E. Iarocci, C. Mencuccini e C. Prezzi: UN SISTEMA DI TRIGGER RAPIDO PER CAMERA A SCINTILLA.

(Nota interna: n. 383)
E. Iarocci, C. Mencuccini e C. Prezzi: UN SISTEMA DI TRIGGER RAPIDO PER CAMERE A SCINTILLA. -

1. - INTRODUZIONE. -

In alcuni esperimenti di fisica delle particelle elementari in cui si faccia uso di camere a scintilla come rivelatori può essere particolarmente sentita l'esigenza di rendere minimi sia il ritardo tra l'evento da rivelare e l'applicazione dell'impulso di alta tensione ai piatti della camera a scintilla, sia il tempo di salita dell'impulso stesso.

In particolare, il sistema di trigger che viene descritto è stato messo a punto per un esperimento\(^1\) da condursi con l'anello di accumulazione di elettroni e positroni da 1.5 GeV dei Laboratori Nazionali di Frascati (Adone): in questo esperimento la rivelazione di cascate e.m. impone ne per le camere a scintilla un'elevata efficienza per molte tracce, da cui l'esigenza di un breve tempo di salita per l'impulso di alta tensione, mentre d'altra parte la particolare struttura temporale della produzione di particelle dalla collisione di pacchetti di elettroni e positroni in Adone (un incrocio di pacchetti ogni 100 nsec) comporta l'esigenza di minimizzare il ritardo tra l'evento da rivelare e l'impulso di alta tensione ai piatti delle camere a scintilla, onde ridurre il numero di incrocii di fasci contenuti nel
tempo di sensibilità delle stesse.

Uno schema sintetico del sistema completo di trigger e l'andamento dei ritardi nei vari punti è riportato in Fig. 1.

Il sistema, che può essere comandato per esempio dall'impulso d'uscita di una coincidenza rapida (circa 0,5 V negativi) consta dei tre componenti seguenti:

- **PRE - TRIGGER:**

 circuito intermedio tra la coincidenza rapida ed il trigger di alta tensione, con funzioni di amplificazione e disaccoppiamento rispetto ai disturbi di ritorno dovuti alla scarica della spark-gap; lo stadio finale è a transistor in avalanche con formazione a cavo ed uscita su 50 Ω:

 Caratteristiche principali:

 - soglia d'ingresso: - 250 mV
 - tempo di salita dell'impulso in uscita: ≤ 0,5 nsec
 - ritardo: 8 nsec
 - ampiezza dell'impulso positivo d'uscita su 50 Ω: + 15 + 20 V

- **TRIGGER:**

 trigger di alta tensione costituito da un "avalanche Marx" che comanda un doppio pentodo 3E29 alimentato a + 4KV.

 Caratteristiche principali:

 - soglia d'ingresso: + 12 V
 - tempo di propagazione: 8 nsec
 - tempo di salita dell'impulso d'uscita: 8 nsec
 - ampiezza dell'impulso negativo d'uscita: ≥ 4 KV
 - tempo di recupero: < 10 msec
- SPARK-GAP:

del tipo a tre elettrodi ad emisferi terminali di molibdeno, polarizzati alla tensione \(V, V/2, 0 \); la scarica viene prodotta inviando simultaneamente una sovratensione impulsiva all'elettrodo mediano, ed un flash d'ultravioletto nella zona di scarica\(^3\).

Caratteristiche principali:

tempo di salita \(< 1 \) nsec
tempo di jitter \(~ 1 \) nsec
ritardo a partire da metà altezza dell'imпуlsо di trigger 12 nsec

Nel seguito vengono descritti più in dettaglio il trigger, il pre-trigger e la spark-gap e discusse alcune prestazioni di questo sistema di comando applicato a camere a scintilla del tipo a doppia gap, di grandi dimensioni.

