Nota Tecnica sull'Utilizzo dei P.C. in Ambito INFN

C. Allocchio5, O. Ciaffoni1, A. Donati3, R. Gomezel5, P. Guida4, D. Salomoni2, L. Trasatti1, S. Zani2

1) INFN – Laboratori Nazionali di Frascati, P.O. Box 13, I-00044–Frascati (Roma) Italy
2) INFN–CNAF, Viale Ercolani 8, I–40138 Bologna
3) INFN–Laboratori Nazionali del Gran Sasso, ss 17 bis Km 18+910, I–67010 Assergi L’Aquila
4) INFN–Sezione di Napoli, Mostra d’Oltremare, Pad. 20, I–80125 Napoli, Italy
5) INFN – Sezione di Trieste, Via Padriciano 99, I–34012 Trieste Italy

Abstract

Scopo di questa nota tecnica è quello di focalizzare le problematiche relative all’uso dei Personal Computers nei nostri Laboratori e Sezioni proponendo alcune soluzioni in merito. I temi affrontati in maniera volutamente schematica riguardano, cablaggi e topologie di rete, strumenti di management, configurazioni di rete a livello geografico, servizi di rete, office automation e acquisizione dati.

* L’ultimo censimento effettuato nell’estate - autunno del 1993 riportava una presenza nel nostro Istituto di circa 1100 PC di tipo Macintosh e 600 PC tipo IBM-compatibili.
Cablaggi e Topologie

Il cablaggio che viene più comunemente utilizzato in nuove installazioni è il twisted pair che supporta indifferentemente Ethernet 10BaseT e LocalTalk (PhoneNet). Cablando con cavo Categoria 5 è possibile anche supportare FastEthernet (10BaseTX o 100BaseT) a 100 Mbit/sec per cui esistono già prodotti pur in assenza di uno standard ufficiale.

I cablaggi utilizzati con gli standard 10Base5 e 10Base2 prevedono la topologia a bus in cui ciascuna stazione di lavoro è connessa allo stesso cavo. Ciò comporta il rischio di un'interruzione del servizio di tutta la rete in presenza di un malfunzionamento ad uno qualsiasi dei nodi.

La topologia a stella, tipica del 10BaseT, risolve questo problema utilizzando un dispositivo attivo (hub) al centro stella in grado di isolare i nodi difettosi ed automaticamente ripristinare il servizio non appena il problema viene risolto.

In una situazione mista Ethernet/AppleTalk, il cablaggio a stella consente la migrazione selettiva dei nodi da PhoneNet ad Ethernet o FastEthernet semplicemente riattestando la linea a livello del patch panel.

Inoltre, essendo il doppino telefonico il supporto comune a diversi servizi (voce, ISDN, telefono ecc.), si sono resi disponibili sul mercato prodotti di cablaggio modulare che utilizzano cavi multicoppia in grado di supportare indifferentemente reti locali ed i servizi citati. La modularità si estende anche a livello dei patch panel e delle placche a muro offrendo la possibilità di installare diversi tipi di connettori (RJ11, RJ45, BNC, connettori a fibra ottica ecc.) in funzione degli utilizzi previsti.

Anche nell'ottica di una migliore gestione dei personal in rete, si possono studiare diverse soluzioni per l'integrazione degli stessi cercando di limitare il carico supplementare della rete.

Il concetto di base per una soluzione ideale si può schematizzare come in Fig. 1.

Ove ci siano piu' PC sulla rete che non si limitino a funzionare come Xterminal, ma
condividano unità disco, stampanti ecc. occorre separare il traffico prodotto dai loro protocolli di comunicazione come AppleTalk o il protocollo di Windows for Workgroup, dai rimanenti protocolli normalmente utilizzati da workstation, mainframe o routers.

