To be submitted to
Lett. Nuovo Cimento

COMITATO NAZIONALE PER L'ENERGIA NUCLEARE
Laboratori Nazionali di Frascati

LNF-75/36(P)
8 Luglio 1975

Laboratori Nazionali di Frascati del CNEN
Servizio Documentazione

B. Bartoli(x), D. Bisello(o), B. Esposito, F. Felicetti, M. L. Ferrer(+)(x), A. Marini(+), P. Monacelli(+), A. Nigro(x), M. Nigro(o), L. Paoluzi(+), L. Peruzzi, G. Piano-Mortari(+), M. Piccolo, F. Ronga, F. Sebastiani(+), L. Trasatti(+) and F. Vanoli(x): MEASUREMENT OF THE J/ψ (3100) DECAY WIDTHS INTO e⁺e⁻ AND µ⁺µ⁻ AT ADONE.

We report the experimental results obtained at Adone by the MEA Group on the J/ψ (3100) decay into lepton pairs. Preliminary results on the integrated cross sections for the channels e⁺e⁻ → hadrons, µ⁺µ⁻, e⁺e⁻ have been reported(1). In this paper, we give results on the e⁺e⁻ and µ⁺µ⁻ pairs angular distributions and on the partial decay widths. These results turn out to be compatible with a J^P_C = 1^- assignement(2) for the J/ψ (3100).

The Magnet Group experimental set-up (Fig. 1) is described in detail in ref. (1). We recall here briefly the angular acceptance of the experimental apparatus and the event identification criteria used in the analysis. The solid angle covered by the apparatus for point like source is \(\Delta \Omega_c \approx 0.4 \times 4\pi \) (40° < \(\theta \) < 140°) for momentum analysis, and \(\Delta \Omega_N \approx 0.27 \times x \times 4\pi \) for particle identification.

Events from the reaction e⁺e⁻ → e⁺e⁻ are identified by requiring two colinear (\(\Delta \theta \leq 10^0 \)), coplanar (\(\Delta \varphi \leq 10^0 \)) particles in the apparatus with opposite charges. In addition one request :

(x) - Istituto di Fisica dell'Università di Napoli and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli.
(o) - Istituto di Fisica dell'Università di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova.
(+ - Istituto di Fisica dell'Università di Roma and Istituto Nazionale di Fisica Nucleare, Sezione di Roma.
(x) - Supported by Accademia Nazionale dei Lincei - Roma.
a) the proper position of the source point
b) a correct timing of the event with the crossing of the e^+e^- bunches
c) a correct time difference in both sides of the apparatus between signals from $(S_1 \, S_2)$ and $S_3\{S_1' \, S_2''\}$ and S_3'' (see Fig. 1);
d) electromagnetic showers to be observed in the thick-plate chambers C_3, C_3' outside the magnet (see Fig. 1).

The luminosity monitor provided by the $e^+e^- \rightarrow e^+e^-$ small angle $\left(3^\circ - 6^\circ\right)$ scattering, as measured by the Adone machine group in a different interaction region of the storage ring, was used as a relative "fast" monitor; the large angle $e^+e^- \rightarrow e^+e^-$ scattering rate detected in the apparatus at $\sqrt{s} = 3.0$ GeV provided the absolute cross-section scale.

The e^+e^- results refer to an integrated luminosity $\mathcal{L} = 41.2$ nb$^{-1}$ collected in the total C.M. energy interval $\sqrt{s} = 3084 \div 3125$ MeV. The total number of $e^+e^- \rightarrow e^+e^-$ detected events is 445.
The radial source distribution of detected $e^+e^- \rightarrow e^+e^-$ events as obtained by using the information from multwire proportional chambers is shown in Fig. 2. At Adone the radial dimension of the source is ~ 1 mm. The observed ± 3 mm spread (F. W. H. M.) is due to wire chambers resolution and multiple scattering in the vacuum chamber walls.

FIG. 2 - Radial source distribution of $e^+e^- \rightarrow e^+e^-$ events.

The $e^+e^- \rightarrow e^+e^-$ rate integrated over the acceptance of the experimental apparatus is shown in Fig. 3 as a function of \sqrt{s}. Only e^+e^- pairs

FIG. 3 - Energy dependence of $e^+e^- \rightarrow e^+e^-$ rate ($|\cos \theta| \leq 0.7$).

--- : QED expected rate (Montecarlo calculation);
--- : QED rate as derived from the best likelihood fit to the angular distribution.
in the angular interval \(|\cos \theta| \leq 0.7 \) have been used in the analysis; \(\theta \) is defined as the angle between the outcoming and the incoming positron. The full line in Fig. 3 shows the expected Bhabha scattering contribution evaluated by a Montecarlo calculation taking into account the geometrical features of the apparatus and the effect of the extended source\((x)\). At \(\sqrt{s} = 3.1 \) GeV total C. M. energy the Bhabha scattering detection efficiency of the apparatus in the angular interval \(|\cos \theta| \leq 0.7 \) is found to be 11%.

