S.I. Eidelman:

EXPERIMENTAL STUDIES OF THE RADIATIVE DECAYS OF VECTOR MESONS

Contribution to the DAΦNE Physics Handbook
Experimental Studies of the Radiative Decays of Vector Mesons

S.I. Eidelman

Institute of Nuclear Physics
Novosibirsk - RUSSIA

Radiative decays of the low-lying vector mesons are very interesting for tests of the quark model, SU(3), Vector Dominance Model (see the review in [1]). We present below a brief review of the experimental situation with these decays.

The decay mode $\rho^\pm \to \pi^\pm \gamma$ has traditionally been studied using coherent ρ^\pm production on nuclear targets (Primakoff effect). Actually measured in this case is the reaction $\pi^\pm A \to \pi^\pm \pi^0 A$ and to obtain the radiative width one has to extract the contribution of the inverse process $\gamma \pi^\pm \to \rho^\pm$. The extraction procedure requires separation of the Coulomb and nuclear parts and is therefore model dependent. At high energies the extraction of radiative widths becomes less sensitive to the phenomenology of the nuclear models employed in the analysis. This is probably the reason accounting for the discrepancy between the first measurement performed with the π momentum of 22.7 GeV/c [2] and later experiments at much higher energies around 200 GeV [3-5]. The experimental values of the widths obtained as well as the world average one [6] are shown in Table 1.

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\Gamma(\pi\rho), \text{keV}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^- \to \pi^- \gamma$</td>
<td>35 ± 10</td>
<td>2</td>
</tr>
<tr>
<td>$\rho^- \to \pi^- \gamma$</td>
<td>71 ± 7</td>
<td>3</td>
</tr>
<tr>
<td>$\rho^+ \to \pi^+ \gamma$</td>
<td>59.8 ± 4.0</td>
<td>4</td>
</tr>
<tr>
<td>$\rho^- \to \pi^- \gamma$</td>
<td>$81 \pm 4 \pm 4$</td>
<td>5</td>
</tr>
<tr>
<td>$\rho^\pm \to \pi^\pm \gamma$</td>
<td>68 ± 7</td>
<td>6</td>
</tr>
</tbody>
</table>

The radiative width of the neutral ρ^0 meson was studied in one experiment only which had been performed with the ND detector at the e^+e^- collider VEPP-2M at Novosibirsk [7]. The value of the width is obtained from the analysis of Dalitz plots of a three photon final state arising from the reaction $e^+e^- \to \pi^+\pi^-\gamma$. Since both ρ and ω-mesons contribute, one has to take into account their interference. Although the contribution of the $\rho^0 \to \pi^0\gamma$ decay is statistically significant, it is not possible to distinguish between the constructive and destructive $\rho - \omega$ interference using the experimental data only. One has to additionally consider other data. The quark model and isospin invariance predict the same values of partial widths for charged and neutral ρ. The value 824 ± 16 keV obtained for the destructive $\rho - \omega$ interference is in obvious disagreement with the above value 68 ± 7 keV for the ρ^\pm.
Another confirmation for the constructive case comes from the analysis of the ratio
\(B(\omega \to \pi^0\gamma)/B(\omega \to \pi^+\pi^-\pi^0) \). For destructive interference it is 0.157 ± 0.011 in
disagreement with the value 0.089 ± 0.010 obtained from the reaction \(\pi^-\rho \to \omega\eta \)
[8] in which \(\rho - \omega \) interference vanishes. For the constructive interference the value
from \(e^+e^- \) data is 0.099 ± 0.007 consistent with the hadroproduction data. Thus
the whole bulk of the data favors the constructive \(\rho - \omega \) interference and one obtains

\[
\Gamma(\rho^0 \to \pi^0\gamma) = 121 \pm 31\text{keV} \\
\Gamma(\omega \to \pi^0\gamma) = 746 \pm 51\text{keV}
\]

The value of \(\Gamma(\rho^0 \to \pi^0\gamma) \) is less than 2 standard deviations higher than \(\Gamma^\pm \to \pi^\pm\gamma \) in consistency with their expected equality. The value of \(\Gamma(\omega \to \pi^0\gamma) \) is
consistent with the previous measurements (see [6]) and its accuracy is 1.5 higher
than the world average one. Note also that the value itself changed significantly
because recent Novosibirsk measurements [9,10] of the \(\omega \)-meson total width resulted
in the new average value of 8.43 ± 0.10 MeV [6]. This value is much lower than
a previous one 9.8 ± 0.3 MeV [11] and should be taken into account since the
\(\Gamma(\omega \to \pi^0\gamma) \) value is a basis for theoretical predictions of the radiative widths.