Per ralizzare questa funzionalità se non si dispone di HUB "intelligenti" ossia in grado di creare lan virtuali operando "bridging" fra esse (vedi fig. 1), occorre filtrare il traffico utilizzando bridge o router "stand alone" comunemente diffusi sul mercato. Limitatamente ai Macintosh ed in situazioni dove siano preesistenti strutture di cablaggio a bus è raccomandabile il cablaggio PhoneNet, sia per la maggiore affidabilità che per la maggiore estensione della linea rispetto al tradizionale cablaggio LocalTalk (doppiino intrecciato schermato).

In ogni caso il collegamento delle reti LocalTalk (a bus o a stella) ad Ethernet richiede dei gateway tipo FastPath, GatorBox o simili. In reti estese si raccomanda la segmentazione dei rami per mezzo di più gateway piuttosto che l'utilizzo di bridge LocalTalk per via della maggiore affidabilità e delle migliori prestazioni.

Per quanto riguarda il cablaggio Ethernet è evidente la necessità di segmentare le tratte con bridge bilanciando opportunamente i servizi allo scopo di ridurre il traffico sul backbone. In questo caso possono venire in aiuto gli switch che offrono maggiore semplicità di installazione ed amministrazione rispetto ai router oltre ad un maggior throughput.

Attualmente la maggioranza delle Sezioni è strutturata su un backbone Ethernet a cui sono connesse le varie reti AppleTalk per mezzo di FastPath. Le tratte AppleTalk sono poi in alcuni casi partizionate con bridge.

Per riassumere emergono tre possibili topologie:
- In una situazione di backbone Ethernet preesistente è possibile offrire a basso costo una rete PhoneNet con topologia a bus connessa via gateway ad Ethernet stessa (Fig. 2).

![Diagram](image)

Fig. 2 – reti a bus.

- Per una nuova rete si offre la possibilità di utilizzare cavo modulare e predisporre più stelle assegnando i vari nodi ad Ethernet, PhoneNet o FDDI secondo necessità (Fig. 3) utilizzando appositi hub.
Fig. 3 – reti a stella.

- In caso si desideri collegare i PC direttamente ad Ethernet conservando una partizione del traffico per non congestionare il backbone con il traffico della stella, è possibile impiegare hub con moduli di bridge verso il backbone.

Fig. 4 – reti a stella con hub e bridge.
Strumenti di Management

La supervisione di una rete richiede la disponibilità di prodotti adeguati per la valutazione del suo "stato di salute". Su Macintosh esistono prodotti di ottimo rapporto prezzo/prestazioni adatti a monitorare la rete Ethernet (EtherPeek e SkyLine/E) con i più diffusi protocolli (TCP/IP, AppleTalk, DECnet, IPX ecc.) offrendo un gran numero di funzioni quali la rilevazione degli errori, statistiche di traffico per protocollo, per nodo, trigger su eventi ecc (Fig. 5).

![Protocol Statistics](image)

Fig. 5 – EtherPeek, traffico per Protocollo.

Prodotti equivalenti esistono anche per LocalTalk e TokenRing (LocalPeek e TokenPeek). Rispetto a monitor di rete su macchine specifiche che richiedono hardware aggiuntivo, questi prodotti offrono la possibilità di realizzare stazioni (anche portatili) a bassissimo costo con tutte le funzioni più importanti.

Altri prodotti raccomandabili consentono l'amministrazione centralizzata e la verifica della corretta configurazione dei FastPath o altri router AppleTalk (RouterCheck).

Un settore a parte del management è il controllo della configurazione delle macchine utenti.

Esistono prodotti come GraceLAN che riportano una serie di informazioni come la versione del Sistema Operativo, i driver installati, la RAM disponibile, la dimensione dell'hddisk, le applicazioni presenti ecc. (Fig. 6).

