Laboratori Nazionali di Frascati

LNF-60/33 (5.8.60)

G. Diambrini, A. S. Figuera, B. Rispoli, A. Serra: BREMSSTRAHLUNG SPECTRUM OF THE 1100 MeV ELECTRONSYNCHROTRON AT FRASCATI.
Nota interna: n° 48
5 Agosto 1960

G. Diambrini, A.S. Figuera(x), E. Rispoli(x)(o), A. Serra(x);
BREMSSTRAHLUNG SPECTRUM OF THE 1000 MeV ELECTRONSYNCHROTRON
AT FRASCATI.

(Submitted to 'Il Nuovo Cimento' for publication)

Introduction

In this paper definite results(1) about the Bremsstrahlung spectrum of 1000 MeV Frascati electron synchrotron by using different targets and collimators are given.

The subject of this experiment is to give a contribution to the understanding of the electron synchrotron beam production mechanism, and to get useful results for research in photoproduction when using photons of an energy near to upper limit of the spectrum.

Because the spectrum shape of the γ-ray beam depends essentially on the effective target thickness, on the collimation, on the energetic distribution of primary electrons and on possible multiple crossings through the target, it is necessary to determine the effective thickness of the targets in use, and the transmission factors of the collimators. So the angular distribution of beam intensity for two different thicknesses of target are studied and the results, shown in § 2, are compared with theoretical angular distribution.

(x) - C.N.R.N. - Div. Elettronica - Roma
(o) - Istituto di Fisica dell'Università di Roma.
(1) - The first results were given in 'Il Nuovo Cimento', 15, 500 (1960)
The experimental apparatus used for the Bremsstrahlung spectrum measurements has been described in § 3.

In § 4 arc given the spectra obtained by using 0.13 and 0.013 r.l. target thickness and, for each one of these, two collimators with acceptance angles of 3.6 and 0.75 mrad respectively.

In order that this paper may be useful to those wishing to measure spectrum with other similar accelerators there are some mathematical explanations in the appendix.

§ 2 - Beam angular distribution

The experimental arrangement for the beam angular distribution measurement is shown in fig. 1, where:

T is the electronsynchrotron tantalum target;
M is an ionization chamber with thin aluminium walls and with electrodes of total thickness of 4.3·10^{-4} r.l.;
C is a lead collimator (collimators with hole diameters of 5 mm and 2 mm, corresponding to angular openings 0.47 and 0.19 mrad respectively, were used);
BM is a 'broom' magnet in the gap of which there is a field of about 15 Kgauss able to sweep aside all charged particles travelling with the beam;
Q is a total absorption chamber of the type described by WILSON\(^{(2)}\).

The distance of 2 m between BM and Q ensures that any charged particles travelling with the beam and being deflected by BM, will not impinge upon the chamber Q and affect the ionization measurements. The collimator C and the chamber Q are placed on moveable bases which can be moved azimuthally about the centre T.

The chamber M, crossed by all the beam, has been used in order to be possible to refer at the same charge m, the measurements taken at several angles. Charges q collected in Q by the beam portion crossing C, and charges m collected in M, are measured by integrators connected to ionization chambers.

The angular distribution of beam intensity defined by

\[I(\Phi) = \frac{q(\Phi)}{m} \]

is obtained by moving the collimator C and the chamber Q about the centre T at an angle \(\Phi \). By following this method, measurements in steps of 0.5 mrad were made with tantalum targets of 0.5 and 0.05 mm in thickness respectively equal to 0.13 and 0.013 r.l. Each measurement has been repeated at

least four-times.

The measurements with 0.13 r.l. target were made with a 5 mm hole collimator C, i.e. with a 0.47 mrad angular opening and by taking as charge unity \(m = 1.2 \times 10^{-6} \) Coulomb.

