

Stato del rivelatore e primi risultati dell'esperimento LHCb

Alessio Sarti

Il rivelatore LHCb

Finalmente.... Dati 2009

- Tutti i risultati mostrati sui dati
 2009 sono <u>preliminari</u>
 - Dati presi tra il 6 ed il 15 dic @ 450 GeV:
 270 k interazioni pp su disco
 - Rate di trigger: da 1 a 30 Hz
- Il confronto è fatto con MC di LHCb @ 450 GeV

Fisica @ LHCb

– Grosso (x100) fondo da interazioni pp da rimuovere

Ingredienti di fisica del B

La strategia di Trigger è cruciale: $\sigma_{\overline{b}b}$ è <1% della sezione d'urto totale inelastica ed i decadimenti del B di interesse hanno tipicamente BR < 10⁻⁵ Trigger 2009 di solo Livello O (LO) seleziona candidati ad alto p_T: µ, e, γ e adroni

Assumendo σ(inel)~40mb → Luminosità visibile a t=0 da 10²⁵ a 5·10²⁶cm⁻²s⁻¹ e, assumendo ε(trig)~70% (da MC+dati), L integrata ~10µb⁻¹

Rivelatore di vertice (VELO)

- Non è stato possibile chiudere il VELO a 900 GeV:
 - ogni lato e' rimasto a 15mm dalla posizione nominale, mentre e' stato tenuto a 30mm durante l'iniezione → influenza sul tracciamento
- Il VELO è stato movimentato più volte senza problemi

Prestazioni del VELO

- Occupancy in accordo con attese anche in funzione della posizione del rivelatore rispetto all'apertura-chiusura
- Efficienza degli hit calcolata per interpolazione: valore medio ~97%
- Risoluzione spaziale in moderato accordo le simulazioni (40% meno buona) ma allineamento preliminare
- Effetto del dipolo di LHCb: i fasci di LHC si incrociano con un angolo di 4mrad (2+2) nel piano orizzontale

Tracciamento - tecnologia/stato

Trigger Tracker (TT) e 3 Tracking Stations (T1,T2,T3), ognuna con 4 piani di rivelatore (0°,+5°,-5°,0°)

Outer Tracker Straw Tubes (56 k ch)Gas: Ar/CO² (70/30)Inner Tracker ~0.5 m² attorno alla beam pipe. Rivelatori a Si -µstrip (130k ch) **Trigger Tracker** Rivelatori a Si -µ-strip ~1.4×1.2 m² (144k ch)

- IT: <1% di canali morti; S/N ottimo</p>
 - Distribuzioni hit in accordo con il MC
- TT:<1% di canali morti; S/N ottimo</p>
 - Distribuzioni hit in accordo con il MC;
- ➡ OT:
 - >98% del rivelatore funzionante
 - efficienza misurata per interpolazione >96% in media
 - allineamento non ancora ottimale, dunque prestazioni e confronto dati MC non conclusivo
- in tutti e tre I rivelatori ci sono consistentemente un 40-50% in piu di hit nei dati nel MC: occorre ora localizzare il materiale mancante nel MC
 - Flange della beam pipe
 - Altro

Tracciamento - primi risultati

Tipi di tracce ricostruite in LHCb

- Dati non completamente allineati e calibrati: allineamento essenzialmente determinato da eventi TED presi prima della partenza di LHC, in continuo miglioramento
- Collisioni a 450 GeV non molto affollate: le finestre di ricerca di Hit sono allargate al massimo

Confronto dati simulazione: in continuo miglioramento con l'allineamento

	MC 09	Data (63690)
# measurements	22.7	19.7
# of outliers	0.6	1.6
# TT hits	4.1	3.7
# IT hits	1.6	1.1
# OT hits	17.7	16.5
chi2/ndf	1.8	4.4
σ _{οτ} [μm]	31	74
σ _{ιτ} [μm]	35	67
σ _{ττ} [μm]	215	369

Primi sguardi alle V⁰

Ci si aspetta di migliorare ulteriormente dopo un allineamento piu' completo ma per questo tipo di traccia (lunga) siamo gia molto vicini alle risoluzioni del MC (4 MeV/c² per il K₅ e 1 MeV/c² per la ∧)