Questi strumenti sono indispensabili per avere una precisa indicazione delle risorse hardware e software disponibili e creare un database per utilizzi futuri. GraceLAN supporta Macintosh e PC WS/Windows sia in ambito di rete locale che in ambito di rete geografica. Per la gestione delle informazioni, GraceLAN si appoggia ad uno specifico database che memorizza i dati raccolti (per mezzo di un opportuno init o TSR che comunque salvaguardano la confidenzialità dei dati utente) e rende disponibili funzioni di ricerca, tabulazione ecc.

Peraltrò, l'INFN già dispone di una licenza illimitata di rete per GraceLAN che può quindi essere utilizzato senza ulteriori formalità in tutte le Sezioni interessate.
Fig. 6 – Mappa della rete prodotta da GraceLAN.
Connessioni a livello geografico

Esiste nell'INFN la necessità di condividere risorse Mac a livello geografico, attraverso la rete INFNet/GARR ad esempio, per consentire da parte di tutte le sezioni la consultazione di delibere rese a disposizione su server Macintosh, o per la condivisione di stampanti tra diverse sezioni. Per ottenere una tale connettività geografica, la soluzione tecnica finora adottata è stata quella di encapsulare AppleTalk in DECnet, utilizzando il software PathWORKS della Digital. Un'altra possibilità sarebbe stata di encapsulare AppleTalk in TCP/IP, ciò che tuttavia richiederebbe in tutte le sezioni l'installazione di appositi router come FastPath V, GatorBox o Farallon InterRouter/S.

La attuale topologia di connettività geografica di AppleTalk presuppone una allocazione coordinata degli indirizzi AppleTalk a livello INFN ed è basata su una stella centrale su un MicroVAX localizzato a Frascati; in questa situazione, i server PathWorks di tutte le sezioni hanno creato un tunnel AppleTalk sopra DECnet con destinazione Frascati. La nostra esperienza con questa configurazione è stata finora del tutto positiva, anche con il passaggio a DECnet/OSI (che non influenza la funzionalità delle applicazioni DECnet IV) sia dell'infrastruttura di routing che degli End Systems. Il MicroVAX pare adeguato come piattaforma, tenuto pure conto del ridotto carico costituito dal traffico AppleTalk.

Appare d'altra parte utile duplicare i "centri stella" per offrire una maggiore affidabilità del servizio; anche se in quattro anni di esercizio il collegamento AppleTalk nazionale ha avuto funzionalità pressoché continua, ciononostante una ridondanza di centri stella è opportuna per ovviare sia a problemi hardware del server nel centro stella, sia a eventuali problemi di connettività con il sito in cui si trovi il server centrale. Per ottenere questa ridondanza, si definiranno due server centrali, uno dei quali rimarrà a Frascati, mentre l'altro potrà essere localizzato al CNAF; questi due server sono connessi tra di loro con cammini multipli di backup attraverso la rete INFNet/GARR. Ogni sezione INFN definirà quindi un tunnel con ognuno dei due server centrali, specificando i costi dei due tunnel in modo da ottimizzare il traffico sulla rete: si assegnerà cioè il costo più basso al tunnel con il server più facilmente raggiungibile.

Dando per esempio costo 5 al tunnel primario e costo 10 al tunnel secondario, la connettività delle diverse sezioni INFN potrebbe essere realizzata nel seguente modo:

- Tunnel primario al CNAF e secondario a Frascati per le sezioni di: Torino, Milano, Padova, Parma, Legnaro, Trieste, Genova, Ferrara, Bologna, CNAF, Pisa, Firenze, Gran Sasso, Pavia.
- Tunnel primario a Frascati e secondario al CNAF per le sezioni di: Romal, Roma2, Presidenza, ISS, Frascati, Bari, Napoli, LNS, Catania.

Quei siti (ad es. L'Aquila e Lecce) che sono, dal punto di vista della connettività di rete, "foglie" di altri siti (ad es. LNGS e Bari) senza link di backup, possono definire un unico tunnel con il server del sito al quale si collegano. Ad esempio, L'Aquila potrebbe definire un solo tunnel con LNGS, in quanto la connettività in rete dell'Aquila dipende comunque dal collegamento con LNGS.

