G. Pancheri-Srivastava and Y. Srivastava; SCATTERING OF n(>2) INCIDENT PARTICLES.
G. Pancheri-Srivastava and Y. Srivastava \(^{(o)}\): SCATTERING OF \(n(>2)\) INCIDENT PARTICLES.\(^{(x)}\)

It is customary to consider the scattering of two incident particles into \(N(>2)\) incident particles. This is but natural since an experimentalist does only such an experiment (i.e., a beam impinging upon a target). With the advent of colliding beams, one may seriously raise the question about three (incident)-particle scattering, for instance, by having the two beams simultaneously impinge upon a target.

In this note, we shall consider the general case of an arbitrary number of incident particles. We develop some simple formalism for the transition rates etc., and towards the end we speculate upon the feasibility of such experiments. For electron machines our estimates indicate that the counting rates are too low, however, for hadronic machines the prospect may not be entirely out of the question if some recent proposals to upgrade the present luminosities materialize.

In the process of obtaining a formula for the transition rate \(dN/dt\), we shall find that for \(n_1\) incident particle scattering, the invariant has the dimension (of length) \(L = 3n_1 - 4\). Thus, for a single particle decay \(L = -1\), the "width" of the particle, for 2-particle scattering \(L = 2\), the "cross-section", and for 3 incident particles \(L = 5\) and so on.

\(^{(x)}\) - Work supported in part by the National Science Formulation.
\(^{(o)}\) - On sabbatical leave from Northeastern University, Boston, Mass. USA.
Let us start by considering the S-matrix element for the scattering of $n_i \rightarrow n_f$:

$$S_{fi} = \frac{T_{fi}(\{q_f\}, \{p_i\})}{\sqrt{\frac{n_i + n_f}{n_i} \prod_{j=1}^{n_i} \varrho(p_j) \prod_{j=1}^{n_f} \varrho(q_j)}}$$

where we have normalized the particles in a box of volume $V^{(1)}$. Here, $\varrho(p) = E/m$ for fermions and $2E$ for bosons. The unitarity condition $SS^+ = 1$ yields for the "forward" amplitude $T_{ii} (p_i = q_i, i = 1, \ldots, n_i)$:

$$\text{Im} T_{ii} = \frac{1}{2} \sum_n \int \Omega_n (2\pi)^4 \delta^4(Q_n - P_i) |T_{ii}|^2,$$

where

$$\Omega_n = \prod_{1=1}^{n} \left[\frac{d^3 q_1}{(2\pi)^3 \varrho(q_1)} \right]$$

The transition /4-volume from state $i \rightarrow f$ is

$$\left| \frac{S_{fi}}{VT} \right|^2 = (2\pi)^4 \delta^4(Q_f - P_i) \frac{1}{V^{n_i+n_f}} \prod_{j=1}^{n_i} \varrho(p_j) \prod_{j=1}^{n_f} \varrho(q_j) \left| T_{fi} \right|^2$$

The number of events of type $i \rightarrow f$, N_{if}, proceeds at the rate

$$\frac{dN_{i \rightarrow f}}{dt} = \frac{1}{V^{n_i-1}} \int \Omega_f (2\pi)^4 \delta^4(Q_f - P_i) \frac{n_i}{\prod_{j=1}^{n_i} \varrho(p_j)} \left| T_{fi} \right|^2$$

The more general expression instead of (4') is
\[\frac{dN(i \rightarrow f)}{dt} = \int (d^3 x) \left[R_1(x, t) \ldots R_n(x, t) \right] \int \left[\Omega_f(2\pi)^4 \delta^4(Q_f - P_i) \right] \frac{|T_{fi}|^2}{n_i \prod_{j=1}^{n_i} \theta(p_j)} \]

where \(R_i(x, t) \) is the number of particles of type \(i \) per unit volume.

