C. Mencuccini and A. Reale: REMARKS ON THE $^7\Lambda$ -MESON CUSP EFFECT IN Λ^0 PHOTOPRODUCTION.

Remarks on the γ-Meson Cusp Effect in π^0 Photoproduction.

C. Mencuccini and A. Reale

Laboratori Nazionali di Frascati del CNEN - Frascati

(recevuto il 10 Febbraio 1967)

In a recent past the knowledge of the πN system in the energy region of the second resonance (Λ^{*8}, 1518 MeV) has been considerably improved, essentially due to some accurate phase-shift analyses of the πN scattering (1,2).

It turns out that in this energy region strong inelastic effects mainly in P_{11}, S_{11} and S_{12} states occur, superimposed to the resonant behaviour of the D_{13} state (Λ^{*8}, 1518 MeV). In particular the S_{11} partial wave seems to be affected by the sharp opening of the rather abundant γ production channel according to a cusp mechanism (3), as was pointed out by Auvil et al. (4) and further investigated with different degree of success by several authors (5).

A rather convincing evidence has been found that the γN system mainly passes through a $J = \frac{3}{2}$, $T = \frac{1}{2}$ resonance at threshold. However, some very recent phenomenological analyses (6) in which recent experimental results (7,8) are taken into account show that a strong interaction in an S, P or D state can undoubtedly not be ruled out.

As far as the photoproduction reactions are concerned, due to the rather scanty experimental input available up to a quite recent past, a detailed multipole analysis comparable with the phase-shift analysis of πN scattering has not yet been done for energies much above the first resonance \(^{(11)}\).

The situation around the second resonance is furthermore complicated by the presence of the known puzzle of the position in energy of the experimental maxima for the two reactions $\gamma p \rightarrow \pi^0 p$ and $\gamma p \rightarrow \pi^+ n$. In regard to this particular aspect the possibility of a cusp effect of the γ on the single-pion photoproduction was already suggested by REKALO \(^{(12)}\). According to his prediction a subtractive anomaly could be expected in the differential cross-section at 90° for the $\gamma p \rightarrow \pi^0 p$ reaction at the threshold for the $\gamma p \rightarrow \pi^+ n$ reaction.

On the other hand, a comparative analysis \(^{(2)}\) has shown that, not too far from the γ threshold, the behaviour with the energy of the production of γ's and π's in the $T = \frac{1}{2}$ state and also the relative abundance of π's with respect to γ's for both the initial states $\pi^+ N$ and $\pi^- N$ are practically the same. This seems to indicate that a cusp effect due to the γ production is reasonably to be expected also in single photoproduction processes.

In this respect among the single-pion photoproduction reactions the $\gamma p \rightarrow \pi^0 p$ seems to be rather suitable to show the effect, due to the absence of the direct-interaction term (present with the charged pions) and because it has an energy behaviour very similar to the energy behaviour of the $\pi N \rightarrow \pi N$ reaction ($T = \frac{1}{2}$).

We maintain here the assumption that the quantum numbers of the state through which the γ production occurs, both in production and in photoproduction, are $I = 0, J = \frac{1}{2}, T = \frac{1}{2}$: the multipole mainly involved in π^0 photoproduction is then the electric dipole E_{π^0}.

It must be noted that looking for an anomaly in the $\gamma p \rightarrow \pi^0 p$ reaction at the γ threshold, because of the steepness of the production cross-section and the relative low values it reaches (factor five on the cross-sections with respect to the $\gamma p \rightarrow \pi^+ p$), an effect is reasonably expected to be strongly energy-dependent and quite small in absolute value. Therefore for an experimental investigation high-energy resolution and good statistics are simultaneously required. Up to now these requirements are reasonably satisfied only for some measurements of differential cross-sections at 90° c.m.s. \(^{(12-14)}\).

Keeping this in mind we summarize in Fig. 1 the experimental situation as far as the differential cross-section for $\gamma p \rightarrow \pi^0 p$ at 90° c.m.s. in the energy region of the second resonance is concerned.

In Fig. 1 the Frascati data \(^{(24)}\) together with the Stanford ones are shown because

\(^{(24)}\) Thanks are due to the authors of ref. \(^{(24)}\) who kindly supplied us with the 90° experimental results prior to publication.
these experiments have been performed with comparable resolution, \(\approx \pm 10 \text{ MeV} \).