Una notizia non ancora confermata è che una prossima versione di PathWorks unificerà il supporto funzionale per Macintosh e per PC/DOS, con evidente semplificazione della gestione. In ogni caso, data la enorme diffusione di servizi informativi distribuiti disponibili su protocollo TCP/IP (come WWW), e dato il supporto di TCP/IP da parte di tutte le piattaforme di computing (personal e non), nel prossimo futuro potrà essere realizzabile la sostituzione del servizio di tunneling del protocollo AppleTalk con un sistema informativo distribuito nativo su TCP/IP.

La struttura come sopra descritta richiede un coordinamento centralizzato che definisce in maniera univoca l'indirizzamento e la responsabilità della gestione.
Servizi di Rete

• Mailing

Il primo e più ovvio servizio di rete è la posta elettronica. Esistono tre categorie ben precise di oggetti per il mail sui PC (Mac compresi):
1) software con sistemi di mail nativo e non standard relativi ad applicativi specifici sul PC. Questi software sono sistemi di messaggistica a volte inclusi dentro altri software o sistemi operativi dei PC stessi. Esempi tipici sono il Microsoft Mail, Quickmail, CCMail, AppleMail.
Questi sistemi sono tutti ottimizzati nell’ambiente PC in cui nascono, comprendono interfacce utenti di solito molto sofisticate e supportano tutti il multimedia, anche se ristretto esclusivamente all’ambiente nativo. Hanno la particolarità di parlare solo con se stessi, cioè non interopera tra di loro, ma richiedono un ambiente uniforme di installazioni tutte identiche. Permettono, a volte, l’impiego di tunnel per connettere piu LAN tra di loro, ed uscire in area geografica. Sono quindi sconsigliati da tutte le raccomandazioni internazionali esistenti.
Questi oggetti sono in grado di parlare con il resto del mondo solo attraverso una serie di gateway: esistono gateway per connetterli sia al mondo RFC822 che a quello X.400.
attenzione pero' che questi gateway perdono tutta la caratteristica del multimedia: infatti anzichè convertire i messaggi nei bodypart X.400 o nel formato MIME spesso passano solo il testo ascii, o peggio usano codifiche non standard.
2) software che implementano direttamente sul PC sistemi di mail standard, RFC822 oppure X.400. Di questi oggetti ne esistono molti sia pubblici che commerciali.
All’interno di quelli RFC822 ce ne sono ormai parecchi che implementano anche MIME.
Questi software sono in grado di interopera molto bene con il sistema standard cui si riferiscono e passano tutto quello che generano, multimedia compreso, senza problemi. Sono spesso di facile uso, anche se un po' meno di quelli della categoria precedente. Esempi tipici sono QVTmail, LeeMail, AppleMTA, KA9Qmail; ce ne sono tantissimi di tipo public domain, specialmente in RFC822:
• sono generalmente pesanti per il PC su cui girano, anche perché richiedono esecuzioni di task in backgroun per i quali i PC non sono l'ideale;
• sono difficilmente controllabili, nel senso che la loro configurazione è lasciata nelle mani dell'utilizzatore del PC che puo' non avere le conoscenze necessarie per la corretta configurazione di un mailer;
• richiedono che il PC sia sempre raggiungibile ed attivo, altrimenti si creano disservizi e ritardi nell'intero sistema di mail.
3) software che richiedono l'esistenza di un server di mail (standard o proprietario) su una workstation o mainframe, ed implementano su PC il solo lato client, quindi la sola interfaccia utente. Essi implementano protocolli client/server standard come POP3, IMAP, P7, oppure proprietari (come ADSP).
Le mail restano sul server ed il PC crea il messaggio (anche multimediale) richiedendo al server le operazioni necessarie per la spedizione/ricezione. Esempi sono Eudora, WhiteMail, POP3mail, Imaill, mail for MacIntosh, mail for PC. Ce ne sono sia commerciali che pubblici domain, sia per server RFC822 che per server X.400. Sono tutti abbastanza user friendly e non richiedono un gravoso lavoro di configurazione da parte del possessori del PC (basta indicargli il server di riferimento e permettere l'accesso al file system tramite password).
Sono sicuramente la soluzione preferibile, perché uniscono i vantaggi delle interfacce comode e di facile impiego sul PC e la solidita' dei server di mail delle workstation, dove il management è migliore rispetto a quello su PC. Attualmente non si possono ancora dare direttive precise, perché la situazione è in evoluzione veloce. Il client ideale dovrebbe essere in
grado di parlare più protocolli di comunicazione client/server e supportare entrambi i protocolli standard di multimedia (X.400 e MIME).

