

High Altitude Wind Power Generation

Mario Milanese Politecnico di Torino KiteGen Research srl

INFN, Laboratorio Nazionale di Frascati: Frascati, November 19, 2008

Kite Gen project

- A radical innovation in wind technology, able to generate renewable energy at cost lower than from oil
- Exploiting a renewable energy source , the altitude wind, available anywhere
- Channelled through arrays of automatically controlled tethered airfoils (kites).

Altitude vs. ground wind

 Wind power is already extremely promising at approx. 800 meters, where the average wind speed is estimated at 7,2 m/s.

•The related wind power is almost 4 times the one globally available for wind towers.

Altitude	wind speed	wind power
800 m	7.2 m/s	205 W/m ²
80 m	4.6 m/s	58 W/m ²

• Wind at 800 m is out of the reach of current and future aerogenerating towers, already struggling at 100 m: the structure holding up the rotors becomes exponentially heavier, more unstable and expensive

The KiteGen solution

 A radical shift of perspective: no longer heavy and static structures, but a light, dynamic and intelligent machine.

KiteGen key technology

• The core is the system of automatic control of the kite flight, called KSU (Kite Steering Unit):

In the air: power kites

• In the air, to extract energy from the wind, power kites, air foils with high aerodynamic efficiency automatically driven.

In the air: light cables

 Connecting each power kites to the units at ground level for power generation, 2 special composite cables transmit the traction force and are differentially adjusted for manouvering.

<u>Traction resistance:</u> <u>10 tons / cm²</u>

<u>Weight:</u> 100 kg /km*cm2

The intelligence

- At the very core of the project stays the **control flight system** that autonomously drives the kites, maximising the energy production.
- Patented software control techniques and avionic on board kites sensors have been one of the main KiteGen focus of research.

A MPC (Model Predictive Control) method is used based on a aerodynamic model of kites

$$\begin{aligned} r\ddot{\theta} - r\sin(\theta)\cos(\theta)\dot{\phi}^2 + 2\dot{\theta}\dot{r} &= \frac{F_{\theta}}{m} \\ r\sin(\theta)\ddot{\phi} + 2r\cos(\theta)\dot{\phi}\dot{\theta} + 2\sin(\theta)\dot{\phi}\dot{r} &= \frac{F_{\phi}}{m} \\ \ddot{r} - r\dot{\theta}^2 - r\sin^2(\theta)\dot{\phi}^2 &= \frac{F_r}{m} \\ F_{\theta} &= \sin(\theta)mg + F_{\theta}^{aer} \\ F_{\phi} &= F_{\phi}^{aer} \\ F_r &= -\cos(\theta)mg + F_r^{aer} - F^c \end{aligned}$$

Model equations are of the form:

Spherical coordinate system

Fast Model Predictive Control (FMPC) strategy

- The on-line solution of the optimization problem cannot be performed within the required sampling times (100 ms).
- For each phase, the control law is a nonlinear static function of several variables:

 $\psi(t_k) = f(x(t_k), W_0(t_k), \dot{r}_{ref}(t_k))^T = f(w(t_k))$

- A "Fast" implementation of Model Predictive Control is obtained by means of Set Membership nonlinear function estimation using a suitable number of off-line MPC solutions. (Canale and Milanese, *IFAC World Congress, Prague 2005*)
- Set Membership nonlinear function estimation methology provides an approximation f^* of the function f with the following properties:
 - 1. passivity constraints satisfaction
 - 2. computational time independent of the MPC horizons and suited for the employed sampling periods
 - 3. FMPC $\rightarrow \psi(t_k) = f^*(w_t(t_k))$

KG-yoyo configuration

Energy is generated by actuation of two phases:

Traction: the kite pull the lines making the KSU electric drives generate electric energy

Recovery: the lines are recovered by spending 1/20 of energy generated in the traction phase

How much energy is generated ?

- A single KG-yoyo with:
 - »kite area A= 500 m²
 - »kite efficiency E= 12
 - »wind speed We= 15 m/s
 - » a= 300 m; ∆r= 50 m

• A wind farm can be realized by suitably displacing several KG-yoyo's in order to avoid kite collision and aerodynamic interferences

KG-farm

power density of 2MW wind towers : 12 MW/km²

Energy availability anywhere

• Exploiting altitude wind simplifies the issue of where to localize the plants: on average every point on the planet's surface 800 meters on its vertical has enough power available (≈200 W/m²).

• Existing wind towers has lower operative range and needs a more accurate and severe selection of the possible favourable sites.

Availability examples

- Pianura Padana (Linate):

 Wind tower (90 m rotor diameter: 70 h/y
 KiteGen (200-800 m op. height): 3100 h/y
- South Italy (Brindisi):

 Wind tower (90 m rotor diameter: 2350 h/y
 KiteGen (200-800 m op. height): 5200 h/y

Scalability and energy cost

Production cost of energy vs. Kite Gen plant size

Carousel configuration

• The KSU drives the flight of the kites in order to rotate the turbine and maximize the exerted torque.

• The turbine transmits the rotation to electric generators

Carousel configuration

• The turbine rotates with tangential speed of 20-50 km/h, depending on wind speed

• The kite flies "lying eight" at high speed (200-250 km/h), exploiting the aerodynamical lift force: "lift machine"

Flight paths

kite speed: 50-100 km/h

Current status

• Extensive computer design and simulations have been performed using sophisticated aerodynamical models of kites.

• 9 patents have been deposited.

• A a first operating prototype in yo-yo configuration, codename KSU1, has been realized in collaboration with Politecnico di Torino and partial support of Regione Piemonte.

KSU1 prototype

Current status

- The prototype allowed to experimentally confirm the computer simulation results
- The prototype has been tested to produce energy in KG-yoyo configuration
- max power: 40 kW
- lines length: 1000 m
- kite area: up to 20 m²

KSU1 prototype

Mobile KSU1 prototype while operating a commercial power kite

Future plans

- To build in 18 months a new yo-yo prototype with a power of 1 MW.
- This prototype will demonstrate the feasibility of building in further 18 months a wind farm with a power of 10 MW with energy production costs lower than from oil.
- To build in 36 months a prototype with carousel configuration, demonstrating all the functionalities of a 50 MW plant on a circular structure of 500 m radius

More information on

www.kitegen.com

Thank you!