At a first examination of the experimental results a sort of structure could be recognized in the region of the rise of the second resonance, that is just at the threshold of the \(\eta \) photoproduction channel.

None of these measurements by itself gives a definite evidence of a clear structure, but all the results together are consistent with this indication.

A possible way through which the opening of the \(\eta \) channel could affect the \(\pi^0 \) photoproduction, at threshold, is considered in the following.

In the energy region of the second resonance we consider the state \(l = 0, J = \frac{1}{2}, T = \frac{1}{2} \), for the following reactions: \(\pi N^0 \rightarrow \pi N^0, \pi N^0 \rightarrow \eta N^0, \eta N^0 \rightarrow \eta N^0, \eta N^0 \rightarrow \eta N^0 \eta N^0 \) and neglect the \(2\pi \) production as the behaviour of the inelasticity parameter in the \(S_{11} \) partial wave seems to suggest (\(^2\)).

The use of unitarity and time-reversal invariance of the \(S \)-matrix leads to the following relationships:

\[
\begin{align*}
\langle \pi\eta' | SS^* | \pi\eta' \rangle &= 1, \\
\langle \eta\eta' | SS^* | \pi\eta' \rangle &= 0, \\
\langle \pi\eta' | SS^* | \eta\eta' \rangle &= 0, \\
\langle \eta\eta' | SS^* | \eta\eta' \rangle &= 0, \\
\langle \eta\eta' | SS^* | \eta\eta' \rangle &= 1.
\end{align*}
\]

If we put the \(S \)-matrix elements in the form

\[
\langle \eta | S | \gamma \rangle = A e^{i\delta_x}, \quad \langle \pi | S | \eta \rangle = B e^{i\delta_y}, \quad \langle \pi | S | \gamma \rangle = C e^{i\delta_y}, \quad \langle \eta | S | \eta \rangle = D e^{i\delta}, \quad \langle \eta | S | \gamma \rangle = F e^{i\delta_y},
\]

then we get the following system of equations among different amplitudes and phases:

(1) \(A^2 + B^2 + C^2 = 1 \),
(2) \(AB \exp[i(2\pi + \beta)] + CD \exp[i(\gamma - \delta)] + BE \exp[i(\beta - 2\gamma)] = 0 \),
(3) \(AC \exp[i(2\pi - \gamma)] + C \exp[i\gamma] + BD \exp[i(\delta - \beta)] = 0 \),
(4) \(BC \exp[i(\beta - \gamma)] + D \exp[i\delta] + FD \exp[i(2\pi - \delta)] = 0 \),
(5) \(F^2 + B^2 + D^2 = 1 \).

By taking into account the relative order of magnitude of the different terms (according to their 'strong' or 'e.m. nature') one can easily show that this system

is equivalent to the simple equations

\[
\begin{align*}
C^2 &= \left(1 - A^2 \right) \frac{D^2}{1 + A^2 + 2A \cos 2(\alpha - \gamma)} , \\
\tan (\beta - \delta - \gamma) &= \frac{1 - A}{1 + A} , \\
\tan (\gamma - \zeta) &= \frac{1 - A}{1 + A} .
\end{align*}
\]
(6)

We are interested in the transition amplitude \(C e^{i\gamma} \). The inelasticity parameter \(A \) and the phase shift \(\alpha \) of the scattering are taken from ref. (16).

The \(D \) amplitude can be determined from the knowledge of the \(\gamma + p \rightarrow \gamma + p \) photoproduction cross-section which has been experimentally measured (18), according to (17)

\[
\sigma_{\text{tot}}(\gamma p \rightarrow \gamma p) = \frac{\pi \lambda^2 D^2}{2},
\]

where \(\lambda \) is the wavelength of the incident photon.

We now assume that both the reactions of photo and pion production of \(\gamma \)'s on nucleons are going through a resonant state of a Breit-Wigner type, that is \(\pi N^0 \rightarrow \Delta^0 \rightarrow \gamma N^0 \); \(\gamma N^0 \rightarrow \Delta^0 \rightarrow \gamma N^0 \); then we can reasonably believe that the energy behaviour is the same for the \(\beta \) and \(\delta \) phases, because it is mainly determined from the energy and the width of the resonant state. We take, according to ref. (17) a value of \(E_{\gamma} \approx 750 \text{ MeV} \) for the resonance position in photoproduction.

We can then solve eq. (9) for \(C \) and \(\gamma \) by putting \(\beta \approx \delta \) in a small region around 750 MeV.

