theoret. engineering’: interprete deviations

     from SM predictions in terms of a specific NP scenario

hopes  & goals (largely realized!)
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Methodology

J  the  hope:                 mb >> L QCD

symmetry principle                      dynamical approach
  asymptotic limit                         pre-asymptotia

2 chiral invariance: mq=0, mp=0  +  chiral pert.theory: (mq/4pfp)2n

2 Heavy Quark Symmetry      +   Heavy Quark Expans.
                                           HQ=[Qq]

Q
cloud of light d.o.f.

energy-X with soft 
medium ~ L ~ 1/2 GeV
~ no QQ fluctuations

Q static
Â    QM for Q

Â QFTh for light d.o.f.: 
         (L/mQ)n
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Heavy Quark Symmetry ∆ Heavy Quark Expans.

 ~ HPauli = - A0 +(i∂ -A)2/2mQ + sB/2mQ      Ø - A0          as  mQ Ø ¶

i.e.,
infinitely heavy static quark, without spin dynamics,
only colour Coulomb potential!

Â   hadrons HQ labeled by total spin S and by jq =lq+sq:
o  ground states: [S|lq|jq] = [0,1|0|1/2]: P & V
o  1st excit. states: [0,1|1|1/2] & [1,2 |1|3/2]
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2     conjecture

tool chest to implement idea:

m  operator product expansion (OPE)

m  dispersion relations

m  sum rules 

rate(HQØ fincl) = K(CKM,mQ)S i=0 ci(aS)(L/mQ)i

complication in weak decays:

G(HQ) µ mQ 
5 (m) [ z3(m,m,aS)+ …]
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when is a quark heavy -- when light?
u & d quarks clearly light, b quarks heavy!
need a yard stick

o   1st guess: LNonPD  ~ LQCD ~ 200 MeV
*   c quarks clearly heavy, yet s quarks ??

o    2nd guess: LNonPD ~ 700 MeV ( ~ NC x L QCD  ?)

*    s quarks light by default;

      c quarks: iffy -- need case-by-case study!
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semileptonic transitions  --    like ~ DIS

B B

b b
n n

    
h mn=

i
2MHQ

d4xe–ikx HQ|{Jm(x)Jn
*(0)} T|H Q

    =–h 1gmn+h 2vmvn–ih 3emnabvak b+

h 4k mk n+h 5(k mvn + vmk n)

“structure functions” wi = 2 Im hi
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    G(HQ Ø f) = S i ci (f) (KM, MW, mQ, aS, m) < HQ | Oi | HQ > (m)

ß  short distance dynamics Ø coeff. ci (f)

ß  universal cast of local operators  Oi

ß  <HQ|Oi|HQ> inferred from other observables or lattice QCD!
ß  expansion parameter

                                        1/(mb - mc)                 b Ø c
                1/Erelease ~                         for
                                  1/mb                          b Ø u

ß   Wilson: auxiliary scale m    s.t.
            short distance < m -1 < long distance

2  ci   ‹     short distance dynamics
2  Oi active fields - long distance dynamics

O(perator)P(roduct)E(xpansion)
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+  choose judiciously!
           Scylla & Charybdis:  L QCD <<  m << mQ

2   matrix elements calculable
2   aS << 1

                m  ~ 1 GeV      ◊     for Q = b!  yet: Q = c?
   leads to `smart’ pert.treatment

+   treat as physical parameter (s. sum rules)

 
m fl: longer dist. d.o.f.  Æ short dist. d.o.f.

Â both ci and Oi change!

Caveat: now everyone invokes OPE -- but often without
using Wilson prescription
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G (HQ Æ fincl) =

G2
F KM 2 m5

Q

192 p3 ¥

  

¥
c3(f) HQ Q Q H Q + c5(f)

HQ Qis ⋅ G Q HQ

m2
Q

+

c6(f)
HQ QGq ⋅ qGQ HQ

m3
Q

+ ...
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!  term of order 1/mQ anathema!
o   no independent  dim-4 operator!

o  local colour gauge symmetry essential:
    single operator  QgmDmQ, D=covariant derivative
   global colour symmetry would allow 1/mQ term:

           Qgm∂mQ  and g Q gmAmQ  disconnected

*  need for 1/mQ contrib. =violation of quark-hadron duality!
Â    replacing mQ  by M(HQ) = duality violation!