The experimental results are shown in fig. 2 together with theoretical angular distribution, computed by using the SCHIFF formula(3)

\[
\frac{I(\theta)}{I_0} = \frac{E_0^2 \left(-\frac{\theta^2}{2S\chi} \right)}{\ell \chi \beta x E^2 - C}
\]

where \(E_0 \) is the exponential integral function(4), \(\beta \) is a function depending on the energy \(E \) (expressed in units of \(m c^2 \)) of the electrons striking target and on the target material and thickness \(x \) (expressed in cm), \(C = 0.5772 \) is the Euler constant.

Continuous curve refers to 0.5 mm (0.13 r.l.) thickness target while the dashed curve was calculated for 0.6 mm (0.156 r.l.) thickness target for taking into account that the target is inclined at approximately 30° to the direction of the electron beam, making the effective target thickness 0.6 mm. So it was confirmed that the thickness contributing to the radiation is in effect the true thickness.

The 0.013 r.l. target measurements were made by using a collimator C having a 2 mm diameter hole i.e. a 0.19 mrad angular opening, taking as charge unity \(m = 4.10^{-7} \) Coulomb. The experimental results are shown in fig. 3 together with the SCHIFF theoretical distribution, calculated for a 0.05 mm (0.013 r.l.) target thickness as shown by the continuous curve. It can be seen that there is a discrepancy between theoretical curve and experimental results which fit with theoretical distribution (dashed curve) calculated for a 0.15 mm (0.039 r.l.) target thickness.

It can be deduced then that target has an effective thickness, contributing to the radiation, greater than actual thickness.

This phenomenon can be explained qualitatively(5) by examining the effect of multiple crossings of electrons through

(3) - L.L. SCHIFF, Phys. Rev. 70, 87 (1946)
(4) - E.JANKE, F.EMDE: Tables of functions (Dover Pub. New York 1945)
(5) - A correct quantitative explanation requires the study of very low energy photons losses.
Fig. 2 - ANGULAR DISTRIBUTION

Schiff theoretical angular distribution for 0.13 r.l. target

Experimental points for 0.13 r.l. target

0.5
Fig. 3 - ANGULAR DISTRIBUTION

- Experimental points for 0.013 r.l. target
- Schiff theoretical angular distribution for 0.013 r.l. target
- Schiff theoretical angular distribution for 0.039 target
the target. In fact if we consider only the ionization energy losses, about 100 keV, for each time of crossing the target, and as the width of the target is 4.5 mm, electrons can only cross target three times before attaining a new orbital equilibrium.

This gives the same effect as electrons crossing once a target of three times the actual target thickness.

§ 3 - Experimental apparatus used for the Bromsstrahlung spectrum measurements.

The experimental arrangement for the Bromsstrahlung spectrum determination is shown in fig. 4 where:
- \(T \) is the tantalum target (with a thickness \(s_1 = 0.13 \) or \(s_2 = 0.03 \) r.l.) of the electronsynchrotron;
- \(C \) is a lead collimator 30 cm in length. Two collimators were used, one having a central hole diameter of 38 mm giving an acceptance angle of 3.6 mrad, and the other having a central hole diameter of 8 mm, giving an acceptance angle of 0.75 mrad;
- \(BM \) is the 'broom' magnet, in gap of which there is a field of 15 kgauss;
- \(G \) is a tube evacuated to a pressure of 0.03 mm Hg which is connected at one to the chamber of the spectrometer;
- \(S \) is an electron pair spectrometer(6);
- \(R \) is the spectrometer radiator, made of an aluminium disc 6 cm in diameter and 1.08 • 10^{-3} \) r.l. thick;
- \(Q \) is a monitor formed by a total absorption quantameter(2);
- \(A_1, A_2, A_3 \) and \(B_1, B_2, B_3 \) are two scintillation counter telescopes placed so that they can detect only the symmetric pairs of electrons.

The beam collimated by \(T \) enters the tube \(G \) after being 'cleaned' by the broom magnet, then it is completely absorbed by the monitor \(Q \) after crossing the radiator \(R \) in which the electrons pairs are produced.

The input of the vacuum tube \(G \) and the output end of the vacuum chamber of the spectrometer are sealed with mylar foil 0.2 mm in thickness.