Come indicazione generale, quindi, si dovrebbero incanalare le esigenze di mail su PC verso la direzione delle applicazioni client server. Attualmente si possono già usare bene sia Mail for Mac, Mail for PC che Eudora, ma l'oggetto ideale non esiste ancora.

- Il pc come Xterminal

 Altra possibilità è l'utilizzo di Mac o PC come X Window Display Server. Il confronto tra un X Terminal ed un PC porta alle seguenti considerazioni: a livello economico non si evidenziano particolari differenze premesso il fatto che il PC venga configurato adeguatamente in termini di memoria, monitor e velocità di elaborazione. L'utilizzo del PC offre valore aggiunto per via della possibilità di interazione con altre applicazioni.

 Infine, le problematiche di gestione della rete in presenza di PC o X Terminal sono comparabili se vengono adottate misure opportune di controllo e amministrazione di tali risorse.

 Per quanto riguarda una sostituzione degli accessi X-window alle risorse di rete, occorre valorizzare anche il vantaggio che una simile soluzione porterebbe in termini economici, funzionali e di spazio: il solo PC è in grado di svolgere le funzioni necessarie per l'office automation e l'accesso in rete.

 Sono stati messi in commercio numerosi prodotti per l'utilizzo di XWindow su pc. alcuni di questi sono:

 MacX (Ora distribuito anche dalla Apple)
 - Si appoggia a PathWorks o MacTcp come strato di rete
 - Permette l'esecuzione diretta di comandi in remoto
 - Permette la visualizzazione di finestre X anche interagenti con altri pacchetti (per es. ncsa Telnet)
 - E' conforme a X11-R5
 - E' da segnalare una semplice gestione della palette di colori

Xsoftware (AGE Logic)
 - E' disponibile per tutte le piattaforme di PC

Pacchetti per PC (DOS+Windows)

Xvision (VisionWare)
Pacchetto per Windows
 - Ha il supporto di rete incorporato
 - E' compatibile con supporti di rete gia esistenti come: FTP PC/TCP, Sun PC/NFS, Novell, DIGITAL PathWorks, 3Com e altri
 - E' conforme all X11-R5
 - Ha il supporto per grafica 24 Bit
 - Puo eseguire direttamente comandi remoti (rexec)
 - Supporta il Telnet VT

PC-Xware (NCD)
Pacchetto per Windows
 - Ha anch'esso il supporto TCP IP incorporato
 - Si puo' installare su praticamente tutti gli altri strati TCP IP in commercio
 - Dispone di emulazioni di svariati terminali della serie VT
 - E' compatibile con X11 R5
- Supporta servizi di stampa locale

EntranX/32 (FTP software)

Pacchetto per windows
- Ha le caratteristiche di base degli altri
- Si installa sul PC/TCP della stessa FTP e probabilmente si accompagna a pochi altri strati di rete

Altri prodotti per windows sono:
- Xcursion
- Hummingbird Exceed 4
- WRQ Reflection/X 4.1
- AGE Logic Xsoftware/32

• Condivisione documenti

La condivisione di documenti è possibile sia direttamente tra utente ed utente (con il System 7 per Macintosh o Windows for WorkGroups per PC) o tramite server appositi (Novell, 3Com, Vines ecc.). Quest’ultima soluzione è ovviamente raccomandata per la condivisione di dati ed applicazioni di interesse generale o in vista di elevati volumi di traffico.

