S. Ferrara, A. F. Grillo and R. Gatto: MANIFESTLY CONFORMAL COVARIANT OPERATOR-PRODUCT EXPANSION

Manifestly Conformal Covariant Operator-Product Expansion.

S. Ferrara and A. F. Grillo
Laboratori Nazionali del CNEN - Frascati

R. Gatto
Istituto di Fisica dell'Università di Roma - Roma
Istituto Nazionale di Fisica Nucleare - Sezione di Roma

(ricavuto l'8 Novembre 1971)

1. – Introduction.

As is well known, scale invariance (1) in conjunction with Wilson's operator product expansion (2) appears to play an essential role in the setting up of a theoretical frame for the interpretation of experiments, such as deep inelastic lepton scattering, which in configuration space depend on the behaviour near the light-cone. It has been suggested that the stronger conformal invariance may indeed apply in such limiting conditions and its implications for equal-time commutators (3) and for operator product expansions (4) have been discussed. In particular, in ref. (4) the implications of conformal covariance on the operator product expansion on the light-cone (5) have been fully derived, by a method using the Jacobi identities in ref. (4), and by an alternative manifestly covariant method in ref. (6). The latter method takes advantage of the isomorphism between the conformal algebra and the orthogonal algebra O_{4,2} (7) and makes use of a six-dimensional pseudo-Euclidean co-ordinate space. In this note we shall further develop such method to derive a manifestly conformal covariant operator-product expansion valid at all values of x^2. We must stress that, whereas conformal invariance (as well as scale invariance) of the complete theory may in fact under some form hold near the light-cone, we must exclude the possibility that the complete theory

is fully conformal (as well as scale) invariant. Nevertheless, the implications of exact conformal invariance, not restricted to the light-cone alone, might still prove useful in discussing the properties of the so-called skeleton theory (7) and fundamental problems such as that of canonical dimensions, etc. In view of this it appears as a relevant step to obtain a fully conformal covariant operator-product expansion. In addition the causality restriction has to be discussed which, as is well known, is extremely stringent when the entire group of conformal transformations is considered, which contains transformations of four-vectors from inside to outside the light-cone and vice versa.

2. – Manifestly conformal covariant operator-product expansion.

We limit ourselves for simplicity to the expansion of a product \( A(x) B(x') \), where \( A(x) \), \( B(x) \) are two Lorentz scalars with \( K_x = 0 \), i.e. satisfying \([A(0), K] = 0\) and the same for \( B(0) \) (conformal scalars). In the covariant six-dimensional formalism with co-ordinates \( \eta_A \) \((A = 0, 1, 2, 3, 4, 5, 6)\) the general form of the expansion is (7–9)

\[
A(\eta) B(\eta') = \sum_{n=0}^{\infty} E_n(\eta \cdot \eta') D_n^{(\eta_1, \ldots, \eta_6)}(\eta, \eta') \psi_{\eta_4 \ldots \eta_6}(\eta') ,
\]

where \( D_n^{(\eta_1, \ldots, \eta_6)}(\eta, \eta') \) is an orbital tensor operator defined over \( \eta^2 = 0 = \eta'^2 \) and regular at \( \eta \cdot \eta' = 0 \), \( E_n(\eta \cdot \eta') \) is a c-number of the form

\[
E_n(\eta \cdot \eta') = \gamma_n(\eta \cdot \eta')^{k_0 \lambda_0 + \lambda_0 - a_n},
\]

and \( \psi_{\eta_4 \ldots \eta_6}(\eta) \) are irreducible tensor representations of \( SU_{2,2} \) (the spinor group associated to \( O_{4,2} \)) homogeneous of degree \( \lambda_n = -a_n \), containing Lorentz tensors of maximum order \( n \), and satisfying supplementary conditions \( \eta^4 \psi_{\eta_4 \ldots \eta_6}(\eta) = 0 \) and \( \partial^{(1)} \psi_{\eta_4 \ldots \eta_6}(\eta) = 0 \). The expansion in eq. (1) is manifestly conformal covariant on the hypersurfaces \( \eta^2 = 0 \) and \( \eta'^2 = 0 \). In ref. (9) it was noted that the most generated form of the operator \( D_n^{(\eta_1, \ldots, \eta_6)}(\eta, \eta') \) is (see eq. (10) of ref. (9))