PID con il RICH

L'informazione sulla identificazione delle particelle viene fornita tramite Delta Log Likelihood rispetto ad una ipotesi DLL (p- π) estratte da Λ e (π -K) da K_s

Punti arancioni: - hits di fotoni Linee continue:- distribuzioni attese per le ipotesi K e π (protoni sotto soglia)

4000 (²م) 3500 ه La selezione del canale $\phi \rightarrow KK$ permette di verificare lo stato di calibrazione della **LHC***b* Preliminary C 3000 Particle ID del RICH 450 GeV Data **2500** Events / 2000 Preselezione delle tracce tagliando su: All Tracks - Vertex $\chi^2 < 25$ 1000 - Flight Distance $\chi^2 < 20$ 500 - Number of PVs == 1 980 1000 1020 1040 1060 m_{KK} [MeV/c²] Richiedendo DLL (K- π)>15 Phi_qT Events / (1.56 MeV/c² 90 250 φ ellipse σ_{Gauss} = 1.99 ± 0.41 MeV All Tracks 80E- μ = 1019.54 ± 0.30 MeV 200 70 N_{Signal} = 368.4 ± 29.3 60 150 50 100 40 30 50 20E 10 -0.5 0.5 Phi_Alpha 1000 1020 1040 1060 980

m_{KK} (MeV/c²)

φ → KK

Stato dei calorimetri

Rivelatori HCAL, ECAL, Preshower, Scintillator Pad per identificare e, h, π^0 , γ e per triggerare su candidati con alta E_T (E,HCAL) o molteplicità (SPD)

- SPD/PS
 - Scintillator Pad 2X₀ piombo -Scintillator Pad
 - Luce raccolta con Fibre WLS
- ECAL Sashlik
 - 66 layers di 2mm Pb/ 4mm scintillator: 25 X₀
 - Luce raccolta con Fibre WLS
- HCAL tile calorimeter
 - Iron-Scintillator longitudinal tiles
 - 1468 canali, 5.6 λι

Performance dei Calorimetri

Rivelatore µ

5 anni e 1380 camere dopo....

2003: comincia la produzione delle camere μ di LHCb nei LNF

2009: il sistema μ pronto per la presa dati!

Installazione apparato, servizi, camere

... siamo arrivati fin qui!

Coppie di μ che soddisfano una PID 'loose'

- Vtx χ²<200, z(vtx)<200 mm
- Senza applicare tagli cinematici!

LHCb Event Display

IM: 3035 GeV IP buono, rilasci di energia in ECAL, HCAI consistenti con ipotesi μ e valori di D per entrambe le tracce in accordo con ipotesi μ

Stato dei µ(I)

- 5 stazioni: M1 (davanti) e M2-M5 (dietro) ai calorimetri
 - 3 Filtri di ferro di 80cm (20 λ_I)
- 4 regioni: con granularità differente equipaggiati con MWPC (4 gas-gaps)
 - In M1R1 si usano le tripleGEM
 - Miscela di Gas: Ar/CO2/CF4
- 1380 camere. Area instrumentata: 435m²
 - 122k canali di FE, 26k canali r/o.

Stato generale molto soddisfacente: Solo 2 gap/4944 disconnesse Pochissimi canali logici morti (~0.01%)

Temporizzazione del rivelatore

Efficenza delle camere

- L'efficenza delle MWPC è stata studiata in funzione della regione e stazione:
 - probabilità che l'hit (se c'è) sia entro il bunch crossing (in %)
- Il timing delle regioni interne è ancora non preciso per mancanza di statistica nei cosmici. La calibrazione è stata adesso rifatta con i dati di fascio e sara' pronta per il run 2010

	R1	R2	R3	R4	
M1	90.2	97.5	99.0	99.3	8.0
M2	98.2	99.3	99.6	99.5	0.6 M3
M3	99.2	99.0	99.9	99.5	0.4 MC
M4	98.6	99.1	99.8	99.8	0.2 true µ's candidates
M5	96.4	98.6	99.5	99.4	0 5 10 15 20 25 30 35 40

Primo sguardo ai muoni dalle collisioni

- I μ sono stati selezionati con i tagli seguenti:
 - Sono considerate solo tracce long/downstream che puntino dentro l'accettanza del sistema Muon applicando un criterio 'loose' di identificazione di μ richiedendo p>3GeV/c e p_t>500 MeV/c

Studiando la simulazione Monte Carlo ci aspettiamo che i μ selezionati siano: per il 43% $\pi \rightarrow \mu$, per il 16% k $\rightarrow \mu$ e per il 24% ghost. La maggior parte sono dunque decadimenti in volo (~85% delle tracce), il 4% sono protoni e per il resto sono π/K punchthrough.

