V. Silvestrini, L. Maiani and G. Preparata:
A POLE MODEL FOR $\gamma \rightarrow 3\pi$ DECAYS.

(Nota interna: n. 344)

Servizio Documentazione
dei Laboratori Nazionali di Frascati del CNEN
Casella Postale 70 - Frascati (Roma)
V. Silvestrini, L. Maiani and G. Preparata:
A POLE MODEL FOR $\gamma \to 3\pi$ DECAYS.

(Submitted for publication to Nuovo Cimento)

SUMMARY. -

A simple pole model which takes into account the contributions of the σ and ρ particles is found to give an overall consistent picture of the $\gamma \to 3\pi$ decays.

The branching ratio $R = \frac{\gamma \to 3\pi^0}{\gamma \to \pi^+\pi^-\pi^0}$ is predicted to be $R_{\text{th}} = 1.0$ to be compared with $R_{\text{exp}} = 1.05 \pm 0.13$. A good fit to the population of the Dalitz plot for the decay $\gamma \to \pi^+\pi^-\pi^0$ is obtained, together with the reasonable estimate $\Gamma_{\gamma \to \pi^+\pi^-\pi^0} \approx 140$ eV for the absolute rate.
The experimental situation on the decay rates of the γ-particle cannot yet be considered satisfactory, the agreement among the results of different experiments being often only fair.

However, two facts have been cleared up during the last year:

a) - The mode $\gamma \rightarrow \pi^0 \gamma \gamma$ is present and important. This decay, first put in evidence by DiGiugno et al.\,(1), has been later-on observed also by Grunhaus\,(2) and by Strugalsky et al.\,(3).

b) - The decay mode $\gamma \rightarrow 3 \pi^0$ is not very abundant: according to the Berkeley tables\,(4), it accounts for (30.5 ± 2.8)\% of the neutral decay modes\,(5).

Both these facts have been considered as difficulties from the point of view of their interpretation in terms of theoretical models. Only very recently, L. Malani and G. Preparata\,(8) have proposed a model which accounts for a large decay rate $\gamma \rightarrow \pi^0 \gamma \gamma$.

As far as point b) is concerned, the difficulty comes about when one considers the ratio $R = \frac{\gamma \rightarrow 3 \pi^0}{\gamma \rightarrow \pi^+ \pi^- \pi^0}$.

$\gamma \rightarrow \pi^0 \gamma \gamma$ and $\gamma \rightarrow \pi^+ \pi^- \pi^0$.

Using $\frac{\gamma \rightarrow 3 \pi^0}{\gamma \rightarrow \pi^+ \pi^- \pi^0} = 3.45 \pm 0.30\,(9)$, one gets $R_{\exp} = 1.05 \pm 0.13$.

Several attempts have been made to fit in a model the value of R. We recall that in the absence of final state interaction R is expected to be ~ 1.7, and that the introduction of a final state interaction must fit at the same time the ratio R and the distribution on the Dalitz plot for the decay $\gamma \rightarrow \pi^+ \pi^- \pi^0$.
The models used up to now follow two main directions. The first one\(^{(10)}\) is to assign the \(\pi^{-}\pi^{-} \) interaction to the contribution of a scalar, \(T = 0 \), di-pion resonance (\(\pi^{-} \)-particle); it is easy to show that \(R \) is a function of the width \(\Gamma_{\pi^{-}} \) of the \(\pi^{-} \), \(R \) going to .5 as \(\Gamma_{\pi^{-}} \) goes to zero.

The second one, proposed by S. Oneda et al.\(^{(11)}\), is to interprete the final state interaction as mediated by the \(\gamma \). Both those models were able to predict the value of \(R \) and the distribution on the Dalitz plot up to a few years ago, when they were known with large errors. However, they fail to fit a value of \(R \) as low as \(\sim 1 \), and at the same time the population of the Dalitz plot as it is known to-day.

To explain the situation, the introduction of a \(\Delta I = 3 \) part in the (electromagnetic) decay \(\gamma \rightarrow 3\pi^{-} \) has been considered by M. Veltman et al.\(^{(12)}\).

We present in the following a very simple model, which accounts for the low value of \(R \) and for the observed shape of the distribution in the Dalitz plot, without the need of introducing any sophisticated type of interaction.

We consider the decay \(\gamma \rightarrow 3\pi^{-} \) as due to the contribution of the following pole terms:

\[1) \]
The vertex $\gamma - \pi^-$ accounts for the violation of isospin in the decay, and the final state interaction goes through both the π^0 and π^+ particles. Since we assume C-conservation in the decay, the diagram with the γ^0 is forbidden.