We can also take profit of the fact that below the \(\gamma \) threshold the scattering phase \(\gamma \) and the transition phase \(\gamma_0 = \gamma - \pi/2 \) (the \(\pi/2 \) term is a consequence of our definition of the transition elements) are equal (18) so that \(\gamma_0 \) is completely determined everywhere.

A graph of \(\gamma_0 \) is given in Fig. 2.

Concerning the \(C \) amplitude, let us recall that the total \(E_{\gamma}^0 \) photoproduction amplitude is equal to

\[
E_{\gamma}^0 = \frac{2}{3} E_{\gamma}^1 + \frac{1}{3} (E_{\gamma}^3 + 3E_{\gamma}^5);
\]

\(E_{\gamma}^1, E_{\gamma}^3, E_{\gamma}^5 \) are the \(\frac{1}{2}, \frac{3}{2} \) isovector parts and the isoscalar part respectively (16).

(18) Because of the Watson theorem, below the \(\gamma \) threshold

\[
\text{Im} E_{\gamma}^3 = \text{Re} E_{\gamma}^1 \cdot \tan \sigma_{11},
\]
\[
\text{Im} (E_{\gamma}^3 + 3E_{\gamma}^5) = \text{Re} (E_{\gamma}^1 + 3E_{\gamma}^3) \cdot \tan \sigma_{11},
\]

where \(\sigma_{11} \) and \(\sigma_{11}(= \pi) \) are the phase shifts for the \(\frac{1}{2} \) and \(\frac{3}{2} \) isotopic-spin states in \(\pi N \) scattering.
Remarks on the γ meson cusp effect in π^0 photoproduction

For the energies below the γ threshold, we take for $E^\gamma_{\nu^*}$ the values which can be extrapolated from ref. (11), while in the $\gamma N'$ resonance region we have

$$E^\gamma_{\nu^*} = \frac{2}{5} E^0_{\nu^*} + \frac{3}{5} G_{\nu^*},$$

where only the $E^0_{\nu^*}$ part (which is not expected to have a fast changing behaviour in our energy region) has been extrapolated from ref. (11).

The real and imaginary parts of $E^\gamma_{\nu^*}$ are given in Fig. 3A, B respectively.

Fig. 3. – The isospin $\frac{1}{2}$ E_{ν^*} multipole for $\gamma p \rightarrow \pi^0 n$, the energy of the incident γ (MeV).

To get the effect on the cross-section one should know the behaviour of the multipoles which are effective in the region of the second resonance.

In fact, if for instance the assumption is made that only the multipoles E_{ν^*}, M_{ν^*}, E_{ν^*} are important, the 90° differential cross-section can be written as

$$\frac{d\sigma}{dQ^\rho} = \left| E_{\nu^*} \right|^2 + \frac{5}{2} |M_{\nu^*}|^2 + \frac{5}{2} |E_{\nu^*}|^2 + \frac{9}{2} |M_{\nu^*}|^2 - \text{Re} \left[E_{\nu^*} (E_{\nu^*} - 3 M_{\nu^*}) \right] + 3 \text{Re} \left[M_{\nu^*}^* E_{\nu^*} \right],$$

where K, q are the c.m. momenta of the photon and the meson respectively.

Unfortunately the knowledge of the multipoles is as yet not complete in this region and any attempt to make a quantitative estimate of the γ anomaly on the cross-section at threshold, according to (7), is somewhat dependent on the model used for the multipoles involved.

We report elsewhere (14), in a more extensive form, the details of the calculations performed to fit by (7) the experimental results of Fig. 1. Additional information on the other multipoles necessary to build up the cross-section have been taken from ref. (11). We just note here that the calculated anomaly is much smaller than one can argue from the experimental distribution; the perturbation on the E_{ν^*} multipole due to the sharp opening of the γ channel is not great enough to account for the shoulder observed at $E_{\nu^*} = (700 \pm 740)$ MeV.

On the other hand the remark has to be made that our model for the $\gamma N'$ system could be an oversimplified one. In fact the possibility that the $\gamma N'$ resonance could be a P_{11} state or even a mixture of states cannot be ruled out by the present experimental evidence.

**

We wish to thank Prof. G. Salvinz for frequent and valuable discussions on the problem and Profs. M. Bassetti and C. Pellegrini for their helpful remarks. Prof. W. Schmid is also gratefully acknowledged for his criticism.

Our thanks are also due to the computer staff and mainly to Dr. G. Trenta.