• Office automation

La presenza di una rete offre nuove possibilità all’Office Automation. Qui sono necessarie alcune considerazioni: anche in presenza di una sensibile richiesta di servizi di questo tipo si evidenzia la mancanza di una visione unitaria delle esigenze, requisito fondamentale per l’identificazione di una soluzione veramente efficiente.

In particolare, il SAC (Servizi Amministrativi Centrali), punto focale della produzione e dell’interscambio delle informazioni di interesse generale finora non ha mostrato di disporre di una strategia chiara per l’approccio a queste problematiche.

Ciò premesso, riteniamo di poter individuare alcuni punti fermi. Per quanto riguarda la gestione testi, Microsoft Word appare ormai lo standard consolidato: lo stesso si può dire per Excel e FileMaker come foglio di calcolo e semplice gestione database. Si raccomanda quindi la standardizzazione di tutte le applicazioni che sono di carattere generale verso i suddetti applicativi (tutta la modulistica su Word e FileMaker, i consuntivi dei Gruppi delle Commissioni Scientifiche Nazionali su Excel).

Il discorso su FileMaker è ancora più ampio. Esistono già numerose applicazioni locali specialmente in FileMaker il cui utilizzo potrebbe essere esteso ad altre Sezioni ed eventualmente complete o migliorate.

Si evidenzia poi la possibilità per Excel e FileMaker di accedere a basi di dati SQL residenti su host. Specificamente per gli AS/400, è ormai assodata la possibilità di integrare Mac e PC nei seguenti settori: emulazione 5250 e file transfer su TCP/IP e accesso a basi dati(*) da front-end su PC, anche attraverso maschere personalizzate(**).

Le esperienze alla base di detta nota tecnica sono scaturite dall’attività di beta test effettuata presso i LNF in collaborazione con Apple Cupertino per il prodotto DAL/400.

Nei due anni che sono trascorsi dal beta test le funzionalità sono aumentate e si sono

(*) Per l’accesso a basi dati si faccia riferimento alla Nota Tecnica LNF-92/106 del 14 dicembre 1992 “Il data access language come strumento di accesso a database su host VMS o AS/400 da clienti Macintosh”.

(**) Esistono prodotti specifici che sono stati installati e testati nei LNF e dei quali è disponibile una demo e relativo materiale illustrativo.
estese a più prodotti tra i quali lo stesso FileMaker.

In conclusione risulta evidente che non esistono problemi di carattere tecnico che impediscano il raggiungimento di un ambiente operativo di Office Automation integrato, in rete o locale. Allo stesso modo si evidenzia la necessità di stabilire una chiara strategia operativa che identifichi gli obiettivi e attivi le opportune competenze tecniche per il loro raggiungimento.

Applicazioni Varie

- **Calcolo Simbolico**

 L’uso di programmi per il Calcolo simbolico quali per esempio Mathematica, si sta sempre più diffondendo su piattaforme tipo PC, con ottimi risultati.

- **UNIX**

 E’ possibile installare Sistemi Operativi UNIX, ad esempio Linux, su PC. L’uso stand-alone è da considerarsi generalmente buono in svariate situazioni. L’integrazione di tali configurazioni nel contesto piu’ ampio dei servizi di calcolo centrali delle Sezioni o Laboratori è argomento che richiede una trattazione separata.

- **CAD**

 L’utilizzo di PC per programmi CAD è molto elevato nel nostro Istituto.