Diagram 1) gives contribution only to the decay $\gamma \rightarrow \pi^+ \pi^- \pi^0$, while 2) and 3) contribute to both decays $\gamma \rightarrow 3 \pi^0$ and $\gamma \rightarrow \pi^+ \pi^- \pi^0$.

Were the σ an SU$_3$-singlet, the contributions of diagrams 2) and 3) would cancel each other ($g_{\sigma \pi \pi}$ being equal to $g_{\sigma \gamma \gamma}$ and the sign of the propagator being opposite). Only the projection of the σ on the SU$_3$-octet is thus effective in the $\gamma \rightarrow 3 \pi^-$ decays.

We have no reliable information about the particle which mixes with the σ in the SU$_3$ scheme: but since its mass is probably much higher (there is some indication of a scalar particle S_0 or ξ_0 with a mass of ~ 720 MeV4), we disregard at this stage its contribution to the $\gamma \rightarrow 3 \pi^-$ decays.

For a calculation of R we do not need the vertex $\gamma - \pi^-$: the only free parameters are thus the projection $\sin \phi$ of the σ on the
SU$_3$ octet and the ratio g_1/g_8 between the coupling constants of the \(\pi \pi \) system to the SU$_3$ singlet and octet respectively. If we further assume a nonet model, so that \(g_1/g_8 = \sqrt{2} \), we are left with the only free parameter $\sin \varphi$. Small adjustments of the ξ mass and width are also possible within the experimental errors\(^{(4)}\).

According to the diagrams 1), 2) and 3), the amplitude for the decay $\gamma \rightarrow \pi^+\pi^-\pi^0$ is:

\[
A_{\text{ch}} \propto \frac{2 \frac{g_5^2}{s_o} \pi \pi}{(s_o - m_5^2) + i \sqrt{s} m_5} + \left\{ \frac{s_+ - s_o}{(s_+ - m_\rho^2) + i \sqrt{s} m_\rho} + \frac{s_- - s_o}{(s_- - m_\rho^2) + i \sqrt{s} m_\rho} \right\}
\]

(1)

where \(s_o = (q_- + q_+)^2 \); \(s_+ = (q_- + q_o)^2 \); \(s_- = (q_+ + q_o)^2 \) and \(q_+ \) is four-momentum of the π^0.

For the decay $\gamma \rightarrow 3 \pi^0$, the amplitude is:

\[
A_{\text{neutr}} \propto \frac{1}{\sqrt{6}} \sum_j \frac{2 \frac{g_5^2}{s_o} \pi \pi}{(s_j - m_5^2) + i \sqrt{s} m_5} \left\{ \frac{2 \frac{g_5^2}{s_o} \pi \pi}{(s_j - m_5^2) + i \sqrt{s} m_5} \right\}
\]

(2)

The sum over the index \(j \) is required to make the amplitude symmetric among the three π^0s.

A rather good fit to the experimental distribution in the Dalitz plot is obtained if we put:

\[
m_\rho = 758 \text{ MeV} ; \quad \sqrt{s} = 128 \text{ MeV} ; \quad g_5^2 \pi \pi = 2.6 \times 4 \pi ;
\]
\(m_\sigma = 375 \text{ MeV} \); \(\sqrt{\sigma} = 70 \text{ MeV} \); \(\frac{2}{3} m_\sigma = 1.31 \text{ GeV}^2 \) (as deduced from the used values of \(m_\sigma \) and \(\sqrt{\sigma} \)) and \(\phi \approx 26^\circ (1 + \sqrt{3} \cot \phi = 4.3) \).

It is worth noticing the agreement between the \(\sigma \) mass and width we need to fit the Dalitz plot, and the ones calculated by G. Furlan and C. Rossetti\(^{(13)}\).

The result of our calculations is compared with the experimental points in fig. 1: the full line represents \(\int |A_{\text{ch}}|^2 \text{dT} \) (where \(T = \frac{T_+ - T_-}{\sqrt{3}} \)) and the experimental points are a summary of the information available to us\(^{(14,15,16)}\). Our model does not give any appreciable \(|T| \) dependence of the population, consistently with experiment.

By integration of \(|A_{\text{ch}}|^2 \) and \(|A_{\text{neutr}}|^2 \) over the Dalitz plot, we get the branching ratio:

\[
R_{\text{th}} = \frac{\gamma \rightarrow 3 \pi^0}{\gamma \rightarrow \pi^+ \pi^- \pi^0} = 1.0
\]

in good agreement with the experimental value \(R_{\text{exp}} = 1.05 \pm 0.13 \). \(R_{\text{th}} \) includes a correction factor 1.13 to take into account the difference in mass between the charged and neutral pions.