Muon ID

L'ipotesi μ viene verificata a partire dalla distribuzione della variabile D per gli hit trovati nelle finestre di interesse (FOI)

$$D = \frac{1}{N} \sum_{i=0}^{N-1} \left\{ \left(\frac{x_{closest,i} - x_{track}}{pad_x} \right)^2 + \left(\frac{y_{closest,i} - y_{track}}{pad_y} \right)^2 \right\}$$

Integrando D è possibile definire $P(\mu)$ e $P(!\mu)$ da usare nella costruzione della DLL

- Mis ID valutata per tracce con Hit in FOI con tagli Loose (FOI larghe, and di hit nelle stazioni)
 - p from Λ: 0.011±0.011
 π from Λ: 0.048+0.022
- accordo dati-MC
- $- \pi$ from K_s: 0.034±0.005

Trigger µ di Livello 0 ed 1

- Risoluzione in impulso dei candidati LO - μ

Efficienza LO-µ

Lo-µ eff

0.9F

0.8

0.7

0.6

0.5Ē

0.4

0.3

0.2

0.1F

- L'efficenza di LO-µè piuttosto bassa: LO- μ non è stato ottimizzato per prendere dati in queste condizioni (CoM 900 GeV)
- Gli studi di inefficenza non mostrano nulla di inaspettato

Il trigger è progettato per essere efficente su decadimenti di b e non per candidati μ dal minimum bias (85% dei μ sono decadimenti in volo)! Una migliore valutazione dell'efficienza verrà con le J/Ψ

Prime misure di fisica

In corso di studio:

- Studio delle V^0 (Λ/K_s etc)
- sezioni d'urto differenziali →
 misura di Luminosita'
- produzione di jet
- Alcuni risultati per le conferenze invernali
- Da effettuare con i primi dati 2010:
 - Studio di produzione e polarizzazione della J/ψ, ψ(25)
 - rapporto di produzione ψ e ψ(25)
 per la validazione di modelli NRQCD
 @ LHC

E nel 2010...

- I nostri obiettivi di fisica per il 2010 dipenderanno dalla luminosita' fornita dal LHC (assumendo che si possa raggiungere l'energia di 3.5TeV/fascio).
- La nostra luminosita' nominale e' "solo" 2·10³²cm⁻²s⁻¹ pertanto ci sentiamo ottimisti e pronti ad affrontare gia' nel 2010 le misure piu importanti del nostro programma di fisica!

Se il valor vero è nell'intervallo @ 68% CL quotato da CDF e DO (~2.1σ da SM), LHCb potrebbe osservare effetti di Nuova Fisica già con i primi dati del 2010 (~0.15fb⁻¹)

altrimenti ... con ~2 fb⁻¹ $\sigma(\phi_s)$ raggiunge il valore aspettato secondo lo SM

.... ci sarà da divertirsi!

- Anche a 3.5 TeV per fascio LHCb ha il potenziale per competere con il tevatron!
- Tutti gli studi effettuati sui dati 2009 (K_s, Λ , ϕ) per valutare la risoluzione in massa invariante (decadimenti in 2 corpi), la risoluzione sulle variabili geometriche e le performance della μ ID, dimostrano un'ottimo accordo dati-MC
 - ci aspettiamo quindi che anche @ 7TeV CoM le performance attese siano confermate
- Il gruppo di analisi dei LNF è al momento focalizzato
 - sullo studio del decadimento B_s→µµ (G.
 Lanfranchi è convener del gruppo di analisi)
 - sulla valutazione della μ -ID e μ -misID
 - sulla valutazione dell'efficenza delle camere μ