  Q g ⋅ ∂ Q fi mQ Q Q

Q
q

gg

2  phase space correct. ~ 1/mQ in initial & final state
2  yet cancel since colour charge of Q and q identical
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À  leading nonperturb. contrib. ~ O(1/mQ
2 ):

              ~ O(5 %) for Q = b
weight of nonpert. effects greatly reduced in beauty decays
Â   perturb. contributions numerically important
2   with `smart’ pert. treatment Gparton good estimate

Ã  often find O(1/mQ
2 ) ~ O(1/mQ

3 ):
    what about O(1/mQ

4 )  -- no convergence?
    No!

o complete cancellation in O(1/mQ);
   partial cancellation in O(1/mQ

2);     O(1/mQ
2) reduced

   no cancellation in O(1/mQ
3)

o  one-time enhancem. of O(1/mQ
3) by “16p2”
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Dispersion relations

OPE defined and constructed in Euklidean regime
Â   extrapolate to Minkowskian regime via dispersion relations

G(HQ)|OPE    ¨    G(HQ)|observ

dispersion integral

o   assume: QCD creates no unphysical singularity
o   intrinsic limitation of algorithm

Â    limitations to duality!
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Sum rules
not to be confused with `the SVZ  QCD sum rules
o   different regimes, observables …
o   those are an art rather than a technology

*   their irreducible theor. uncert. ~ 20 - 30 %
sum rules to be sketched here
m lead to novel conceptual insights
m imply rigorous inequalities
m allow translation of experim. info into constraints on HQP

*   impact from charm spectroscopy (s. later)
m   with an intrinsic accuracy not limited to 20 %
             harnessing additional theoret. tool: HQE!

2  SV sum rules,  Spin/Uraltsev sum rules, D’Orsay sum rules
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+   r2(m) - 1/4  = Sn |t 1/2 (n) |2 + 2 Sm |t 3/2 (m) |2

+             1/2        = - 2 Sn |t 1/2 (n) |2 +   Sm |t 3/2 (m) |2

+  L(m) = 2 ( Sn en |t 1/2 (n) |2 + 2 Sm em |t 3/2 (m) |2)

+  m2
p(m)/3=  Sn en

2 |t 1/2 (n) |2 + 2 Sm em
2|t 3/2 (m) |2

+   m2
G(m)/3= -2 Sn en

2 |t 1/2 (n) |2 + 2Sm em
2|t3/2

(m) |2

+   ……
where: t1/2 & t3/2 denote transition amplitudes for
BØlnD(sq=1/2[3/2]) with excit. energy ek = M(B)-M(Dk), ek § m

Â   rigorous inequalities + experim. constraints: e.g.,
o Sn en

2 |t 1/2 (n) |2 § Sm em
2|t3/2

(m) |2
o m2

p(m) - m2
G(m) = 9 Sn en

2 |t 1/2 (n) |2
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2 step procedure

!   express observable in terms of HQP

À   determine HQP from independent observable
      both with commensurate accuracy & reliability!

o   mb,mc: external to QCD

o   m2
p, m2

G, r3
D, r3

LS: intrinsic to QCD

Â   sensitive tests for lattice QCD

will focus on semileptonic (& radiative) B decays
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GSL(B) = G0(b)
{f(z)[1-(2/3)(aS/p)(g(z)/f(z))+c2aS