- **Videoconferenza**

 E’ possibile implementare l’applicazione sui PC. Data l’ampiezza dell’argomento e la continua evoluzione dei prodotti disponibili, si ritiene che una analisi del problema debba essere oggetto di un lavoro specifico.

- **Acquisizione digitale di immagini e OCR**

 Sono disponibili molteplici soluzioni per l’acquisizione di immagini da scanner che possono essere poi tratteggiate con tecniche di OCR. Le ultime evoluzioni sia nell'hardware (velocità di scansione) sia nel software (compressione molto spinta dei files e elevata affidabilità degli OCR) rendono queste soluzioni particolarmente adatte per creazioni di archivi eliminando notevolmente il supporto cartaceo.

- **Fax Server**

 Si possono definire in aree comuni di utenza servizi dei Fax Server. Con questi servizi i fax possono essere spediti tramite mail al Server, che provvede ad inoltrarli. In genere è possibile definire orari di spedizione, settare priorità o permessi sul Server, tenere un log, cose non sempre possibili con un fax ordinario.

 In ricezione il Server smista i fax (generalmente via E-mail su LAN) ai destinatari.

Acquisizione Dati

Esiste una vasta gamma di possibilità per l’acquisizione dati da PC, sia in ambiente industriale che in ambiente di fisica sperimentale.

In ambito Macintosh, per esempio, esistono almeno quattro tipi di interfaccie con VME e CAMAC, che differiscono per prezzi e prestazioni. Si va dalla MICRON - MacVEE - MACCCH che è la soluzione più economica ma non permette di utilizzare i crate VME come master, alle soluzioni VICBus della CES e MXI della National Instruments che permettono un arbitraggio sul bus verticale. Tutte queste soluzioni consentono di mescolare crate VME e CAMAC sullo stesso bus e forniscono software di utilizzo già pronto.

CES e National Instruments prevedono di implementare l’anno prossimo le stesse interfaccie su PCI oltre che su NuBus. La National Instruments, come parecchie altre ditte (GreenSpring, etc.) offre anche schede di interfacciamento diretto fra il NuBus e il mondo esterno, senza passare per bus intermedi, con schede ad alte prestazioni di I/O digitale ed analogica. Questa soluzione è particolarmente adatta per piccole installazioni con ridotto numero
di canali, perché offrono prezzi bassi uniti a semplicità di uso e a flessibilità di programmazione.

Per quanto riguarda il software, fra i molteplici ambienti di sviluppo in commercio molti sono stati usati per l'acquisizione dati. In particolare nei LNF si è usato per un periodo Hypercard, ed attualmente si vanno affermando sempre più il Visual Basic della Microsoft e LabVIEW della National Instruments.

In particolare LabVIEW, che è nato come ambiente di sviluppo per il laboratorio, introducendo il concetto di strumento virtuale, permette una elevatissima flessibilità di uso e un sistema di debugging estremamente efficiente. Con la versione 3 inoltre il sistema è stato già esteso all'ambiente Windows, a UNIX sotto SUN e a PowerPC sotto Sistema 7 Apple.

La migrazione a PowerPC sta cambiando rapidamente il panorama dell'acquisizione dati. Le caratteristiche di questa migrazione sono di essere quasi indolore, come sta accadendo per LabVIEW, ed inoltre la capacità di disporre di una serie evolutiva di macchine che, con le prossime generazioni di PowerPC, ben poco avranno da invidiare alle cosiddette "Workstations".

Il numero di installazioni che fanno uso di PC per acquisizione dati nell'INFN ed in altri istituti di ricerca continua ad aumentare ed è difficile tenerne traccia.

Per fare alcuni esempi di piccole installazioni si possono citare il controllo di una serie di bobine di correzione ad ADONE, l'acquisizione dati da camere a drift, un'interfaccia CAMAC realizzata in Hypercard (Hypocampus), il controllo di un calorimetro a tubi resistivi (GLASS), un'interfaccia per Transputer per trasferimento di dati MACTRA, un sistema per l'automazione del sistema di tessitura fili della camera centrale di CLOE, il controllo e l'acquisizione dati da un diffrattometro a raggi X dispersivo in energia presso ISM-CNR (Frascati), varie installazioni ai Laboratori diLegnaro ed ai Laboratori di Catania, etc.