\[
D_n^{(\eta_1, \ldots, \eta_6)}(\eta, \eta') = \sum_{m=0}^{\infty} \eta^{2 \alpha} \ldots \eta^{2 \alpha-n} \eta' \psi_{\eta_4 \ldots \eta_6} \ldots \eta' \psi_{\eta_4 \ldots \eta_6} D^{(\alpha, m)}(\eta, \eta') c_{\alpha m},
\]

where \( c_{\alpha m} \) are constants, \( D^{(\alpha, m)}(\eta, \eta') \) is a differential operator defined on \( \eta^2 = 0 = \eta'^2 \) and homogeneous of degree \( h = \frac{1}{2}(\lambda_4 - \lambda_5 + \lambda_6 - a) + m \) in \( k/\epsilon \) \((\lambda_4, \lambda_5, \lambda_6)\) the degrees of homogeneity of \( A, B \) and \( \psi_{\eta_4 \ldots \eta_6} \), and we recall that \( \chi^\alpha = k^{-1} \eta^\alpha k = \eta^\alpha + \eta^\alpha \). The operator \( D^{(\alpha, m)}(\eta, \eta') \) is uniquely given as formal power

\[
D^{(\alpha, m)}(\eta, \eta') = D^{(\alpha)}(\eta, \eta'),
\]

where

\[
D(\eta, \eta') = \eta \cdot \eta' \Box' - 2\eta \cdot \partial'(1 + \eta' \cdot \partial') .
\]

(*) The covariant notations in six dimensions are the same used in our previous paper (ref. (7)), to which we refer for all definitions and for a summary of the formalism.

(**) We observe that we have taken, for simplicity, each irreducible representation \( \psi_{\eta_4 \ldots \eta_6}(\eta) \) without multiplicity. Obviously, in general a sum over the same tensor representation (with possible different homogeneity degrees) is understood.
Indeed, \( D(\eta, \eta') \) is the only operator defined on the hypercones and homogeneous of degree one in \( k/k' \). We note that the two terms in \( D(\eta, \eta') \), eq. (5), both contain a term proportional to \( \partial/\partial \eta'^2 \), and their sum is indeed the only combination which remains well defined on \( \eta'^2 = 0 \). It can be rewritten as

\[
D(\eta, \eta') = (\eta \cdot \eta')^{-1} \eta^a \eta'^b g^{ab} L_{ab} L'_{cd} L^d_c ,
\]

where \( L_{ab} = i(\partial_a \partial_b' - \partial_b \partial_a') \) are the orbital generators of \( O_{k,2} \). For \( \eta \cdot \eta' = 0 \) (corresponding to the light-cone, \( (x-x')^2 = 0 \)) \( D(\eta, \eta') \propto \eta \cdot \partial' \) and one recovers the result of ref. (\( \ast \)). We shall now state two useful lemmata:

1) The \( n+1 \) covariants defined in eq. (3) are all proportional. From the supplementary conditions

\[
\eta^{(a} \Psi_{a_1 a_2 \ldots a_{n}}(\eta) = 0 , \quad \partial^{a_1} \Psi_{a_1 a_2 \ldots a_{n}}(\eta) = 0 ,
\]

one has

\[
\eta^{(a} \partial^{a_1} \Psi_{a_1  \ldots a_{n}}(\eta') = \eta^{a_1} 2h(2-h + \lambda_n) \partial^{a_1} \Psi_{a_1  \ldots a_{n}}(\eta') .
\]