The angular distribution of e\(^+\)e\(^-\) pairs detected in the apparatus is given in Figs. 4a, 4b. Fig. 4a shows the angular distribution of events outside the resonance region, 3.5 MeV < \(|\sqrt{s} - M| \) < 20 MeV; Fig. 4b shows the angular distribution inside the resonance region, \(|\sqrt{s} - M| \leq 3.5 \) MeV.

![Graph showing angular distributions of detected e\(^+\)e\(^-\) pairs.](image)

FIG. 4 - Angular distributions of detected e\(^+\)e\(^-\) pairs. The dashed lines show the behaviour obtained by the maximum likelihood calculation. Angular distribution in the energy range: a) 3.5 MeV < \(|\sqrt{s} - M| \) < 20 MeV (97% Bhabha scattering); b) \(|\sqrt{s} - M| \leq 3.5 \) MeV (59% Bhabha scattering).

\((x) \) - At Adone the longitudinal distribution of the source, \(N(l) \), depends on the energy according to

\[
N(l) = N_o \exp\left(-\frac{l^2}{2l_o^2}\right)
\]

with

\[
l_o(cm) = 17 E_\pm^{3/2}
\]

\((E_\pm, \text{GeV}) \)
The distribution of Fig. 4a is well consistent with the expected Bhabha scattering behaviour and that of Fig. 4b appears to be consistent with the \((1 + \cos^2 \theta)\) behaviour expected for a spin-one particle. We have evaluated by a maximum likelihood procedure the relative amounts of Bhabha scattering and resonant contribution in these angular distributions. A distribution of the type

\[aB(\theta) + (1 - a) R(\theta) \]

has been used where \(a\) is a free parameter and \(B(\theta), R(\theta)\) are the Bhabha scattering and resonant contributions respectively as seen by the apparatus. Since the energy spread of the beams is quite large with respect to the natural width of the resonance interference effects between resonant and non resonant contributions should be very small and have been neglected. The relative amounts of Bhabha scattering outside and inside the resonance region as determined by the maximum likelihood calculation are given in Table I.

TABLE I

<table>
<thead>
<tr>
<th>Energy Interval (MeV)</th>
<th>(\alpha): fraction of Bhabha scattering</th>
<th>(\chi^2/d.f.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.5 < (\sqrt{s} - 3103) < 20)</td>
<td>\begin{cases} 0.97 & \text{+0.03} \ -0.14 & \text{0.59 \pm 0.07} \end{cases})</td>
<td>8/13</td>
</tr>
<tr>
<td>(-3.5 > (\sqrt{s} - 3103) > -20)</td>
<td>\begin{cases} 0.70 \pm 0.06 \end{cases}</td>
<td>14/13</td>
</tr>
<tr>
<td>(-3.5 < (\sqrt{s} - 3103) < 3.5)</td>
<td>\end{cases}</td>
<td></td>
</tr>
</tbody>
</table>

From the fraction \(\alpha = 0.70 \pm 0.06\) (Table I-2) the rate of Bhabha scattering in the experimental apparatus turns out to be \(9.7 \pm 1.4\) nb (dashed line in Fig. 3) in good agreement with the prediction of the Montecarlo calculation which gives \(10.5 \pm 0.4\) nb.

The \(e^+e^- \rightarrow e^+e^-\) cross sections integrated over the angular interval \(|\cos \theta| < 0.7\) is shown in Fig. 5. The dashed line in Fig. 5, shows the energy dependence of the cross section obtained by folding a Breit-Wigner cross section modified for radiative correction effects\(^{(5)}\) with the Gaussian beam energy distribution\(^{(x)}\). The experimental value of the resonant total cross section integrated over the energy interval \(-3.5\) \(\text{MeV} < \sqrt{s} - M < 4.5\) \(\text{MeV}\) after having applied radiative corrections \((1.52\) cor\)

\(^{(x)}\) - At Adone the energy spread of the beams at \(\sqrt{s} = 3.1\) GeV is \(\Delta E = 3\) MeV (F. W. H. M.).
FIG. 5 - Cross section for $e^+e^- \rightarrow e^+e^-$, integrated over the interval $|\cos \theta| \leq 0.7$, vs. the total C.M. energy.

The reaction factor turns out to be

$$\sigma_{\text{Res}}^{e^+e^-} = \int_{\text{Res}}^{e^+e^-} d\sigma^{1/2} = (8.2 \pm 2.2) \times 10^{-2} \text{ nb-MeV}$$

A $(1 + \cos^2 \theta)$ angular distribution has been assumed in order to evaluate the total cross section. By using the following equation which relates the energy integral of the cross section $\sigma^{e^+e^-}$ to the mass and decay widths of the resonance,

$$\sigma_{1}^{e^+e^-} = 2\pi^2 (2J + 1) \frac{\Gamma_e^2}{M^2} \frac{\Gamma_T}{\Gamma_T}$$

taking $J=1$ and $M=3103^{(x)}$ we obtain

$$\frac{\Gamma_e^2}{\Gamma_T} = (0.344 \pm 0.093) \text{ KeV}$$

The quoted error includes the systematic uncertainties in the detection efficiency and in the monitor calibration.