The counter telescopes detect the symmetric pairs having an energy \(E \) function of field \(B \) in the spectrometer gap. The energy \(K \) of the \(\gamma \) -ray producing pair is given by \(K = 2E \) neglecting the rest mass of the two electrons.

The energy selection is obtained by changing the magnetic field value in the spectrometer gap from 0.5 to 10.5 kgauss.

(6) - G. Bolognati; G. Diambrini, A.S. Figuera, U. Follegarini, E. Riespoli, A. Serra; R. Toschi, Internal note No 17 of Laboratori Nazionali di Frascati (September 28th 1959) submitted for publication to 'Nucl. Instr. and Methods'.
Fig. 4 - EXPERIMENTAL ARRANGEMENT FOR BREMSSTRAHLUNG SPECTRUM MEASUREMENTS
In this manner the two counter telescopes, that are in a fixed position, can detect the electron symmetric pairs in the energy range from 25 MeV to 525 MeV. So it is possible to examine the full spectrum of γ-rays.

In order to determine the position of the telescopes, the electron trajectories were determined by means of an electronic computer and controlled experimentally by the floating wire technique.

The spectrometer magnet current supply had a stability of ± 0.1 per cent. The electron trajectories were determined with a precision of ± 0.3 per cent. The spectrometer is previously calibrated by determining the behaviour of the field intensity as function of the magnet current. For any value of the magnetic field there is a determined electron energy for the electrons crossing the two telescopes. So it is possible to express the electron energy as a function of the magnet current.

The current is measured with a precision of 0.1 per cent by a comparison method using a precision potentiometer and a standard cell.

As the width of the first counter of each telescope is 18 mm by the spectrometer optics the percentage interval of accepted energy by telescopes ∆E/E = 2.7 per cent is obtained. The successive counter dimensions of each telescope were increased in order to avoid counting losses due to the electron scattering. The first scintillator height is 54 mm. All the scintillators are of 1 mm plastic.

Fig. 5 shows the block diagram of the electronic apparatus used for the Bromstrahlung spectrum measurements.

The photomultiplier anodes of the three counters of each telescope are connected to a three-fold coincidence circuit C with a resolution time of τ = 6 ns. The outputs of the two three-fold coincidences C go to two two-fold coincidence circuits C with τ = 10 ns directly to the first, and to the second through a delay DL of 50 ns.

The two-fold coincidences are followed by a discriminator and a scaler. It is possible to record simultaneously the prompt S_pc and delayed coincidence S_{dc}.

Knowing the delayed coincidence it is possible to calculate true coincidences due to symmetric pairs produced in the aluminium radiator by making difference S = S_{pc} - S_{dc} - B, where B = B_p - B_d is the difference between the prompt and delayed coincidences when the spectrometer radiator R is removed.

Measurements of the difference S as a function of electron energy were made by varying the magnet current and by referring each measurement to the same charge q = 3.10^{-6} Coulomb collected in the monitor Q which corresponds to about 1.4 · 10^{-5} equivalent quanta crossed the radiator R. The measurements for each energy were repeated several times in order...
Fig. 5 - Electronics block diagram
der to have a statistical error of less than 1 per cent.
This was possible without prolonging the measurement ti-
me in view of the electronsynchrotron's high beam intensity.
Even when a collimator of 0.75 mrad is used an average inten-
sity of 6×10^9 equivalent quanta per minute is obtained after
the collimator.

The γ-beam intensity was maintained, during the measure-
ment, at a level (below the maximum in the case of a 3.6 mrad
collimator) so that also for the low energy range of the spec-
trum, the ratio $\eta = \frac{I_{\gamma}}{I_{\phi}}$ was less than 5 per cent. In fact
because of the high resolution power of the coincidence cir-
cuits the maximum contribution to chance coincidences is gi-
ven by the coincidences due to two asymmetric pairs, each
one of these having an electron of energy equal to E.