The analog of the 2-particle "optical theorem" is easily obtained using the "forward" unitarity condition (2) in conjunction with (4). The number of events time for \(i \rightarrow \) anything is given by

\[\frac{dN(i \rightarrow \text{anything})}{dt} = \int (d^3 x) \left[\prod_{j=1}^{n_i} R_j(x, t) \right] \frac{2 \text{Im} T_{ii}}{n_i \prod_{j=1}^{n_i} \theta(p_j)} \]

Equations (4) and (5) are our basic formulae connecting the "differential" and "total" transition rates which an experimentalist would (hopefully!) measure, to the matrix elements of \(T \). If we denote by \(\mathcal{F}_{n_i} \), the incident flux, we may define the invariant quantity

\[d\Sigma_{fi} = \frac{1}{\mathcal{F}_{n_i}} \Omega_f(2\pi)^4 \delta^4(Q_f - P_i) \frac{|T_{fi}|^2}{n_i \prod_{j=1}^{n_i} \theta(p_j)} \]

From (1) and (6) it is clear that \(\dim(\Sigma_{fi}) = L = 3n_i - 4 \) and is independent of \(f \) (i.e., the number of particles in the final state) as it should be. As mentioned in the beginning, this recovers for us the known results for \(n_i = 1 \) and 2 (width and cross-section respectively) and obtains for \(n_i = 3 \), an invariant of dimensionality 5.

From (5) and (6) we may also obtain the "total" \(\Sigma_i ":

\[\Sigma_i(i \rightarrow \text{anything}) = \frac{1}{\mathcal{F}_{n_i}} \frac{2 \text{Im} T_{ii}}{n_i \prod_{j=1}^{n_i} \theta(p_j)} \]

For two-particle, boson-boson scattering (7) reduces to the well known formula(3)
\[\sigma_{\text{tot}}^{12}(S) = \frac{1}{\sqrt{\lambda(S_{12}, m^2, m_2^2)}} \text{Im} \ T_{22}(p_1 p_2; p_1 p_2) \]

(In the CM frame \(\sqrt{\lambda} = 2 \sqrt{S} \)).

So far we have considered the general case. Let us now particularize to the interesting case of \(n_1 = 3 \). According to (7), \(\Sigma_3 \) is proportional to the absorptive part of the 3-to-3 "forward" amplitude, which may be taken to be a function of the three invariants \(S_{ij} = (p_i + p_j)^2 \), \(i,j = 1,2,3 \). A possible experiment may be to imagine that two colliding beams (4-mom. \(p_2 \) and \(p_3 \)) impinge upon a target (4-mom \(p_1 \)). It is straightforward to obtain the various Regge limits depending upon the momentum configurations. Here we only record the result for one case of particular interest for the colliding beam set ups where the two beams are roughly collinear and of almost equal energies (\(E_2 \approx E_3, p_2 \approx -p_3 \)). For this case,

\[\Sigma_3 \rightarrow E_2, E_3 \rightarrow \infty \quad \frac{S_{12}}{S_0} \quad \frac{a_{p}^{(0)-1}}{a_{p}^{(0)-1}} \quad \frac{S_{23}}{S_0} \quad \frac{a_{p}^{(0)-1}}{a_{p}^{(0)-1}} \quad \frac{S_{31}}{S_0} \quad \frac{a_{p}^{(0)-1}}{a_{p}^{(0)-1}} \quad \text{G}(p_1), \]

where \(a_{p} \) is the Pomeron\(^{(4)} \). Thus, if \(a_{p}^{(0)} = 1 \), \(\Sigma_3 \) approaches a limit at infinite energies\(^{(5)} \).

Apart from the totally inclusive experiments (i.e. measurement of \(\Sigma_3 \)) we may also consider the partially inclusive (i.e. detection of a given number of final particles and sum over the rest) or the exclusive processes. The formulae for such may easily be obtained from (6).