The diagram with the \(\psi \) works to depress \(R \) in two different ways: it gives an overall contribution of 20% to the decay rate \(\gamma \rightarrow \pi^+ \pi^- \pi^0 \), and, more important, it allows to fit the Dalitz plot with a \(\sigma \) as narrow as \(\sim 70 \text{ MeV} \).
FIG. 1 - Decay $\gamma \rightarrow \pi^+\pi^-\pi^0$. Distribution of the events in the Dalitz plot as a function of the kinetic energy T_O of the π^0 (in units of T_O max). The full-line is the distribution expected in our model.
An estimate of the absolute rate for the decay $\gamma \rightarrow 3\pi$ can also be obtained. To this aim, we need the strength of the $\gamma - \pi$ e.m. transition element.

By assuming SU$_3$ symmetry and an octet behaviour of the e.m. current, we get, at second order, the following relation$^{(17)}$:

$$\langle \gamma | H_{\text{e.m.}} | \pi^0 \rangle = \frac{1}{\sqrt{3}} \left[(M_{k^+}^2 - M_{k^0}^2) - (m_{\pi^+}^2 - m_{\pi^0}^2) \right] \simeq -(52 \text{ MeV})^2.$$

Using this value, we obtain:

$$\int \gamma \rightarrow \pi^+\pi^-\pi^0 \simeq 140 \text{ eV}.$$

For comparison, we recall that $\int \gamma \rightarrow \varphi \varphi$, as obtained by SU$_3$ arguments from the π^0-lifetime is equal to $\int \pi^0 \rightarrow \varphi \varphi x (\frac{M_\varphi}{m_\pi})^3 x \frac{1}{3} \simeq (150 \pm 13) \text{ eV}$, using for the π^0 lifetime the value $\tau_{\pi^0} = (0.91 \pm 0.08) \times 10^{-16} \text{ sec}^{(18)}$.

Thanks are due to prof. N. Cabibbo and dr. G. DeFranceschi for valuable discussion.
REFERENCES.

(2) - J. Grunhaus, Thesis (Columbia University, 1966). He gives the following results:

\[
\frac{\gamma \rightarrow \gamma}{\gamma \rightarrow \text{neutrons}} = 0.47 \pm 0.06; \quad \frac{\gamma \rightarrow 3 \alpha^0}{\gamma \rightarrow \text{neutrons}} = 0.34 \pm 0.04;
\]

\[
\frac{\gamma \rightarrow \pi^0 \gamma}{\gamma \rightarrow \text{neutrons}} = 0.19 \pm 0.08.
\]

(3) - Strugalski et al. have presented at the Berkeley Conference (Sept. 1966) the result

\[
\frac{\gamma \rightarrow \pi^0 \gamma}{\gamma \rightarrow \gamma} = 0.86 \pm 0.40.
\]

(5) - It is very hard to make a sensible average of results which are in poor agreement among themselves: not everybody will thus agree with this figure, and the error is in any case to be taken as an indication. It is worthwhile in our opinion to recall an experimental fact which is not generally quoted and goes in favour of both points a) and b). Not far above threshold for \(\gamma \) production, the cross section for reaction \(\pi^- + p \rightarrow 6 \gamma + n \) (which is dominated by \(\pi^- + p \rightarrow \gamma + n \)) is a factor 1.5 \(\pm \) 1.8 smaller than the cross section for reaction \(\pi^- + p \rightarrow \gamma + n \) (6): therefore \(\frac{\gamma \rightarrow \gamma}{\gamma \rightarrow 3 \alpha^0} \geq 1.5. \)
In addition $\frac{\gamma \rightarrow \phi \phi}{\gamma \rightarrow \text{neutrals}} \approx 0.40 \pm 0.45^{(1,2,7)}$.

(8) - L. Maiani and G. Preparata, A soft photon emission approach to $\pi^0 \rightarrow \gamma \gamma$ and $\gamma \rightarrow \phi \phi \pi^0$ decays, Internal report of the Istituto Superiore di Sanità, Roma (ISS 66/49), to be published.

(9) - To get this average value, we have used the results of:

on the ratio $\frac{\gamma \rightarrow \text{neutrals}}{\gamma \rightarrow \pi^+ \pi^- \pi^0}$;

- and the accepted value of .20 for the ratio

\[\frac{\gamma \to \pi^+ \pi^- \gamma}{\gamma \to \pi^+ \pi^- \pi^0} \quad (\text{see ref. } 4). \]

(12) - M. Veltman and J. Yellin, Some comments on the decay of the \(\gamma \) (550), to be published on Phys. Rev.

(14) - C. Alff et al. (see ref. 9), Phys. Rev. Letters 9, 325 (1962).

(18) - P. Stamer, S. Taylor, E. L. Koller, T. Heutter, J. Grauman and D. Pandoulas, Phys. Rev. 151, 1108 (1966); average of table VI.