2+c3aS
3+..]µ[1-(mp

2(m)-mG
2(m) )/2mb

2]
                -2(1-z)4 mG

2(m) /mb
2

               +[d(z)rD
3(m) +l(z) rLS

3(m) ]/ mb
3 +O(1/mb

4)}
G0(b) = GF

2mb
5(m) |V(cb)|2 /192p3

f(z), g(z),d(z),l(z): phase space function of z=mc
2/mb

2

c2: BLM aS
2b0+ estimate for non-BLM,  b0 = 11NC/3 - 2Nf/3 = 9

c3: BLM aS
3b0

2,      [BLM known to all orders aS
nb0

n-1]

m p2(m) = <B|b(iD)2b|B>|m/2MB                 kinetic  energy
mG

2(m) = <B|b(i/2)smnGmnb|B>|m/2MB  chromomagn. moment
rD

3(m) = <B|b(-1/2D∏E)b|B>|m/2MB     Darwin term
rLS

3(m) = <B|b(s∑Eµp)b|B>|m/2MB       LS term

(II)   Master Formulae for GSL(B)
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analysis by  Benson et al., Nucl.Phys.B665(‘03)367

2  perturb. BLM  correct. to all orders for realistic values of
    quark masses with Wilsonian cut-off m:
               aS {1+S n=1 cn(b0aS)n}, b0 =11 - 2nf/3 = 9 >> 1
       c1b0aS  [c2(b0aS)2]  second[third] BLM correct.
2  estimates for non-BLM aS

2 term included
2  detailed [some]  consideration of 1/mQ

3[1/mQ
4]

2  keeping track of m dependence
2  only local operators employed
2  expansions in 1/(mb-mc) and 1/mb, not in 1/ mc

+  do not impose constraint a priori
              mb-mc=<MB> - <MD>+mp

2(1/2mc-1/2mb) +nonlocal operat.
+  include <B|(b…c)(c…b)|B> --
     otherwise terms 1/mb

3mc 
n-3, n>2, arise
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Â   GSL(B Ø lnXc) =

F(HQP) ± 1%|pert± 2.4%|hWc± 0.8%|hpc± 1.4%|IC =

F(HQP) ± 3%|th

unknown higher order contributions:
m   perturbative

2  partonic term: non-BLM ~ aS
n, n ≥ 3

2  O(aS) correct. to nonpert. contrib. ~ 1/mb
3,4

m   nonperturbative    ~ 1/mb
4    [(~ 1 /5)4 ~ 10-3]

m   duality violations:  < 0.5 %   [see later]
m   limiting factor: size of perturb. corrections!
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|V(cb)|/0.0417 = (1+dth) x [1+0.30(aS(mb) -0.22)] x

[1-0.66x(mb(1 GeV) -4.6 GeV) + 0.39x(mc(1 GeV) -1.15 GeV) +

   +0.013x(mp
2 -0.4 GeV2) + 0.05x(mG

2 -0.35 GeV2) +

   +0.09x(rD
3 -0.2 GeV3) + 0.01x(rLS

3 +0.15 GeV3)];

 dth = ± 0.5 %|pert± 1.2%|hWc± 0.4%|hpc± 0.7%|IC

|V(cb)|/0.0417 = (1+dth) x

 [1-0.14x( <MX
2> -4.54 GeV2) + 0.03x(mc(1 GeV) -1.15 GeV) +

   +0.1x(mp
2 -0.4 GeV2) + 0.01x(mG

2 -0.35 GeV2) +

   +0.1x(rD
3 -0.2 GeV3) + 0.06x(rLS

3 +0.15 GeV3)];
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G (B Ø l n Xu):  V(cb) Ø V(ub)

+   (even) better theoretical control

2  z = 0:  f,g,d,l =1

2  full aS
2  known

2  1/mb  < 1/(mb-mc)

2  HQP known from B Ø l n Xc

Yet experimentally …
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Second task --
determine HQP without compromising advantages of OPE:

2   expansions in terms of local operators

2   with expansion parameter at least 1/(mb - mc), not 1/mc

(III) Heavy Quark Parameters (HQP)

+    primary goal:
determine V(cb) rather than mb, mc, …

+    since GSL= |V(cb)|2 F(HQP)  ± (§ 3%)

       want to determine HQP s.t.
             value of F(HQP)  induces at most  ± (§ 1-2%)
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2 different classes of HQP

2   mb, mc -- external to QCD, i.e. can never be calculated
      by LQCD without experimental input

2   mp
2, rD

3, … internal to QCD, i.e. can be calculated by

      LQCD without experimental input
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first need definitions of HQP that can pass muster by
quantum field theory!

