

Stato del rivelatore e primi risultati dell'esperimento LHCb

Alessio Sarti

Il rivelatore LHCb

Finalmente.... Dati 2009

- Tutti i risultati mostrati sui dati
 2009 sono <u>preliminari</u>
 - Dati presi tra il 6 ed il 15 dic @ 450 GeV:
 270 k interazioni pp su disco
 - Rate di trigger: da 1 a 30 Hz
- → Il confronto è fatto con MC di LHCb @ 450 GeV

Fisica @ LHCb

- Grosso (x100) fondo da interazioni pp da rimuovere

Ingredienti di fisica del B

Studi di fisica del B diventano difficili se aumenta #
interazioni pp/crossing (>1, ambiente più sporco): bisogna
fare attenzione @ alta luminosità (>2·10³²) o in condizioni di
fascio!= nominale (es: primo anno)

Ingredienti essenziali

- trigger veloce (calo, μ , pileup)
- ricostruzione di vertice (velo)
- tracciamento (TT, IT, OT)

- particle ID (Rich, μ)

Risoluzione in Massa Tryanian

htag

Massa Invariante

Buona separazione π/K

Esempio:

$$B_s \rightarrow D_s K$$

Buona ricostruzione di vertici primari/secondari per misure di tempo proprio

Flavour tagging

Trigger: nominale vs 2009 data

La strategia di Trigger è cruciale: σ_{bb} è <1% della sezione d'urto totale inelastica ed i decadimenti del B di interesse hanno tipicamente BR < 10^{-5} Trigger 2009 di solo Livello 0 (L0) seleziona candidati ad alto p_T : μ , e, γ e adroni

Nel 2009 il trigger è ~ un trigger 'minimum bias' E_T>240 MeV && SPD_mult>2 || p_T(μ)> 480 MeV/c

La rate di trigger è variata da un massimo di 30 Hz ad un minimo di 1 Hz

Assumendo $\sigma(\text{inel})\sim 40\text{mb} \rightarrow \text{Luminosità visibile a t=0 da }10^{25} \text{ a}$ $5\cdot 10^{26}\text{cm}^{-2}\text{s}^{-1}\text{ e, assumendo }\epsilon(\text{trig})\sim 70\% \text{ (da MC+dati), L integrata }\sim 10\mu\text{b}^{-1}$

Rivelatore di vertice (VELO)

- → Non è stato possibile chiudere il VELO a 900 GeV:
 - ogni lato e' rimasto a 15mm dalla posizione nominale, mentre e' stato tenuto a 30mm durante l'iniezione → influenza sul tracciamento
- → Il VELO è stato movimentato più volte senza problemi

slight overlap of sensors

Prestazioni del VELO

- Occupancy in accordo con attese anche in funzione della posizione del rivelatore rispetto all'apertura-chiusura
- Efficienza degli hit calcolata per interpolazione: valore medio ~97%
- → Risoluzione spaziale in moderato accordo le simulazioni (40% meno buona) ma allineamento preliminare

Effetto del dipolo di LHCb: i fasci di LHC si incrociano con un angolo di 4mrad (2+2) nel piano orizzontale

Tracciamento - tecnologia/stato

Trigger Tracker (TT) e 3 Tracking Stations (T1,T2,T3), ognuna con 4 piani di rivelatore $(0^{\circ},+5^{\circ},-5^{\circ},0^{\circ})$

Outer Tracker

Straw Tubes (56 k ch) Gas: Ar/CO² (70/30)

Inner Tracker

~0.5 m² attorno alla beam pipe. Rivelatori a Si -µstrip (130k ch)

Trigger Tracker

Rivelatori a Si - μ -strip ~1.4×1.2 m² (144k ch)

- → IT: <1% di canali morti; S/N ottimo
 - Distribuzioni hit in accordo con il MC
- TT:<1% di canali morti; S/N ottimo
 - Distribuzioni hit in accordo con il MC;
- **→** OT:
 - >98% del rivelatore funzionante
 - efficienza misurata per interpolazione >96% in media
 - allineamento non ancora ottimale, dunque prestazioni e confronto dati MC non conclusivo
- → in tutti e tre I rivelatori ci sono consistentemente un 40-50% in piu di hit nei dati nel MC: occorre ora localizzare il materiale mancante nel MC
 - Flange della beam pipe
 - Altro

Tracciamento - primi risultati

Tipi di tracce ricostruite in LHCb

- → Dati non completamente allineati e calibrati: allineamento essenzialmente determinato da eventi TED presi prima della partenza di LHC, in continuo miglioramento
- → Collisioni a 450 GeV non molto affollate: le finestre di ricerca di Hit sono allargate al massimo

Confronto dati simulazione: in continuo miglioramento con l'allineamento

	MC 09	Data (63690)	
# measurements	22.7	19.7	
# of outliers	0.6	1.6	
# TT hits	4.1	3.7	
# IT hits	1.6	1.1	
# OT hits	17.7	16.5	
chi2/ndf	1.8	4.4	
σ _{οτ} [μm]	31	74	
σ _{ιτ} [μm]	35	67	
σ _{ττ} [μm]	215	369	