2) One has

\[
D^{(a} \Psi_{a_1  \ldots a_{n}}(\eta) = (L-1)^{\delta} \sum_{J=0}^{k} \frac{\lambda^J}{J!} (\eta' \cdot \partial')^J \partial^{2J} ,
\]

\[
L = -k' \partial/\partial \eta' \quad \text{and} \quad (L-1)^{\delta} = (l_n - 1)(l_n - 1 + 1) \ldots (l_n - 1 + J - 1) .
\]

In terms of the variables \( (x, k) \) one has the identities \(^{(11)}\)

\[
\square = 4(1-L) \partial/\partial \eta'^2 = \frac{1}{k'^2} \square' ,
\]

\[
\eta \cdot \partial' = 2(\eta \cdot \eta') \partial/\partial \eta'^2 = \frac{k}{k'} [(x-x') \cdot \partial' - L] ,
\]

\[
D(\eta, \eta') = 2 \frac{k^L}{k'} \left[ (L-(x-x') \cdot \partial') (1-L) - \left( \frac{x-x'}{2} \right)^2 \square' \right] ,
\]

which together with eq. (14) of ref. (\( \ast \)) allow us to write eq. (9) as

\[
D^{(a} \Psi_{a_1  \ldots a_{n}}(\eta) = \left( \frac{k}{k'} \right)^L (\eta)^{a_1} \frac{\Gamma(l_n - 1 + h + J)}{\Gamma(l_n - 1 + J)} \sum_{J=0}^{k} \frac{1}{J!} \frac{\Gamma(-h + J)}{\Gamma(-h)} \frac{\Gamma(l_n - 1)}{\Gamma(l_n - 1 + J)} .
\]

\[
\left. \frac{\Gamma(l_n + h + J)}{\Gamma(l_n + 2J)} \left( \left( \frac{x-x'}{2} \right)^2 \right)^J F(J-h, l_n + 2J; (x-x') \cdot \partial') \square' . \right)
\]

\(^{(11)}\) It is instructive to notice from eq. (10) that only for \( l=1 \) is \( \square' \) defined on the hypercone, corresponding to the fact that only for the canonical value \( l=1 \) is the Klein-Gordon equation conformally covariant.
The lemmata 1) and 2) can be proved by induction for integer $k$ and then extended through analytical continuation to all values of $k$ (12); we also used the identity
\[
(-\eta\cdot\partial')^\beta = \left(\frac{k}{k'}\right)^\beta \frac{\Gamma(k + \beta)}{\Gamma(k)} I_{\beta}(x - x') \cdot \partial',
\]
where $\lambda$ is the homogeneity degree of the operator on which $(\eta\cdot\partial')^\beta$ is acting (see ref. (7)).
We note that, for $k$ positive integer, the terms with $\lambda = k$ in eq. (13) all vanish. Inserting into eq. (13) the well-known integral representation for $I_{\beta}$ (see ref. (10)), one obtains
\[
D^k(\eta, \eta') = \left(\frac{k}{k'}\right)^\beta \frac{\Gamma(k + 1 + \beta)}{\Gamma(k)} \sum_{J=0}^{\infty} \frac{1}{J!} \frac{\Gamma(k - 1 + J)}{\Gamma(k - 1 + J)} \left[ -\left(\frac{x - x'}{2}\right)^2 \right]^J \cdot \frac{1}{u^{k - 1}} (1 - u)^{k - 1} \exp\left[ u(x - x') \cdot \partial' \right] \square',
\]
and after performing the summation over $J$
\[
D^k(\eta, \eta') = \left(\frac{k}{k'}\right)^\beta \frac{\Gamma(k + 1 + \beta)}{\Gamma(k)} \sum_{J=0}^{\infty} \frac{1}{J!} \frac{\Gamma(k - 1 + J)}{\Gamma(k - 1 + J)} \left[ -\left(\frac{x - x'}{2}\right)^2 \right]^J \cdot \frac{1}{u^{k - 1}} (1 - u)^{k - 1} \exp\left[ u(x - x') \cdot \partial' \right] \square',
\]
Equation (15) is meant as a formal operator expression with all derivatives located at the right and acting to the right. Using eq. (15) one has for the expansion in eq. (1)
\[
A(x) B(x') = \sum_{n=0}^{\infty} \frac{1}{(x - x')^n} \int_0^1 \frac{\beta^n}{\triangle(n + 1)} \frac{\Gamma(k - 1 + n + \beta)}{\Gamma(k - 1 + n)} \frac{1}{u^{k - 1}} (1 - u)^{k - 1} \exp\left[ u(x - x') \cdot \partial' \right] \square',
\]
where $\eta^a = kx^a$ and $\psi_{\alpha_1 \cdots \alpha_n}(x) = k^{\alpha_1} \psi_{\alpha_1 \cdots \alpha_n}(x)$. The tensors $O_{\alpha_1 \cdots \alpha_n}(x)$ which transform according to the conformal algebra in space-time are given (see ref. (8)) by
\[
O_{\alpha_1 \cdots \alpha_n}(x) = \exp\left[ -ik \cdot \tau \right] \psi_{\alpha_1 \cdots \alpha_n}(x),
\]
where the $\tau$ internal generator $\tau_{\alpha} = S_{\alpha \mu} + S_{\mu \alpha}$ acts as
\[
(\tau_{\alpha} O)_{\alpha_1 \cdots \alpha_n}(0) = i \sum_{l=1}^{\infty} \left[ g_{\alpha \alpha_1} + g_{\alpha \alpha_2} \right] O_{\alpha_1 \cdots \alpha_n}(0) - g_{\alpha \alpha_1} \left[ O_{\alpha_1 \cdots \alpha_n}(0) \right. + O_{\alpha_1 \cdots \alpha_n}(0)\right].
\]