(3.1) Quark masses
unlike for QED due to confinement no `natural’ definin. of quark mass

2   pole mass (position of pole in perturb. Green function)
    IR unstable in complete theory

            Dintrinsic mpole ~ O(LQCD)     `renormalons’

m5
Q,pole=(m 

Q,pert+Dintrinsicmpole)5= m5
Q,pert(1+ Dintrinsicmpole/ m 

Q,pert)

                                                                  1/mQ contribution!

Â  must use running mass with IR cut-off m to
   `freeze out’ renormalons  (pole mass: m Ø  0)
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intuitive picture:

mQ  ∂  energy stored in chromoelectric field in a sphere of
radius R >> 1/ mQ

ECCoul (R) ∂ Û1/mb §|x| < R  d3x |ECCoul|2 ∂ const. - a S(R)/pR

pole mass @ R Ø ¶; yet a S(R) strong at R ~ 1/LQCD

2          DIR mQ
pole = O(LQCD )!
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2  `kinetic mass’
dmQ(m)/dm = - 16aS(m)/3p - 4aS(m)/3p(m/mQ) + ...

i.e.,  linear scale dependence in IR
 LHQET º Lkin (1 GeV) - 0.255 GeV    to one-loop

2  MS mass not a parameter in the effect. Lagrangian,
    rather an ad-hoc combination convenient in perturb. calc.
       mQ(m) = mQ(mQ)[1+2(aS/p) log (mQ/m)  Ø ¶      as    m/ mQ Ø 0 !

+   appropriate when relevant scale m > mQ
                  production process, e.g.: Z Ø  b b

+   inadequate for decays where m < mQ

     acceptable as reference point
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before 2002 

                              4.56 ±0.06 GeV      MeYe
mb,kin(1 GeV)=     4.57 ±0.05 GeV      Ho
                          4.59 ±0.06 GeV      BeSi
                          4.58 ±0.05 GeV      KuSt

Â           <mb,kin(1 GeV)>|bb = 4.57 ±0.08 GeV 

U(4S) Ø bb:

mb-mc = <MB> - <MD> +mp
2(1/2mc -1/2mb) + …

           = 3.50 GeV  +      40 MeV(mp
2 - 0.5 GeV2)/0.1 GeV2

vulnerable relation since
*   expansion in 1/mc
*   nonlocal correlators at 1/mc

2

Â  do not impose this relation on mb - mc!

mb - mc
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(3.2) Hadronic expectation values

o  dim 3

o  dim 5
   chromomagnetic moment mG

2

mG
2  = <HQ|Qi/2smnGmnQ| HQ>/2M(HQ) = (3/2) [M2(VQ) - M2(PQ)]

       for b = Q:              mG
2 º 0.35 + 0.03

- 0.02 GeV2

  

HQ Q Q HQ = 1 –
H Q Q iD

2
Q H

Q

2m2
Q

+
HQ Q i

2 s ⋅ G Q H
Q

2m2
Q

+...

   kinetic energy mp
2

mp
2  = <HQ|Qp2Q| HQ>/2M(HQ)º - l1 + 0.18 GeV2     to one-loop

      SV SR:      mp
2 > mG

2;
 `QCD’ SR:        mp

2 = 0.45 ±0.1 GeV2
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o  dim 6

Darwin term r D3

rD
3(m) = <B|b(-1/2D∏E)b|B>|m/2MB

                   rD
3(m) ~ 0.1  GeV3

LS term r LS
3

rLS
3(m)= <B|b(s∑Eµp)b|B>|m/2MB

            - rLS
3(m) § rD

3(m)

hardly relevant, since very reduced contribution
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(3.3) Summary on Defining & Constructing the OPE

G(HQ) ∂ mQ
5(m)[ z3(m,m,aS)+ z5(m,m,aS)< HQ |Qs∏GQ | HQ > (m) + …]

tasks at hand:

2   pick a mass well-defined perturb. & nonperturb.
2   decide at which scale m to evaluate it

2   employ same scale m in other perturbative corrections
      and hadronic expectation values

Our theoretical framework a la Wilson very robust with
smallish higher order pert. & nonpert. contributions --

not true for other implementation of the OPE ( ~HQET)
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e.g.:

using the pole mass:

Apert
pole= 1 - 1.78 aS(mb)/p - 15.8[aS(mb)/p]2-230[aS(mb)/p]3

                - 3640[aS(mb)/p]4 …

using kinetic mass at m=1 GeV

Apert
kin = 1 - 0.94 aS(mb)/p - 5.1[aS(mb)/p]2-17[aS(mb)/p]3

                - 63[aS(mb)/p]4 …

                                   a2
BLM= -4.1, a2

nonBLM= -1.0
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(3.4) Extracting Values of HQP from Moments

V(cb) & HQP            GSL(B Ø lnXc), i.e. integrated spectrum
V(cb) & HQP            shape of (El&MX) spectrum

normalized moments              shape of spectrum
Â normalized moments                        HQP

M1(El) = G-1ÛdEl El d G/d El

Mn(El) = G-1ÛdEl [El- M1(El)]nd G/d El  , n > 1

M1(MX) = G-1ÛdMX
2(MX

2- MD
2)d G/dMX

2

Mn(MX) = G-1ÛdMX
2(MX

2- <MX
2>)nd G/dMX

2 , n > 1

Lepton energy and hadronic mass moments:
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general considerations

2  moments can/must be calculated in terms of same HQP &
to same order (at least) in aS & 1/mQ

2  higher moments more sensitive to higher order contrib.

2  need more moments to extract more HQP
+  1 more moment does not always yield 1 more HQP

correlations -- dependance on same combination of HQP
2  aim for overconstraints

2  optimize total error, not just experimental error
Â  lower cut on lepton energy as low as possible --

otherwise: biases in theoret. interpretation (s. later)
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special considerations

o  M1-3(El) & M1(MX) depend on similar combination of HQP

Â   M2,3(MX) essential

o  treat mb - mc as free parameters --

   do not impose constraint on mb - mc a priori
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BABAR

DELPHI
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mb(1 GeV) = (4.61 ± 0.068) GeV   mb,kin(1 GeV)|bb=4.57±0.08 GeV

mc(1 GeV) =(1.18 ± 0.092)GeV
mb(1 GeV)-mc(1 GeV)=(3.436±0.032)GeV
                          mb(1 GeV)-mc(1 GeV)|MB-MD=(3.48±0.02± ?) GeV
mb(1 GeV) - 0.74mc(1 GeV) =(3.737 ± 0.017) GeV

mG
2(1 GeV) =(0.267 ± 0.067) GeV2          mG

2|HFº 0.35 ±0.03 GeV2

mp
2(1 GeV) =(0.447 ± 0.053) GeV2      mp

2|QCDSR= 0.45 ±0.1 GeV2

rD
3(1 GeV) =(0.195 ± 0.029) GeV3        rD

3(1 GeV) ~ 0.1  GeV3

excellent description of large set of data points in terms of 
6 or even merely 4 parameters: mb, mc, mp

2, rD
3, (mG

2, rLS
3)
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(IV)   Theoretical Uncertainties

3 classes of theoret. uncertainties
!  uncertainties in input parameters: aS, ...
À           “           due to truncation in expansions

Ã  limitations to quark-hadron duality

!  straightforward

À  uncalculated terms of higher order in aS, mQ, …
2  mostly systematic in nature
2  numerically largest uncertainty in general
2  encounter all the time

Ã “fear of the unfamiliar”

critics of duality in GSL(B) often silent about DG(Bs)
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ancient concept, yet long period of stagnation
ß pre-requisite for analyz. duality & its limitations:
   control over nonperturb. effects often not achieved --
   yet in general can be evaded by going to higher energy
   scales: Q2, pt, etc.
ß this option does not exist for B decays -- yet for a long time
   data insufficiently precise to push theory!

new paradigm:

2   QCD is the theory of strong interactions
2   hadronic observables = quark-gluon results --
     provided all possible sources of corrections to the parton
     picture are properly accounted for!