Primi sguardi alle V⁰

Usando tuti i rivelatori di traccia incluso il VELO

 $M(K_S) = 497.3 \pm 0.2 \text{ MeV/c}^2$ $\sigma = 4.3 \pm 0.1 \text{ MeV/c}^2$

$$M(K_S^{PDG}) = 497.7 \text{ MeV/c}^2$$

 $M(\Lambda) = 1115.6 \pm 0.1 \text{ MeV/c}^2$ $\sigma = 1.4 \pm 0.1 \text{ MeV/c}^2$

$$M(\Lambda^{PDG}) = 1115.7 \text{ MeV/c}^2$$

Ci si aspetta di migliorare ulteriormente dopo un allineamento piu' completo ma per questo tipo di traccia (lunga) siamo gia molto vicini alle risoluzioni del MC (4 MeV/ c^2 per il K_s e 1 MeV/ c^2 per la Λ)

Stato del RICH

RICH 1:

Aerogel n=1.03 (5 cm) C_4F_{10} n=1.0014 (85 cm)

RICH 2:

 CF_4 n=1.0005 (167 cm)

Photon Funnel + Shielding

Stato generale molto buono!

- La perdita di gas CF₄ nel RICH2 è stata trovata e risolta.
- Durante questo shutdown 7 HPD sono stati sostituiti: non sono previste altre sostituzioni nel 2010
- C'è una LO board che ha un problema con il livello di luce per 2 hpd. Rimarranno così per il 2010

PID con il RICH

L'informazione sulla identificazione delle particelle viene fornita tramite Delta Log Likelihood rispetto ad una ipotesi DLL $(p-\pi)$ estratte da Λ e $(\pi-K)$ da K_s

Punti arancioni: - hits di fotoni Linee continue:- distribuzioni attese per le ipotesi K e π (protoni sotto soglia)

$\phi \rightarrow KK$

La selezione del canale ϕ →KK permette di verificare lo stato di calibrazione della Particle ID del RICH

Preselezione delle tracce tagliando su:

- Vertex χ^2 < 25
- Flight Distance χ^2 < 20
- Number of PVs == 1

Stato dei calorimetri

Rivelatori HCAL, ECAL, Preshower, Scintillator Pad per identificare e, h, π^0 , y e per triggerare su candidati con alta E_T (E,HCAL) o molteplicità (SPD)

- SPD/PS

- Scintillator Pad 2X₀ piombo Scintillator Pad
- Luce raccolta con Fibre WLS

→ ECAL Sashlik

- 66 layers di 2mm Pb/4mm
 scintillator: 25 X₀
- Luce raccolta con Fibre WLS

HCAL tile calorimeter

- Iron-Scintillator longitudinal tiles
- 1468 canali, 5.6 λ_I

Performance dei Calorimetri

- \rightarrow Ricostruzione dei π^0
 - selezione basata sui seguenti tagli: PRS>10MeV + no SPD hits e $P_T(\gamma)>200MeV/c$

Il fondo combinatorio è stato sottratto

Rilascio di energia dei muoni (MIP) nei calorimetri

 E_{ECAL} (MeV)

E_{HCAL} (MeV)

Rivelatore μ

2003: comincia la produzione delle camere μ di LHCb nei LNF

2009: il sistema μ pronto per la presa dati!

5 anni e 1380 camere dopo.....

Grazie a ...

Installazione apparato, servizi, camere

... siamo arrivati fin qui!

- Coppie di µ che soddisfano una PID 'loose'
 - $Vtx \chi^2 < 200$, z(vtx) < 200 mm
 - Senza applicare tagli cinematici!

LHCb Event Display

IM: 3035 GeV IP buono, rilasci di energia in ECAL, HCAI consistenti con ipotesi μ e valori di D per entrambe le tracce in accordo con ipotesi μ

Stato dei μ (I)

- → 5 stazioni: M1 (davanti) e M2-M5 (dietro) ai calorimetri
 - 3 Filtri di ferro di 80cm (20 λ_I)
- 4 regioni: con granularità differente equipaggiati con MWPC (4 gas-gaps)
 - In M1R1 si usano le tripleGEM
 - Miscela di Gas: Ar/CO2/CF4
- → 1380 camere. Area instrumentata: 435m²
 - 122k canali di FE, 26k canali r/o.