The ratio between spurious coincidences and true coinci-
dences is given by:

$$\eta = 8 \gamma \frac{\gamma}{T} \left(1 - \frac{E}{K_{\text{max}}} \right)^2$$

where γ is resolution time of the coincidence circuit,
T is length of pulse of electronsynchrotron γ-ray beam,
K_{max} is maximum energy of photons, E is electron energy and

$$\gamma = \frac{1}{\sigma} \frac{s}{N_e} \frac{A s x}{\rho}$$

where: σ tot is total cross section for the production of
pairs; s is the target thickness in r.l. of the electronsyn-
chrotron target; N_0 is the number of primary electrons
striking target; A is Avogadro number; ρ is density (g/cm3)
of the spectrometer radiator; x is spectrometer radiator
thickness (cm); P is spectrometer radiator atomic weight.

Then it can be seen that η is maximum when the energy
is low and it is directly proportional to the intensity
$N_0 e s/T$ of the γ-ray beam.

The 8 mm collimator (angular opening 0.75 mrad) has a
transmission factor equal to 1.3 per cent and 3.2 per cent
using respectively 0.13 and 0.013 r.l. targets.

The 38 mm collimator (angular opening 3.6 mrad) has trans-
mission factors of 20 per cent with the 0.13 target and of
42.5 per cent with the 0.013 r.l. target.

The transmission factors defined by the ratio between
the transmitted intensity and the incident intensity were
calculated by the experimental angular distributions shown
in fig. 6.
Fig. 6 - Diagram of the transmission factors of the collimators
§ 4 - Experimental results of the Bremsstrahlung spectrum measurements.

Let us define now the function (intensity of the Bremsstrahlung) \(I(\omega) \) given by

\[
I(\omega) = K N(K) \frac{\gamma E_o}{q}
\]

where \(u = K/E_0 \), \(E_0 = 1000 \) MeV maximum energy of primary electrons and \(N(K) \) is the number of photons having energy \(K = u E_0 \).

Monitor \(Q \) gives an integral information of the energy transmitted by the beam by collecting the electric charge

\[
q = q^* \int_{0}^{E_o} K N(K) \, dK
\]

corresponding to \(q/q^* \) MeV of irradiated energy, \(q^* = 2,07 \times 10^{-19} \) Coulomb/MeV being a characteristic constant of the instrument.

The number \(S = S_{pc} - S_{dc} - S \) of symmetric pairs of electrons is given by

\[
S = \int \left[\sigma_p(K, 1/2) + \sigma_t(K, 1/2) \right] \frac{\Delta E}{K} \, dK
\]

where \(\sigma_p(K, 1/2) \) and \(\sigma_t(K, 1/2) \) are respectively the cross sections of the production of symmetric pairs in the field of the nucleus corrected for the BORN approximation (7-8) and in the field of the electron (9); \(r \) is the number of atoms per cm\(^2\) of spectrometer radiator; \(\Delta E = \frac{\Delta K}{K} \) is the energy spread of electrons accepted by the scintillators.

From the expressions (1) and (2) we can obtain

\[
I(\omega) = \frac{2q^* E_o}{\mathcal{Z} q} \frac{S}{\left[\sigma_p(K, 1/2) + \sigma_t(K, 1/2) \right] \left(\frac{\Delta K}{K} \right)^2}
\]

Particularly for two selected energies \(K = K_0 \) and \(K = K \) we have

\[
\frac{\Delta K_0}{K_0} = \frac{\Delta K}{K} \quad \text{with} \quad q_0 = q_0^* = q^* \quad \text{and} \quad q = q^* \quad \text{so that}
\]

\[
\frac{I_n}{I_0} = \frac{S_n}{S_0} = \frac{\sigma_p(K_0, \frac{1}{2}) + \sigma_e(K_0, \frac{1}{2})}{\sigma_p(K, \frac{1}{2}) + \sigma_e(K, \frac{1}{2})}
\]

In figs. 7, 8, 9 are shown the experimental results of the ratio \(I_n/I_0 \) with the statistical error (less than 1 per cent) as function of \(u = K/E_p \), by assuming \(K_0 = 700 \text{ MeV} \). The experimental results were compared with the theoretical behaviour (continuous curve) given by the expression:

\[
b(u) = \frac{K(\sigma_n + \sigma_{e}l)}{\int_0^\infty (\sigma_n + \sigma_{e}l) \, d\omega}
\]

which is the value of the intensity of the Bremsstrahlung normalized at the unit area. In this expression \(\sigma_n \) and \(\sigma_{e}l \) are respectively the cross sections for Bremsstrahlung in the field of the nucleus corrected for the Born approximation \((7, 10) \) and in the field of the electron \((9) \).