A livelli di complessità maggiore possiamo citare, oltre all'acquisizione dati dell'esperimento UA1 al CERN, la linea ALOISA del CNR ad ELETTRA, e nei LNF il sistema di controllo di LISA, e infine DANTE, il sistema di controllo di DAFNE, che implementa una interfaccia di circa 1000 elementi da controllare utilizzando circa 70 calcolatori Macintosh (di cui 60 in VME) e LabVIEW come unico ambiente di sviluppo.

Alcuni dubbi iniziali sulla capacità di implementare sistemi più complessi utilizzando questo ambiente sono state superate dalla pratica (vedi DANTE).

Conclusioni

L'attuale configurazione della rete a livello geografico già offre o è in grado di offrire gran parte dei servizi trattati. Quello che è necessario è da un lato diffondere la notizia della disponibilità dei servizi e informazioni relative a sviluppi all'interno dell'Ente, dall'altro individuare strategie di normalizzazione (a livello di applicazioni e formati) che semplifichino l'interscambio di informazioni.
Bibliografia

- O. Ciaffoni, M. Marsella, (1992) LNF-92/003 NT "LA RETE APPLE DEI LNF-
PROBLEMATICHE PROGETTUALI E GESTIONALI"
- O. Ciaffoni, M. Marsella, (1992) LNF-92/106 NT "IL DATA ACCESS LANGUAGE
COME STRUMENTO DI ACCESSO A DATABASE SU HOST VMS O OS/400 DA
Macintosh " Server Administrator's Guide"
- J.S. Shah, A. La Monaca, A. Stecchi, L. Trasatti, E. Burattini: A New Instrumentation for
Mapping, Structural and Textural Changes in Fibres with Stress by Wide and Low Angle
Diffraction at Frascati, (1990) Proceedings of "2nd EUROPEAN CONFERENCE ON
PROGRESS IN X-RAY SYNCROTRON RADIATION RESEARCH", (Roma, Oct 2-6
Compositori
- G. Di Pirro, C. Milardi, M. Serio, A. Stecchi, L. Trasatti: "CONTROL SYSTEM FOR
THE DAΦNE Φ FACTORY" (1991) Proceedings of the 7th IEEE Real Time '91
- A. Martini, A. Stecchi, L. Trasatti: "HYPOCAMPUS: A HYPERCARD GRAPHIC
Transactions on Nuclear Science Volume 39, no. 2, 7476.
- G. Bencivenni, M. Benfatto, V. Chiarella, G. Felici, C. Gustavino, A. Martini, E. Pace, A.
Stecchi. L. Trasatti: "GLASS ELECTRODE SPARK COUNTERS AND THEIR USE IN
LOW ENERGY E.M. CALORIMETERS" (1992) Nuclear Instruments & Methods in
Physics Research A315, no.1-3 507-512.
- G. Di Pirro, C. Milardi A. Stecchi and L. Trasatti: "DANTE: CONTROL SYSTEM FOR
DAFNE BASED ON MACINTOSH AND HIGH LEVEL TOOLS" (1993) Conference
Record on the Eighth Conference on Real-time Computer Application in Nuclear, Particle
LNF-93/039(R), 27/93.
- G. Di Pirro, C. Milardi, A. Stecchi, L. Trasatti: DANTE: "AN INNOVATIVE CONTROL
SYSTEM BASED ON HIGH LEVEL TOOLS AND PERSONAL COMPUTERS", (1993)
& Methods in Physics Research A352,455-457
CONTROL SYSTEM OF THE LISA SUPERCONDUCTING LINAC", (1993) presented
A352, 71- 74.