2. - LA SPARK-GAP. -

La spark-gap è costituita da tre elettrodi uguali, con le estremità arrotondate di molibdeno o tungsteno a distanza variabile, sostenuti da un contenitore di plexiglas in cui può farsi circolare azoto. Affacciata alla zona di scarica è posta una piastrina di materiale ad alta costante dielettrica (titanato di bario), con una faccia a massa, mentre sull'altra è appoggiata una punta di tungsteno. Questa, impulsata opportunamente, produce un flash di ultravioletto che, preionizzando la zona di scarica nella spark-gap, ne riduce il ritardo ed il jitter. La Fig. 2a) ne mostra una realizzazione meccanica tipica.

Lo schema tipico di impiego è illustrato in Fig. 2b). Un elettrodo è collegato all'alta tensione negativa \(-V\), quello mediano è a \(-V/2\), il terzo a massa. Inviando simultaneamente l'imпуlsо negativo del trigger alla elettrodo mediano ed alla punta di tungsteno, la gap tra elettrodo intermedio e massa risulta sovratensionata (da \(V/2 \) a \((V/2 + 4KV)\)) e preionizzata dal flash d'ultravioletto, con conseguente formazione della scarica; a questo punto risulta sovratensionata (e preionizzata) l'altra gap (da \(V/2 \) a \(V\)), per cui si produce una seconda scarica che, con la prima, pone in corto i tre elettrodi. L'imпуlsо di sovratensione ed il flash di ultravioletto, se forniti isolatamente, sono normalmente insufficienti a comandare la spark-gap.

In atmosfera di azoto flussante non si sono note differenze di comportamento apprezzabili (ritardo e jitter), per serie di comandi a camere a scintilla superiori a \(10^6 \).

Le prestazioni di tale tipo di spark-gap sono state indicate nello schema introduttivo: le osservazioni sul suo funzionamento sono state effettuate con il probe descritto al par. 5.

Rispetto al tipo diffusamente usato, il cui funzionamento è basato su una punta di comando la cui scarica verso l'elettrodo di massa pro-
FIG. 2a) - Struttura meccanica tipica di una spark-gap a tre elettrodi.

FIG. 2b) - Schema di impiego di una spark-gap a tre elettrodinel la configurazione (V, V/2, 0).
voca la formazione della scarica principale, la spark-gap a tre elettrodi sopra descritta offre diversi vantaggi che ne hanno consigliato l'adozione:

a) realizzazione meccanica semplice;
b) forma degli elettrodi poco sensibile al deterioramento conseguente alle scintille (assenza di punte e spigoli); d'altra parte la produzione del flash di ultravioletto non dipende sensibilmente dalla forma dell'estremità del filo di tungsteno impulsato, essendo oltre tutto molto bassa l'energia dissipata per impulso (si scaricano non più di ≈ 10 pF);
c) piccola energia richiesta al circuito di trigger: carico capacitivo di qualche decina di pF (contro ≈ 3000 pF necessari per l'altro tipo di spark gap);
d) ampio intervallo di funzionamento in tensione (fino a tensioni inferiori del $20 \div 40\%$ a quella di breakdown), il che rende poco critico l'aggiustaggio meccanico degli elettrodi;
e) adottando per le tensioni di polarizzazione la configurazione $(V, V, 0)$ (Fig. 2c), la distanza fra gli elettroni risulta più grande a parità di tensione di lavoro; ciò consente di lavorare con tensioni fino a 2 KV, senza che risulti difficile l'aggiustaggio meccanico o critico di funzionamento.

![Diagram](image)

FIG. 2c - Schema d'impiego nella configurazione $(V, V, 0)$.