(*) This is a standard method in representation theory.
(the notation $O_{a_{5}...a_{n}}$ means that $A_{5}$ is omitted), and the components $O_{a_{5}...a_{n}}$ (where $a$ are 5 or 6) can be obtained through the supplementary conditions (eq. (7)) (13)

\[
O_{a_{5}...a_{n+6}}(x) = 2^{-\frac{n}{2}} \frac{\Gamma(l_n - 2 - n)}{\Gamma(l_n - 2 - n + k)} \partial_{\mu_{1}}...\partial_{\mu_{k}} O^{a_{5}...a_{n}}(x)
\]

(the substitution $5 \leftrightarrow 6$ does not change the value on account of the first supplementary condition). The covariant product in eq. (16) can be written as

\[
x^{a_{1}}...x^{a_{n}} \psi_{a_{1}}...a_{n}(x') = \sum_{j} \left( \frac{n}{j} \right) \frac{\Gamma(l_n - 2 - n)}{\Gamma(l_n - 2 - n + j)} \left[ \frac{1}{2} \left( x - x' \right)^{j} \right]^{2}.
\]

\[
\cdot \left[ 2 - \epsilon_{a_{1}...a_{n}} \partial_{\mu_{1}}...\partial_{\mu_{j}} O_{a_{1}...a_{n}}(x') \right]
\]

Finally, taking $x' = 0$, from eq. (16) one obtains (14)

\[
A(x) B(0) = \sum_{n=0}^{\infty} \left( \frac{1}{2} \right)^{l_{n} + n + \frac{1}{2}} \partial_{\mu_{1}}...\partial_{\mu_{n}} \left[ 2 - \epsilon_{a_{1}...a_{n}} \partial_{\mu_{1}}...\partial_{\mu_{n}} O_{a_{1}...a_{n}}(x) \right] = 0
\]

where $x_{a_{n}} = \{(1 - u)x_{\mu}, \frac{1}{2}[1 + (1 - u)^{2}x_{\mu}], \frac{1}{2}[1 - (1 - u)^{2}x_{\mu}]\}$.