The dashed curve that departs from the continuous curve in the low energy range of photons was obtained by subtracting from the theoretical curve the counting losses due to the scattering of electrons in the radiator and to vertical dimension of the scintillators (see appendix).

The dashed curve shown in the range of the high energy spectrum, is obtained by averaging the theoretical curve on the triangular resolution of the detecting apparatus.

One can see how the experimental results fit within the limits of 2 per cent with theoretical curve in fig. 7 corresponding to the 0.013 r.l. target and to a collimator with a transmission factor of 3.2 per cent while they do not fit when a collimator with a transmission factor of 42.5 per cent is used (fig. 8) and they move even further away a 0.13 r.l. target with a collimator transmission factor of 20 per cent.

are used (fig. 9). Another series of measurements made with a 0.13 target and a transmission factors 1.3 per cent (not shown) are equal (within the experimental tollerance) to the results shown in fig. 9.

This discrepancy in the high energies range is principaly due to:
a) the electrons crossing target may irradiate a high energy photon after irradiating one or more of very low energy because of the target thickness,
b) the effects of collimation together with scattering in the target,
c) the energy fluctuations of the electrons striking the target.

The effect of the target thickness can easily be seen by comparing the experimental results, for $u > 0.8$ shown in fig. 7 and 8 at the thin target with results of fig. 9 at the thick target.

For the collimator effects, it can be said that if the beam is collimated, there are no accepted large angle photons generated which are generally obtained by electrons that penetrate more deeply before irradiating (the natural emission angle of photons is ~ 0.5 mrad). In fact by the examination of the data obtained using the same thin target but different collimators, it is possible to see (fig. 7 and 8) that there is a loss of high energy photons using collimators with larger acceptance angles; however this effect is negligible below a certain value of the acceptance angle of the collimator because of the shape of the function I_Θ / I_0 shown in fig. 5.

The effect of point c) contributes less than the others to deformation of the spectrum.

In conclusion we can see from fig. 7 that the energy spread of electronsynchrotron electrons produces deviations in the high energy range of the spectrum less than 2 per cent.
Fig. 7 - BREMSSTRAHLUNG SPECTRUM OF 0.013 r.l. TARGET AND 0.75 mrad COLLIMATOR
Fig. 8 - BREMSSTRAHLUNG SPECTRUM OF 0.013 r.l. TARGET AND 3.6 mrad COLLIMATOR
Fig. 9 - BREMSSTRAHLUNG SPECTRUM OF 0.13 r.l. TARGET AND 3.6 mrad COLLIMATOR
APPENDIX

Calculation for determining the counting losses due to vertical deviation scattering of electrons in the radiator of the spectrometer.

If we consider a projection in a vertical plane passing through the axis of the γ-ray beam, the angular distribution of the electrons which have crossed a radiator of thickness δ is:

$$P(\theta) \, d\theta = \frac{1}{\sqrt{2\pi} \theta_m} \, e^{-\frac{1}{2} \left(\frac{\theta}{\theta_m} \right)^2} \, d\theta$$

where $\theta_m = \frac{16}{B_\delta}$ and $P(\theta) \, d\theta$ is the probability that the direction of an electron is between θ and $\theta + d\theta$.