3. - **IL TRIGGER.** -

In Fig. 3a è disegnato lo schema del circuito realizzato. Lo studio finale è costituito da un doppio pentodo (3E29), con l'anodo alimentato a $+4$KV e mantenuto normalmente spento da una tensione di -200V in griglia controllo. Questa riceve l'impulso di accensione da un Marx a 5 stadi a transistor avalanche (selezionati dal tipo 2N2219), il cui principio di funzionamento è il seguente: 5 capacità sono caricate in parallelo alla tensione di alimentazione di $90 \div 100$ V, mentre sono connesse in serie dai 5 transistor normalmente spenti (mediante la catena di diodi FD100); provocando l'ascensione in avalanche del primo con un impulso positivo ampio almeno 12 V, si ha la successiva accensione dei seguenti, il tutto in un tempo di circa 1 ns, per cui al terminale di uscita il circuito risulta equivalente alla serie delle 5 capacità, ciascuna ancora carica alla tensione di alimentazione, con in serie l'impedenza dei transistor che è stata determinata pari a $\approx 60 \Omega$ per il singolo transistor. In definitiva quindi tale circuito fornisce un impulso positivo ampio $450 \div 500$ V (a circuito aperto) con una corrente di picco di $\approx 1,5$ A su carico capacitivo. Con questo impulso di accensione, sulla placca della 3E29 si presenta un impulso negativo di 8 ns di tempo di salita.
FIG. 3a - Schema del circuito di trigger.
FIG. 3b) - Impulso d'uscita del circuito di trigger. Orizz.: 10 nsec/cm; vert.: ≈ 3 KV/cm.

(Fig. 3b), ampio ≤ 4 KV e su un'impedenza d'uscita di $\approx 100 \Omega$. Il tempo di propagazione di tutto il circuito è di 8 nsec. Osserviamo infine che impiegando il circuito con una spark gap a 3 elettrodi, le capacità di carico in uscita possono essere fatte molto piccole (par. 2) il che permette di fare molto piccola anche quella di blocco della griglia schermo (1000 pF) senza deterioramento apprezzabile del tempo di salita e con conseguente riduzione del tempo di recupero del circuito: nel nostro caso esso è stato fatto lavorare a frequenze di ripetizione fino a 100 Hz.

4. - IL PRE-TRIGGER. -

In Fig. 4a) è presentato lo schema elettrico del circuito. Lo stadio di formazione dell'impulso di uscita è costituito da un cavo inizialmente carico a 100 V, connesso al cavo di uscita mediante un transistore avalanche, selezionato dal tipo 2N2219, che agisce da interruttore con tempi di chiusura e risposta inferiori ad 1 nsec.

Data l'impedenza presentata dall'avalanche, il cavo di formazione a 125 Ω risulta adattato introducendo una resistenza da 10 Ω in serie al transistore ed al cavo di uscita a 50 Ω.

FIG. 4a - Schema elettrico del pre-trigger.
8.

L'impulso di accensione dell'avalanche è fornito tramite un trasformatore 1 spira/1 spira su nucleo di ferrite: ciò permette di tenere ben spento il transistor e di minimizzare l'accompagnamento tra ingresso ed uscita.

Un 2N709 amplifica il segnale di ingresso.

In figura 4b è l'impulso di uscita.

L'aggiunta di un "clock" con frequenza variabile fra uno e dieci Hz inseribile mediante commutatore, risulta comoda per prove sulla catena di comando delle camere a scintilla.

Esso è costituito da uno oscillatore ad unigenizione di tipo TIS43, i cui impulsi sono formati rapidi da un diodo tunnel per essere adatti a pilotare il circuito di formazione.

FIG. 4b) - Impulso d'uscita del circuito di trigger. Orizz.: 1 nsec/cm; vert.: 5 V/cm.

5. - APPLICAZIONI A CAMERE A SCINTILLA DI GRANDI DIMENSIONI.

Il sistema di comando fin qui descritto è stato applicato a camere a scintilla del tipo a doppia gap di 8 mm, con piatti di alluminio, di dimensioni 1m x 1m. Sono state effettuate osservazioni dei tempi di salita dell'impulso sulla camera, cercando quindi di minimizzarli per quanto detto nell'introduzione. Inoltre è stato affrontato il problema dell'eliminazione degli spari al bordo delle camere in caso di comando senza evento.

