Laboratori Nazionali di Frascati

LNF-60/53 (8.12.60)

G. Ghigo: DISCUSSIONI PRELIMINARI SULL'A. d. A.
Nota interna: n° 62
8 Dicembre 1960.

G. Ghigo

DISCUSSIONI PRELIMINARI SULL'A.d.A.

1) PROMEMORIA SULLA REALIZZAZIONE DI UN ANELLO DI ACCUMULAZIONE

Il 7 Marzo Touschek in un seminario tenuto a Frascati propone di realizzare un anello di accumulazione da alimentare con elettroni da 250 MeV prodotti da un fascio di fotoni su un bersaglio posto nella camera a vuoto dell'anello. Con lo stesso sistema si possono produrre ed accumulare positroni da 250 MeV sullo stesso anello con un altro fascio di fotoni e un altro bersaglio. In questo modo si possono studiare le reazioni:

\[ e^+ + e^- \rightarrow 2 \gamma \]
\[ e^+ + e^- \rightarrow \mu^+ + \mu^- \]
\[ e^+ + e^- \rightarrow \pi^+ + \pi^- \]
\[ e^+ + e^- \rightarrow e^+ + e^- \]

di cui la prima serve come 'monitor' per lo studio sperimentale delle altre reazioni. Si sottolinea l'interesse della seconda reazione che può essere studiata in cattiva geometria. Appare evidente il non grande impegno finanziario richiesto dall'impresa.
Dopo il seminario si decide di approfondire lo studio dei fenomeni che limitano la sopravvivenza dei 'beam' negli anelli (perdite per irraggiamento ecc.).

Il 14 marzo, visto che gli studi preliminari non avevano messo in risalto ostacoli insormontabili, in una riunione cui sono presenti Amman, Bernardini, Cabibbo, Gatto, Ghigo, Salvini e Touschek si decide di realizzare un dispositivo sperimentale di prima approssimazione per cui vengono stanziati 8 milioni di lire.

Viene deciso che Touschek sarà a capo dell'esperienza coadiuvato da Ghigo per i problemi tecnico-organizzativi e da Bernardini per le questioni tecniche. I vari gruppi di Frascati (Laboratori magneti, Vuoto, Radiofrequenza) progetteranno e realizzeranno le varie parti dell'esperienza. Il gruppo della macchina assumerà l'esperienza curandone la messa a punto e studierà i metodi di rivelazione del fascio.

Il 16 Marzo Touschek e Ghigo preparano un primo approssimativo programma di lavoro e di tempi che viene qui riportato.

a) **Magnete.**
   
   **Caratteristiche principali:** Raggio dell'orbita 60 cm, peso del ferro ~ 6 tonn. diametro esterno ~ 140 cm, costituito da dischi sovrapposti. Alimentazione ~ 100.000 Amper spire, 100 Volt, 1000 Amper.
   
   Entro il 20/3 comincia il progetto di minima
   
   Entro il 20/4 viene effettuato l'ordine per i materiali
   
   Entro il 1/10 il magnete è pronto per le prime prove.

   Il progetto e la realizzazione del magnete sarà curata dal Laboratorio Magneti per esperienze.

b) **Camera a vuoto.**
   
   **Caratteristiche principali:** di sezione ellittica 6 x
10 circa di acciaio inossidabile senza guarnizioni in gomma. Si inizia con pompe convenzionali.
Vuoto da raggiungere $10^{-6}$ mmHg.
Entro il 1/8 viene eseguita completa di targetta ed eletrodi del Laboratorio Tecnologico.

c) **Radiofrequenza.**

Caratteristiche principali: frequenza compresa tra 80 MHz e 640 MHz. Probabile impiego risuonatore coassiale, Potenza ~ 1 KW, Tensione ~ 10 KV.

Entro il 1/6 realizzazione risuonatore
Entro il 1/1/81 impianto completo di alimentazione.

Il tutto progettato è realizzato dal Laboratorio Radiofrequenza.

d) **Controlli.**

Consistenti essenzialmente nella rivelazione
del fascio, dei due gamma o nel controllo a distanza del
targette. Il tutto sarà eseguito dal Laboratorio del
ta macchina e dovrà essere pronto entro il 1/10.

Concordemente a quanto più volte detto nelle
varie discussioni l'A.d.A. verrà messo a punto nella
la esperienza lontano dal sincrotrone nel posto attual-
mente occupato del pozzo di spegnimento dell'esperienza
Frascati. Sarà necessario per questa fase costruire
una piattaforma sopraelevata per portare l'A.d.A. dal li
vello della sala macchine al livello del fascio con gli
opportuni gradi di libertà regolabili con viti o marti-
nelli (collaborazione Ufficio Tecnico).

In questa prima fase si accumulate probabil-
mente solamente positroni ed elettroni ed è difficile va-
lutare la durata di questo periodo di messa a punto. Se
si otterranno buoni risultati la A.d.A. verrà posto molto
vicino al sincrotrone ed inizieranno lo esperienze di cui
si è accennato al principio.
2) RESOCONTO SULLO STATO DI PROGETTO DELL'AMPELLO DI ACCUMULAZIONE.