The problem of \(\rho - \omega \) interference is also very important when one studies \(\rho, \omega \)
declays into \(\eta\gamma \). Two measurements only exist: one is diffractive photoproduction
of vector mesons from a complex-nucleus target using the tagged photon beam at
Cornell [12] and another one is the ND measurement at VEPP-2M [7]. In both cases
the authors could not find the unique solution from their data only and presented
both solutions shown in Table 2. However, the results for the constructive interference
seem more preferable since they agree with the quark model satisfactorily
explaining all radiative decays.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Constructive inter.</th>
<th>Destructive inter.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho \to \eta\gamma)</td>
<td>50 ± 13</td>
<td>76 ± 15</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>62 ± 17</td>
<td>111 ± 22</td>
<td>[7]</td>
</tr>
<tr>
<td>(\omega \to \eta\gamma)</td>
<td>3.0 ± 2.5 - 1.8</td>
<td>29 ± 7</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>6.1 ± 2.5</td>
<td>29.4 ± 4.7</td>
<td>[7]</td>
</tr>
</tbody>
</table>

Decays of the \(\phi \)-meson into \(\pi^0\gamma \) and \(\eta\gamma \) were studied in several experiments. The first
experiments on hadro- or photo-production of the \(\phi \)-mesons [13,14] were followed by
more precise from Orsay [15,16] and Novosibirsk [17,18] \(e^+e^- \) colliders. The current
accuracy of the branching ratios is determined by the dedicated experiment with
high statistics at VEPP-2M [18].

One should also mention an only existing experiment on the decay \(\phi \to \eta'\gamma \)
performed by the ND group [19] who placed an upper limit

\[
B(\phi \to \eta'\gamma) < 4.1 \cdot 10^{-4}\text{at90} \tag{0.1}
\]

The current experimental situation is summarized in Table 3 presenting the world
average values of the branching ratios [6].
Table 3

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Branching ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^+ \to \pi^+\gamma$</td>
<td>$(4.5 \pm 0.5) \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$\rho^0 \to \pi^0\gamma$</td>
<td>$(7.9 \pm 2.0) \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$\rho^0 \to \eta\gamma$</td>
<td>$(3.8 \pm 0.7) \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$\omega \to \pi^0\gamma$</td>
<td>0.085 ± 0.005</td>
</tr>
<tr>
<td>$\omega \to \eta\gamma$</td>
<td>$4.7 - 1.8 + 2.2 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$\phi \to \pi^0\gamma$</td>
<td>$(1.31 \pm 0.13) \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$\phi \to \eta\gamma$</td>
<td>0.0128 ± 0.0007</td>
</tr>
<tr>
<td>$\phi \to \eta'\gamma$</td>
<td>$< 4.1 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

An obvious consequence of the radiative decays is the existence of so-called conversion decays in which a real photon is replaced by a virtual one producing a lepton pair (electron or muon one). A transition form factor $F(q^2)$ arising in the vertex provides information on the meson structure (see the comprehensive review (20) discussing predictions for q^2 dependence in different theoretical models). In conversion decays one can study a range of q^2 from $4m_l^2$ up to $(m_e - m_\nu)^2$ where m_l, m_ν and m_ρ are masses of lepton, vector and pseudoscalar respectively. Experimental information on such decays is rather scarce, the branching ratios of 3 such decays only have been measured, see Table 4.

Table 4

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Branching ratio</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega \to \pi^0 e^+ e^-$</td>
<td>$(5.9 \pm 1.9) \cdot 10^{-4}$</td>
<td>[21]</td>
</tr>
<tr>
<td>$\omega \to \pi^0 \mu^+ \mu^-$</td>
<td>$(9.6 \pm 2.3) \cdot 10^{-5}$</td>
<td>[22]</td>
</tr>
<tr>
<td>$\phi \to \eta e^+ e^-$</td>
<td>$(1.3 \pm 0.8) \cdot 10^{-4}$</td>
<td>[23]</td>
</tr>
<tr>
<td>$\phi \to \pi^0 e^+ e^-$</td>
<td>$< 1.2 \cdot 10^{-4}$</td>
<td>[21]</td>
</tr>
</tbody>
</table>

The transition form factor was studied in [22] using 60 observed $\pi^0 \mu^+ \mu^-$ events. In general, one can also obtain information on the transition form factors $F(q^2)$ from the reactions $e^+e^- \to \rho\pi, \omega\pi, \phi\pi$ and, under some additional assumptions, from the Dalitz decays like $\pi^0, \eta, \eta' \to e^+e^-\gamma, \mu^+\mu^-\gamma$ as well as from the two photon production of π^0, η and η'. Each of the processes mentioned above gives $F(q^2)$ in some range of q^2. The available experimental information qualitatively does not contradict the predictions of Vector Dominance, but much higher statistics is needed for the consistent picture of vector to pseudoscalar transitions [6,20,24]. One can hope for substantial improvement of the situation after new series of experiments at VEPP-2M with the CMD-2 [25] and SND [26] detectors.
REFERENCES