The probability for a positive electron to be generated in $d\theta^+$ and for negative electron in $d\theta^-$ simultaneously is then:

$$P(\theta^+, \theta^-) \, d\theta^+ \, d\theta^- = \frac{1}{2\pi \theta_m^{-1}} \, e^{-\frac{1}{2} \left(\frac{\theta^+}{\theta_m^+} \right)^2} \, e^{-\frac{1}{2} \left(\frac{\theta^-}{\theta_m^-} \right)^2} \, d\theta^+ \, d\theta^-$$

If the electrons of a pair are detected by two detectors 2h in height placed at a distance z from the radiator (measured along the trajectory), we can write the probability $I(\delta, Z)$ of detecting an electron pair that has been generated at a point of vertical coordinate z (the origin of the coordinate is at the center of the radiator) and has passed through a thickness δ as:

$$I(\delta, Z) = \frac{1}{2\pi \theta_m^{-1}} \int_{\theta_1^+}^{\theta_2^+} e^{-\frac{1}{2} \left(\frac{\theta^+}{\theta_m^+} \right)^2} \, d\theta^+ \int_{\theta_1^-}^{\theta_2^-} e^{-\frac{1}{2} \left(\frac{\theta^-}{\theta_m^-} \right)^2} \, d\theta^-$$

θ_1^+, θ_1^-, θ_2^+, θ_2^- are the limit angles (functions of h and z) accepted by the detectors for electron pairs generated at a point of the radiator of coordinate z.

For the probability of detecting an electron pair emitted from an arbitrary point between O and Z_0, which has to pass through the thickness δ of the radiator, we have:
(1) \[W(\delta) = \frac{\int_{\delta}^{\infty} N(z) I(\delta, z) \, dz}{\int_{\delta}^{\infty} N(z) \, dz} \]

where \(N(z) \) is the probability that the pairs are generated at the height \(z \).

We consider \(N(z) = \text{const.} \), because in the first approximation the intensity distribution of the \(\gamma \) - ray beam on the radiator surface is constant. Let us neglect successive integration on the thickness, because of the assumption that all electrons to pass through the thickness \(\delta_0/2 \) (in our case we have \(\delta_0 = 1.05 \times 10^{-3} \text{ r.l.} \)).

By these simplifications we may express the relation (1) by:

\[W(\frac{\delta_0}{2}) = \frac{1}{\delta_0} \int_{\delta_0}^{\infty} I(\frac{\delta_0}{2}, z) \, dz \]

We can resolve graphically this integral.

Considering the symmetric pairs only we have

\[\Theta^+ = \Theta^- = \Theta; \quad \Theta^+_m = \Theta^-_m = \Theta_m = \frac{16}{E} \sqrt{\frac{\delta_0}{2}}; \quad \Theta^+_m = \Theta^-_m = \frac{\Theta}{\Theta_m} \]

\[\Theta_1 = \Theta_1^+; \quad \Theta_2 = \Theta_2^+; \quad \chi_1 = \frac{\Theta}{\Theta_m}; \quad \chi_2 = \frac{\Theta_2}{\Theta_m} \]

Then:

\[I(\frac{\delta_0}{2}, z) = \frac{1}{\sqrt{2} \chi_1} \int_{\chi_1}^{\chi_2} e^{-\frac{t^2}{2}} \, dt \]

That is a tabulated integral.

Integrating the equation by KERST and SERBER(11), we can obtain the expression of the limit angles as a function of the \(Z \) coordinate and of height \(2h \) of the detectors(6).

We have:

\[\Theta_{1,2} = \frac{1}{V_{12}} \left[\pm k - V_{11} z \right] \]

In this equation V_{11} is the linear vertical enlargement, that is the ratio between the arrival height at the detector and the departure height from the radiation of an electron which has at the beginning a zero angle with the spectrometer axis. The quantity V_{12} is the ratio between the arrival height at the monitor and the departure angle at the radiator projected on the vertical plane passing through the spectrometer axis, of an electron that leaves the centre of the radiator.

The quantities V_{11}, V_{12} were determined by using the floating wire technique. We obtain the values:

$$\Theta_{12} = [\pm 11.61 - 0.30 \cdot Z] \text{ mrad}$$

Then for each value of Z we have the two integration limits for the integral: $I(\delta \phi/2, Z)$.