Per l'osservazione degli impulsi di alta tensione del circuito di trigger e della spark-gap è stato impiegato un partitore resistivo così costituito (Fig. 5): una catena di 10 resistenze da 56 Ω (Allen-Bradley, 1/4 W) è infilata al posto del conduttore centrale in un segmento di cavo coaxiale a 75 Ω; da una parte esso termina sull'elettrodo di lettura, dall'altra sull'elettrodo centrale del connettore su cui si chiude il cavo. Ponendo in parallelo al cavo d'uscita un tappo con una resistenza di valore opportuno si può portare l'attenuazione al valore desiderato (10 Ω nel nostro caso). Il tempo di salita di un probe così fatto è inferiore a 1 nsec. Naturalmente esso non può essere applicato in punti stazionariamente a tensione, nel qual caso è necessario introdurre una capacità in serie. Attraverso questo probe l'impulso, ulteriormente attenuato, è inviato all'ingresso di un oscilloscopio Tek 519: questo sistema di osservazione si presenta pra_
FIG. 5 - Schema illustrativo del probe per l'osservazione di impulsi di alta tensione.

ticamente esente da disturbi indotti in presenza di scariche, anche con l'o
cilloscopio a distanza dell'ordine di 1 m dalla spark-gap. Consideriamo
ora il sistema di comando connesso ad una camera del tipo prima detto.
Dato l'elevato carico capacitivo da essa offerto (≈ 2,500 pF), il tempo
di salita dell'impulso presente sul piatto mediano risulta molto lungo se
non si impiegano connessioni particolarmente poco induttive (grosse e cor-
te). Con una connessione di rame di dimensioni dell'ordine di 10 cm di lun-
ghezza, 3 cm di larghezza, 2 mm di spessore, si sono ottenuti tempi di sa-
lita di 25 + 30 nsec (Fig. 6). Si è
 trovato essenziale dover comette
re il probe direttamente fra i piat-
ti della camera, cioè a valle del-
le connessioni, osservandosi altr
menti tempi di salita molto più
brevi ma fittizi. Con gas He e una
tensione di lavoro di 12 KV la sca-
rica della camera risulta piena-
mente formata dopo 40 + 50 nsec
dall'applicazione dell'impulso
(Fig. 5). Spostando la lettura del-
l'impulso da un punto nei pressi
della spark gap, ad un punto sul
lato opposto, si è osservato (Fig.5)
un incremento dell'ampiezza del-
l'impulso di ≈ 10%: ciò significa che la bassa impedenza d'uscita e la rapi-
dità del formatore d'impulso, insieme alla lunghezza della camera, ne met-
tono in evidenza la caratteristica di linea di trasmissione aperta ad un'e-
stremità.

L'aumento di ampiezza osservato dalla parte opposta alla spark-
gap normalmente favorisce la formazione di scariche al bordo almeno in
assenza di evento. Qualora le condizioni di lavoro siano tali (com'è nel ca-
so di cui all'introduzione) che la frequenza relativa dei comandi senza e-
vento sia elevata, è necessario eliminare l'effetto causa di un deteriora-
mento delle pareti della camera e quindi di un'esaltazione dello stesso, con
conseguente calo dell'efficienza. Il modo più semplice consiste nell'integrare l'impulso di comando mediante una resistenza in serie di $5 \pm 10 \cdot \Omega$, con conseguente peggioramento però dell'efficienza di rivelazione della camera, specialmente per molte tracce. L'effetto è stato invece totalmente eliminato e senza inconvenienti, applicando una striscia di mylar (spesso 0,3 mm) lungo tutto il bordo dei piatti e sporgente all'interno per ~ 1 cm.(Fig. 7). È stato verificato che la zona coperta dal mylar è ancora utile per la rivelazione.

![Diagram](image)

FIG. 7 - Sezione al bordo della camera.

BIBLIOGRAFIA. -

(1) - C. Bacci, R. Baldini-Celio, G. Capon, C. Mencuccini, G. P. Murtas, C. Pellegrini, A. Reale, G. Salvini, M. Spinetti; Proposal for the measurements of the processes $e^+ + e^- \rightarrow \gamma \gamma$; $e^+ + e^- \rightarrow \pi^0 \gamma$, $\gamma + \gamma$. In pubblicazione come nota LNF.

(2) - Per esempio coincidenza rapida CRR/50 dei LNF.