The main trouble with 3 incident particles is, of course, with the semi-disconnected parts, i.e. where particles 1 e 2 interact while the third particle goes undisturbed. For this reason, one may choose those final states which require all to participate\(^{(6)} \). At any rate the final state produced by real 3-particle scattering is, in general, kinematically different. We give a simple example for \(e^+e^- \) case. Let us have \(e^+ \) & \(e^- \) beams (of equal energy but oppositely directed) hit a proton at rest and suppose we observe an \(N \) resonance in the final state (which later decays into \(N \) & \(\pi \)). To lowest order in \(a \), there are two types of scattering (see Fig. 1). If the incident energy of the \(e^+ \) beams were appropriately low, for a given \(N \) mass, the reaction proceeds only via Fig. 1b. Even apart from such threshold type constraints, a careful recording of the \(N \) momentum (that is to say of its decay products \(N + \pi \)) can resolve between processes (1a) and (1b): \(N \) \(\pi \) is produced at rest in the process (1b) whereas in process (1a) it is produced in flight in general. More elaborate tests can be clearly be designed.
FIG. 1 - a) Semi-disconnected diagram. Here the photon is space like; b) True 3-body scattering. Photon is time-like.

Regarding the calculation of the rate for the process (1b), one may use time-reversal invariance to connect this matrix element to that of the decay of $N^0 \rightarrow p + e^+ + e^-$(7). With the present luminosity of Adone (Frascati) e^+e^- machine, and a liquid hydrogen target, the observation of this process is completely out of the question, since the number of events $\approx 10^{-17}$/sec.

For CERN ISR, if one considers the two colliding beam protons to interact with a proton at rest (provided by a liquid hydrogen target) then the rate for 3-protons \rightarrow anything, is $\approx 10^{-14}$ events/sec. (A factor of 10^2 or 10^3 may be gained by using a denser target). We have obtained this number using the present IRS luminosity $L \approx 2 \times 10^{28}$/cm2-sec(8). There have been proposals(9) to upgrade this number to $\approx 10^{36}$/cm2-sec for $E = 25$ GeV and as much as $\approx 3.3 \times 10^{38}$/cm2-sec at $E = 250$ GeV. If such high luminosities can be attained, then our estimate leads us to hope that 3-particle scattering are feasible. Then, the outstanding problem would be to separate out the tremendous background provided by the semi-disconnected (2-particle) scatterings.

It should be obvious that were experiments of the type proposed here to be performed, a completely new and rich field of study shall be developed. We are confident that the ingenuity of the experimentalists shall allow for such measurements in the near future.

It is a pleasure to acknowledge the valuable criticisms and support provided by our colleagues at Frascati, Northeastern and Rome.
FOOTNOTES AND REFERENCES.

(1) - This turns out to be convenient, since in the end its absence bol-
sters our belief in the correctness of our formulae.

(2) - It is Lorentz invariant because \(\sum_{j=1}^{n_1} \int \mathcal{F} \frac{\partial}{\partial p_j} \phi \) is an invariant and
so is \(\sum_f \).

(3) - \(\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2zx \).

(4) - Equation (8) is, of course, for the strong process.

(5) - This is analogous to the pionization limit of the single particle pro-
duction initiated by 2 particles, i.e., \(a + b \rightarrow c + x \). See, for instance,

(6) - A trivial example is provided by \(p + p + p \rightarrow N^{++} + d \).

(7) - In principle, processes of this type can provide for direct tests
of T invariance. For instance, comparison of the rates for \(n + p \rightarrow
\rightarrow \gamma + d \rightarrow e^+ + e^- \) and the inverse process \(e^+ + e^- + d \rightarrow \gamma + d \), allow one to
test T invariance for off-shell photon as well. We mention this exam-
ple since recently in the literature conflicting experimental results
regarding T-invariance (for physical photons) have been presented
through comparison of rates for \(\gamma + d \rightarrow p + n \) and \(p + n \rightarrow \gamma + d \). See,
D. Bartlett, C. Friedberg, K. Goulianos, I. Hammerman and D. Hu-
tcinson, Phys. Rev. Letters 23, 893 (1969); B. Schrock, R. Haddock,
J. Helland, M. Longon, S. Wilson, K. Young, D. Cheng and V. Perez-
and G. Shaw, Phys. Rev. Letters 25, 1057 (1971), assert that T-vio-
lation in EM processes is due to an iso-tensor part of the EM current.
Again, this can, in principle, be directly checked.

(8) - L. Ratner, R. Ellis, G. Vannini, B. Babcock, A. Krisch and J. Roberts,

(9) - E. Keil and A. Sessler, Proceedings VI Intern. Conf. on High-Energy
Accelerators (1967).