Il 24.4.1960 in una riunione tenuta a Frascati tra gli interessati si riassumono i progressi fatti nel progetto nel mese trascorso dall'inizio dei lavori e vengono presentati nuovi argomenti che assicurano un vasto programma di ricerca qualora la macchina funzioni (vedi promemoria sulla realizzazione di un ADA).

Touschek fa presentare la possibilità di studiare la reazione 
\[ e^+ + e^- = \pi^0 + \gamma \] che permette di misurare la vita media del \( \pi^0 \) che dovrebbe essere dell'ordine di \( 10^{-17} \) (sezioni d'urto interno all'1,5 \( 10^{-33} \) a 230 MeV da verificare).

Viene ancora rimarcato da un lavoro di Cabibbo, Calogero e Putsuoli l'interesse dello studio delle coppie di nuovi nell'urto elettrone-positrone che permettono di isolare le correzioni radiative all'ordine di \( e^6 \).

Comunque la prima è più facile esperienza da realizzare è la produzione di coppie di pioni sulla cui sezione d'urto hanno fatto dei calcoli Gatto e Cabibbo con il risultato di \( 4,6 \times 10^{-31} \) e cioè 17 volte più grande che senza la risonanza a 230 MeV.

Si passa a parlare dei problemi inerenti l'inizio dell'Ampea e Touschek rimane del parere di cominciare semplicemente con targhette poste ai limiti della zona utile del campo e propone come seconda approssimazione il metodo 'della targhetta virtuale' in cui si impiega un piccolo deflettori magnetico pulsato per qualche decimo di microsec. che verrà descritto in seguito quando verrà realizzato.

Bernardini propone un particolare tipo di campo che consenta rapide spirali di particelle dall'interno verso l'esterno con una zona di stabilità
interno all'orbita di equilibrio. Il metodo consente un rendimento di iniezione di circa 1, ma si perde un fattore 6 per questioni di RF.

Ghigo propone di conciliare questo metodo con i poli convenzionali studiando le condizioni di campo disperso modificato eventualmente da correnti di corrosione.

Vengono poi esaminate le singole parti della macchina osservando che sino ad ora non sono comparse ragioni di ritardo rispetto al primissimo quadro dei tempi e cioè si dovrebbero accumulare le prime parti colo verso la fine di quest'anno.

Magnete: nelle sue caratteristiche generali non si scosta dal primo disegno di massima e si decide di considerarlo definitivo l'attuale disegno (ved. fig. 1) presentato dal Laboratorio di Magneti. Vi saranno 4 sezioni quasi diritte, in cui il campo sarà 2,5 volte inferiore a quello principale, lunghe 18 cm e curvatura dei poli seguirà il raggio reale e non il raggio medio dell'orbita. Si pensa di passare tra una quindicesima di giorni all'ordinazione dei primi materiali.

Vuoto: sono state fatte le prime prove sulla costruzione in acciaio inossidabile della ciambella, sui vuoti limiti delle pompe convenzionali e sulle pompe al titanio a scarica. Corazza afferma che senza le pompe al titanio non si raggiunge facilmente 10⁻⁸, ma comunque si comincerà con pompe convenzionali.

Radiodiffusione: su suggerimento del laboratorio di RF si è adottata la 2ª armonica corrispondente a circa 160 Hz. Questa frequenza è compatibile con l'attuale attrezzatura dei nostri Laboratori e l'impianto può
essere realizzato in gran parte con materiali di magazzino. Sono stati realizzati modellini di cavità per 160 MC, indispensabili per il dimensionamento delle sezioni diritte.

Controlli e praticamente ultimato il progetto del sottostato del magnete e dei telecomandi per i movimenti rispetto al fascio gamma, previsti per la prima sistemazione come 'parassiti' in sala macchine (ved. fig. 2).

Terminato questo esame si osserva che è necessario che un giovane si dedichi completamente, con l'aiuto di Bernardini ai problemi di orbita e profili polari, possibilmente anche con la collaborazione di Turrin. Touschek inoltre richiede che qualcuno verifichi i suoi calcoli per la macchina (perdite per radiazioni, bremsstrahlung, ecc). Chigo propone che Giannini venga indirizzato verso questo lavoro, mentre Bizzarri e Del Fabbro potrebbero occuparsi del deflettori magnetico di cui si è parlato prima.

Si conclude osservando che, per quanto le cose procciano in modo soddisfacente, sarà difficile eseguire esperienze sull'urto elettrone-positrone prima dell'agosto 1961.

Nota fig. 1 — Caratteristiche approssimative principali del magnete.

<table>
<thead>
<tr>
<th>Caratteristica</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induzione al centro gap</td>
<td>$B_{\max} = 1,42 \text{ Wb/m}^2$</td>
</tr>
<tr>
<td>Numero di amperispire</td>
<td>$N_{\text{tot}} = 100,000$</td>
</tr>
<tr>
<td>Corrente nominale (avvolgimenti in serie)</td>
<td>$I = 1,500 \text{ A}$</td>
</tr>
<tr>
<td>Tensione nominale</td>
<td>$V \approx 160 \text{ V}$</td>
</tr>
<tr>
<td>Peso totale magnete</td>
<td>$\approx 8 \text{ tonn.}$</td>
</tr>
</tbody>
</table>
La pianta è considerata mancante del giro superiore. FIG. 1