Stato generale molto soddisfacente: Solo 2 gap/4944 disconnesse Pochissimi canali logici morti (~0.01%)

Temporizzazione del rivelatore

Utilizzando solo il tracciamento nelle camere a muoni: tracce con hit in 5 stazioni LHCb data 2009 preliminary

Allineamento temporale ottenuto dai cosmici

Efficenza delle camere

- L'efficenza delle MWPC è stata studiata in funzione della regione e stazione:
 - probabilità che l'hit (se c'è) sia entro il bunch crossing (in %)
- →Il timing delle regioni interne è ancora non preciso per mancanza di statistica nei cosmici. La calibrazione è stata adesso rifatta con i dati di fascio e sara' pronta per il run 2010

	R1	R2	R3	R4
M1	90.2	97.5	99.0	99.3
M2	98.2	99.3	99.6	99.5
M3	99.2	99.0	99.9	99.5
M4	98.6	99.1	99.8	99.8
M5	96.4	98.6	99.5	99.4

Primo sguardo ai muoni dalle collisioni

- \neg I μ sono stati selezionati con i tagli seguenti:
 - Sono considerate solo tracce long/downstream che puntino dentro l'accettanza del sistema Muon applicando un criterio 'loose' di identificazione di μ richiedendo p>3GeV/c e p_t>500 MeV/c

Studiando la simulazione Monte Carlo ci aspettiamo che i μ selezionati siano: per il 43% $\pi \rightarrow \mu$, per il 16% k $\rightarrow \mu$ e per il 24% ghost. La maggior parte sono dunque decadimenti in volo (~85% delle tracce), il 4% sono protoni e per il resto sono π/K punchthrough.

Muon ID

L'ipotesi μ viene verificata a partire dalla distribuzione della variabile D per gli hit trovati nelle finestre di interesse (FOI)

$$D = \frac{1}{N} \sum_{i=0}^{N-1} \left\{ \left(\frac{x_{closest,i} - x_{track}}{pad_x} \right)^2 + \left(\frac{y_{closest,i} - y_{track}}{pad_y} \right)^2 \right\}$$

Entries

Integrando D è possibile definire $P(\mu)$ e $P(|\mu)$ da usare nella costruzione della DLL

- Mis ID valutata per tracce con Hit in FOI con tagli Loose (FOI larghe, and di hit nelle stazioni)
 - p from ∧: 0.011±0.011
 - π from Λ: 0.048±0.022

 π from K_s: 0.034±0.005

Buon accordo dati-MC

Trigger µ di Livello 0 ed 1

\rightarrow Risoluzione in impulso dei candidati LO - μ

L'HLT 1 procede con la conferma del candidato LO nelle search windows e poi aggiunge l'informazione dai tracciatori

IT =accordo buono OT= qualche problema da capire previsto un nuovo alignment efficienza della Tconferma >90% ΔP(Hlt1-offline)~ 2% (MC 1.5%)

Momentum

Data, core: σ(p) ~ 20% σ(pt) ~ 17%

Efficienza LO-µ

- L'efficenza di LO-μ è
 piuttosto bassa: LO-μ non
 è stato ottimizzato per
 prendere dati in queste
 condizioni (CoM 900 GeV)
- Gli studi di inefficenza non mostrano nulla di inaspettato

Il trigger è progettato per essere efficente su decadimenti di b e non per candidati μ dal minimum bias (85% dei μ sono decadimenti in volo)!

Una migliore valutazione dell'efficienza verrà con le J/Ψ

Prime misure di fisica

- → In corso di studio:
 - Studio delle $V^0(\Lambda/K_S \text{ etc})$
 - sezioni d'urto differenziali → misura di Luminosita'
 - produzione di jet
- Alcuni risultati per le conferenze invernali
- Da effettuare con i primi dati 2010:
 - Studio di produzione e polarizzazione della J/ψ , $\psi(25)$
 - rapporto di produzione ψ e ψ(25)
 per la validazione di modelli NRQCD
 @ LHC

Enel 2010...

- → I nostri obiettivi di fisica per il 2010 dipenderanno dalla luminosita' fornita dal LHC (assumendo che si possa raggiungere l'energia di 3.5TeV/fascio).
- La nostra luminosita' nominale e' "solo" 2·10³²cm⁻²s⁻¹ pertanto ci sentiamo ottimisti e pronti ad affrontare gia' nel 2010 le misure piu importanti del nostro programma di fisica!

Se il valor vero è nell'intervallo @ 68% CL quotato da CDF e DO (~2.1 σ da SM), LHCb potrebbe osservare effetti di Nuova Fisica già con i primi dati del 2010 (~0.15fb⁻¹)

altrimenti ... con ~2 fb⁻¹ $\sigma(\phi_s)$ raggiunge il valore aspettato secondo lo SM

.... ci sarà da divertirsi!

- Anche a 3.5 TeV per fascio LHCb ha il potenziale per competere con il tevatron!
- Tutti gli studi effettuati sui dati 2009 (K_s , Λ , ϕ) per valutare la risoluzione in massa invariante (decadimenti in 2 corpi), la risoluzione sulle variabili geometriche e le performance della μ ID, dimostrano un'ottimo accordo dati-MC
 - ci aspettiamo quindi che anche @ 7TeV CoM le performance attese siano confermate
- → Il gruppo di analisi dei LNF è al momento focalizzato
 - sullo studio del decadimento $B_s \rightarrow \mu\mu$ (G. Lanfranchi è convener del gruppo di analisi)
 - sulla valutazione della μ -ID e μ -misID
 - sulla valutazione dell'efficenza delle camere μ