(x) - An estimate of the uncertainty in the absolute energy calibration gives an error of ± 6 MeV on the quoted J/ψ mass.
Events from the reaction $\text{e}^+\text{e}^- \rightarrow \mu^+\mu^-$ are requested to satisfy criteria a) to c), and in addition are identified by the absence of interactions in the thick plate spark chambers C_3 and C_3' (Fig. 1) and by momentum measurement. A total of 149 $\mu^+\mu^-$ events have been used in the present work in the energy interval $\sqrt{s} = 3095 \div 3108$ MeV corresponding to an integrated luminosity $\mathcal{L} = 39.5 \text{ nb}^{-1}$. Cosmic ray and hadron pairs contaminations are completely negligible.

The angular distribution of detected $\mu^+\mu^-$ pairs integrated in the energy interval $\sqrt{s} = 3098 \div 3108$ MeV is shown in Fig. 6. Data have been corrected for the detection efficiency of the apparatus and appear to be consistent with a $(1 + \cos^2\theta)$ angular distribution which is also shown in Fig. 6 as a dashed line; $(\chi^2/\text{degree of freedom} \approx 1.0)$. The forward-backward asymmetry averaged over the energy interval $\sqrt{s} = 3098 \div 3108$ MeV turns out to be

$$A = \frac{F - B}{F + B} = -0.03 \pm 0.09.$$

The analysis of possible energy dependent effects on the asymmetry\(^{(4)}\) is in progress.

FIG. 6 - Angular distribution of $\mu^+\mu^-$ pairs integrated over the energy interval $\sqrt{s} = 3098 \div 3108$ MeV. Data are corrected for detection efficiency, θ is the angle between the outgoing μ^+ and the incoming e^+. The dashed line represents the $1 + \cos^2\theta$ angular distribution.
The $e^+e^- \rightarrow \mu^+\mu^-$ total cross section is given in Fig. 7 as a function of the total C.M. energy \sqrt{s}. A $(1 + \cos^2 \theta)$ angular distribution has been assumed in order to evaluate the total cross section (5.3% geometrical detection efficiency). The full line in Fig. 7 shows the expected QED level; the dashed line shows the energy behaviour of the cross section obtained by folding a Breit-Wigner cross section with radiative effects and the Gaussian beam energy distribution.

![Graph showing the total cross section for $e^+e^- \rightarrow \mu^+\mu^-$ vs the total C.M. energy. The full line shows the expected QED level.](image)

The total $e^+e^- \rightarrow \mu^+\mu^-$ integrated cross section after radiative corrections (1.56 correction factor) is found to be

$$\sigma_{\mu^+\mu^-} = \int \sigma_{\text{Res}} \, ds^{1/2} = (9.0 \pm 1.3) \times 10^2 \text{ nb}\cdot\text{MeV}$$

which gives

$$\frac{\Gamma_e \Gamma_\mu}{\Gamma_T} = (0.379 \pm 0.049) \text{ KeV}$$

For the ratio Γ_μ/Γ_e we therefore obtain:

$$\frac{\Gamma_\mu}{\Gamma_e} = 1.10 \pm 0.18$$
The results on partial decay widths are summarized in Table II. In order to derive Γ_e, Γ_μ, Γ_{Hadrons}, the value $\sigma_H = 9.2 \pm 1.9 \text{nb} \cdot \text{GeV}$ has been used\(^{(1)}\). This value of the $e^+e^- \rightarrow J/\psi (3100) \rightarrow \text{hadrons}$ cross section takes into account radiative corrections\(^{(3)}\) (not applied in ref.\(^{(1)}\)) and a more precise evaluation of multihadron detection efficiencies. Finally the results given in Table II have been obtained under the assumption $\Gamma_T = \Gamma_e + \Gamma_\mu + \Gamma_H$.

<table>
<thead>
<tr>
<th>(\Gamma_e / \Gamma_T)</th>
<th>0.34 ± 0.09 KeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_e \Gamma_\mu / \Gamma_T)</td>
<td>0.38 ± 0.05 KeV</td>
</tr>
<tr>
<td>(\Gamma_\mu / \Gamma_e)</td>
<td>1.10 ± 0.18</td>
</tr>
<tr>
<td>(\Gamma_e)</td>
<td>4.6 ± 1.0</td>
</tr>
<tr>
<td>(\Gamma_\mu)</td>
<td>5.0 ± 1.0</td>
</tr>
<tr>
<td>(\Gamma_H)</td>
<td>50 ± 25</td>
</tr>
<tr>
<td>(\Gamma_T)</td>
<td>60 ± 25</td>
</tr>
</tbody>
</table>

We wish to thank the many people who worked in the early stages of this experiment. We are also extremely grateful to the Adone machine staff.
REFERENCES.