3. Properties of the expansion.

The expansion obtained, eqs. (16) and (21), is conformally covariant, as it is evident from its derivation from the form in eq. (1). The form obtained here is particularly interesting since it reduces directly to the light-cone expansion of ref. (4-5) at $x^{2} = 0$, where the $g^{F}_{\mu}$ function becomes $g^{F}_{\mu}(l_{n} - 1; 0) = 1$ and one can write

\[
x^{a_{1}}...x^{a_{n}} \psi_{a_{1}}...a_{n}(x') = \left( x - x' \right)^{a_{1}}...\left( x - x' \right)^{a_{n}} O_{a_{1}...a_{n}}(x')
\]

nonleading terms in $x^{2}$ can simply be obtained by expanding $g^{F}_{\mu}$ in a power series in $x^{2}$. We now come to an interesting selection rule, which one obtains by noting that eq. (20) is clearly unacceptable for $l_{n} = 2 + n$, i.e. for canonical dimensions of nonscalar representations. The reason is that eq. (7) cannot be imposed for $l_{n} = 2 + n$ unless $O_{a_{1}...a_{n}}(x)$ is conserved (compare with the necessary and sufficient condition for canonical dimensions given in ref. (4), but then all components in eq. (19) vanish. One can show (13) that the pathology of the components in eq. (19) for $l_{n} = 2 + n$ is reflected in the circumstance that the homogeneous set of equations giving the coefficients of the contribution of a representation of spin $n$ to the expansion in eq. (21) has, for

\(^{(13)}\) A detailed presentation will be given in a forthcoming paper.

\(^{(14)}\) A simpler form of this expansion will be given elsewhere.

\(^{(15)}\) The pathology is associated with the following degeneracy of the representations of the stability algebra at $x = 0$: for $l_{n} = 2 + n$ both $O_{a_{1}...a_{n}}(0)$ and $\delta \partial_{\mu} O_{a_{1}...a_{n}}(0)$ commute with $K_{2}$ (see the theorem of ref. (4) referred to in the text).
\( L_n = 2 + n \), eigensolutions only for \( l_x = l_y \) \(^{(18)}\). A complete discussion of the properties of representations with canonical dimension will be given in a forthcoming paper. We also observe that this case includes the free-field theory, i.e., conserved four-tensors (see ref. \(^{(4)}\)). Therefore the conformal covariance of eq. (21) implies that the contribution of spin \( n \) occurs only for \( l_x = l_y \) \(^{(17)}\). For \( l_x = l_y \) eq. (16) (we actually take \( A = B \) becomes

\[
A(x) A(0) = \sum_{n=0}^{\infty} \left( \frac{1}{2\pi i} \right)^{l_x - 1} \int_{0}^{1} du u^{(1-u)^{\frac{n}{2}}} \exp \left[ u x \cdot \partial \right] \cdot_0 F_1 \left( \begin{array}{c} n + 1; \quad -\frac{x^2}{4} \square u(1-u) \end{array} \right) x^{a_1} ... x^{a_n} \Omega_{\alpha_1...\alpha_n}(0). \]

Finally we show how the covariant expansion can be derived from the three-point function. We limit ourselves to the scalar contribution to the expansion (for simplicity) and write

\[
A(x) B(0) = \left( \frac{1}{2\pi i} \right)^{\frac{l_x + l_y - 0}{2}} \int_{0}^{1} du u^{\frac{l_x + l_y - 0 - 1}{2}} (1-u)^{\frac{l_x - l_y + 0 - 1}{2}} \cdot \exp \left[ u x \cdot \partial \right] \cdot_0 F_1 \left( \begin{array}{c} l_x -1; \quad -\frac{x^2}{4} \square u(1-u) \end{array} \right) \Omega(0). \]

On the other hand (see for instance ref. \(^{(3)}\)),

\[
\langle 0 | C(y) A(x) B(0) | 0 \rangle = C_{ABC} \left[ \frac{1}{(y-x)^2} \right]^{\frac{l_x + l_y - 2}{4}} \left( \frac{1}{2\pi i} \right)^{\frac{l_x + l_y - 1}{2}} \left( \frac{1}{y^2} \right)^{\frac{l_x + l_y - 1}{2}}.
\]