41

duality violation = correction not accounted for due to
o   truncation in expansion
o   limitation in algorithm employed!

Quark-hadron duality not an `ab initio’ assumption!

G(HQ)|OPE    ¨    G(HQ)|observ

dispersion integral

assume: QCD creates no unphysical singularity
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m   no complete theory yet for duality and its limitations --
but we have moved beyond the folkloric stage in the last
few years

2  need OPE formulation to talk about duality & its
limitations

o  we understand physical origins
*  hadronic thresholds
*  1/mc expansions

o  we have identified mathematical portals
 Euclidean   exp{-mQ/L}                 Minkowskian    sin(mQ/L)
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m   findings
o   fundamental question:

               is there an OPE -- or not!
o duality cannot be exact at finite scales; limitations to
duality will depend on the process:  ~ sin(mQ/L)/mQ

k,   k > 1
o  violations of local duality have the form of an
oscillating function of the scale; duality violation cannot
be blamed for a systematic excess or deficit in rates
o  duality violations larger in NL than SL decays, but no
fundamental difference!
o  difference between local and other versions of duality
quantitative rather than qualitative
o  a proliferation of decay channels not necessary for the
onset of duality: in SV limit 1 or 2 channels will saturate
inclusive width.
o  duality violation in GSL(B) < 0.5 %!
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final arbiter fl redundant determinations!

checks systematics -- whether higher orders or duality

determine mb, mb - mc, mp
2 in different ways
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(V)  Cut-induced `Biases’

(5.1) Experimental cuts & `hardness’

Experimental cuts on energy etc. applied for practical reasons 
yet they degrade `hardness’ Q  of transition
$ `exponential’ contributions exp[-cQ/mhad] missed in usual 
    OPE expressions 

2  quite irrelevant for Q >> mhad

2  yet relevant for Q  ~ mhad!

for B Æ g Xq:  Q = mb - 2 Ecut

                                e.g.: for Ecut~ 2 GeV, Q ~ 1 GeV !
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Pilot study  (Uraltsev, IB)

absolute bias due to experim. cut

            2 different ansaetze for distribution function

[curves shown for mb=4.6 GeV, mp
2 = 0.45 GeV2; bias depends on HQP]

~ 1.5 % shift

for Ecut=2 GeV

~ 40 % shift

for Ecut=2 GeV
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Lessons: 
q   keep the cuts as low as possible
q   bias in the meas. moments induced by cuts

+ can be corrected for 
+ not a pretext for inflating theor. uncert.

q   moments meas. as fction of cuts: important cross check!
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extract CKM parameters with accuracy seemingly unrealistic
less than 10 years ago:
     detailed error budgets from (some) theorists!

… CLEO … DELPHI …

BABAR ‘04:

V(cb)|incl=(41.390 ± 0.870) x 10-3=41.390x(1 ± 0.021) x 10-3

DELPHI ‘04 preliminary
V(cb)|incl=(42.1 ± 1.1) x 10-3 =42.1x(1 ± 0.025) x 10-3

(VI) |V(cb)| & |V(ub)| Lessons & Outlook

(6.1) Status
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amazing success in quantitative control over nonperturbative
dynamics

essential ingredients
2 robust & multilayered theoret. framework
2 broad, high-quality data base
2 overconstraints:

Â certified small errors
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(6.2) Outlook

|V(ub)|

Same HQP -- mb, mp
2, mG

2, rD
3 -- control BØ lnXu

likewise for BØ gX

|V(td)/V(ts)|

from BØ gXd vs. BØ gXs ? 
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(6.3) General perspective

Heavy-flavour transitions

high sensitivity + high accuracy         precision probes for NP

                                                   data base
   comprehensive high quality

                                              theoret. framwork