We use the identity \(^{(19)}\)

\[
\int_{0}^{1} du u^{\frac{l_x + l_y - 1}{2}} (y-x)^{\frac{1}{2}} \left[ 1 + x^2 \frac{u(1-u)}{(y-u)^2} \right]^{\frac{l_x + l_y - 3}{2}} = \int_{0}^{1} du u^{\frac{l_x + l_y - 1}{2}} (1-u) \int_{0}^{1} du \left[ \sum_{h=0}^{\infty} \frac{1}{h!} \frac{\Gamma(l_x + h)}{\Gamma(l_x)} (-\frac{x^2}{4})^h \right] \Omega_{\alpha_1...\alpha_n}(0).
\]

\(^{(14)}\) It can be shown that for \( l_x - 2 + n \) the divergences of the tensors \( \Omega_{\alpha_1...\alpha_n}(x) \) can be added as an independent irreducible representation starting from \( \omega(\alpha_1...\alpha_n)(x) \). This is a consequence of the footnote \(^{(15)}\). In the covariant formalism this means that the \( (n-1) \)-th tensor \( \omega_{\alpha_1...\alpha_n}(x) \) is a genuine tensor, i.e., it satisfies the two supplementary conditions and its components can be evaluated as in eq. (19).

\(^{(15)}\) This result can also be understood from translation invariance on Hermitean basis. The expansions for \( A(x) B(0) \) and \( B(x) A(0) \) can be related (see ref. \(^{(1)}\)) by a sequence of translation, \( x \to -x \) Hermitean conjugation. Then \( l_x \leftrightarrow l_y \). However, the nonleading terms proportional to divergences have under this sequence of operations behaviour opposite to that of the terms proportional to \( \square \Omega \) (Alambertian): they must therefore have a factor \( l_x - l_y \).

\(^{(18)}\) The integral representation in eq. (25) is nothing but a Kiemann-Liouville fractional integral (see Bateman Manuscript Project, Tables of Integral Transforms, Vol. 2, p. 186). The proportionality constant turns out to be \( \Gamma(l_x)/\Gamma(l_x + l_y - l_x)/2 \).
We next note that (19)

\[
\langle 0 | \Box^h c(y) c(0) | 0 \rangle \propto \Box^h \left[ \frac{1}{(x-y)^2} \right]^{l_c} = 4^h \frac{\Gamma(l_c + h) \Gamma(l_c - 1 + h)}{\Gamma(l_c + 1) \Gamma(l_c - 1)} \left[ \frac{1}{(y-x)^2} \right]^{l_c+h},
\]

(27)

\[
\left[ \frac{1}{(y-x)^2} \right]^{l_c+h} = \exp \left[ \frac{u x \cdot \partial}{4} \right] \frac{\Gamma(l_c - 1)}{\Gamma(l_c + h) \Gamma(l_c - 1 + h)} \langle 0 | c(y) \Box^h c(0) | 0 \rangle.
\]

The contribution in eq. (24) thus comes from the expansion

(28)

\[
\int_0^1 du \, u^{l_c + l_y - 1} (1 - u)^{l_c + l_y - 1 - 1} \exp \left[ u x \cdot \partial \right] \sum_{k=0}^{\infty} \frac{1}{k!} \frac{\Gamma(l_c - 1)}{\Gamma(l_c - 1 + h)} .
\]

\[
\cdot \left(-\frac{z^2}{4}\right)^h (u, 1 - u) \Box^h c(0) = \int_0^1 du \, u^{l_c + l_y - 1} (1 - u)^{l_c + l_y - 1 - 1} \exp \left[ u x \cdot \partial \right] \frac{\Gamma(l_c - 1)}{\Gamma(l_c - 1 + h)} ,
\]

which coincides with that in eq. (23).

* * *

We would like to thank S. Bonora, G. Sartori and M. Tonin for discussions on the subject.

(*) One has \(l = l_c\) from a selection rule of the conformal algebras on two-point function.