G. Barbiellini: PRODUZIONE DI COPPIE DI ELETTRONI E DI BREMSSTRAHLUNG, DA PRIMARI DI ALTA ENERGIA, IN MONOCRISTALLI (Tesi di Laurea).

Estratto dalla: Tesi di Laurea.
BARBIELLINI AMIDEI GUIDO

Tesi di laurea

Produzione di coppie di elettroni e di bremsstrahlung, da primari di alta energia, in monocristalli.

Relatore: Chiar.mo Dott. GIORDANO DIAMBRINI PALAZZI

Tesine

Prof. ENRICO PERSICO
Prof. ALESSANDRO ALBERIGI QUARANTA
Prof. CARLO PUCCI

Le statistiche intermedie
Circuiti semplificati usando transistor e diodi
Sulla convergenza di successioni di derivate
INDICE

INTRODUZIONE .. pag. 1

PARTE PRIMA .. pag. 5
Calcolo delle dislocazioni in un reticolo esposto a irraggiamento
Nuclei dislocati per effetto Compton .. pag. 6
Nuclei dislocati nella produzione di coppie di elettroni pag. 19

PARTE SECONDA .. pag. 31
Effetti di interferenza nella bremsstrahlung e nella produzione di coppie in cristalli alle alte energie
Descrizione della parte sperimentale .. pag. 40
Collimatore ... pag. 41
Magnete pulitore .. pag. 42
Convertitore in coppie e sistema di misura degli angoli pag. 44
Spettrometro a coppie ... pag. 46
Contatori e elettronica .. pag. 48
Schema di registrazione .. pag. 53
Il quantametro ... pag. 59
Risultati sperimentali ... pag. 61
Discussione dei risultati sperimentali .. pag. 66

PARTE TERZA ... pag. 72
Polarizzazione del fascio di bremsstrahlung da cristalli
Possibilità di misurare la polarizzazione del fascio gamma pag. 82
Il cristallo come analizzatore .. pag. 84
Cenni sulla possibilità di misurare la polarizzazione del fascio gamma mediante la produzione di coppie pag. 97
Bibliografia .. pag. 102
PRODUZIONE DI COPPIE DI ELETTRONI E DI BREMSSCHLÄRUNG
DA PRIMARI DI ALTA ENERGIA, IN MONOCRISTALLI.

INTRODUZIONE

A causa del carattere periodico del potenziale nell'interno di un cristallo la teoria prevede che la bremsstrahlung e la produzione di coppie ad alta energia con targhetta monocristallina siano accompagnate da fenomeni di interferenza molto simili a quelli che si verificano in concomitanza col passaggio dei raggi X in un reticolo ordinato.

Questi fenomeni di interferenza si manifestano tra l'altro, nella variazione della sezione d'urto totale di bremsstrahlung e di produzione di coppie al variare dell'angolo θ tra la direzione del fascio primario e la direzione dell'asse cristallino, nel caso della bremsstrahlung si ha anche una percentuale di polarizzazione del fascio gamma rispetto al piano formato dalla direzione dei primari e l'asse del cristallo.

Ottenere un fascio anche parzialmente polarizzato e di notevole intensità, se si è in grado di eseguire una misura della sua po-
larizzazione con mezzi elettrodinamici, è un risultato di notevole importanza; infatti la conoscenza della polarizzazione di un fascio gamma, può costituire un'ottima arma per investigare le interazioni di spin nei fenomeni nucleari.

Le seguenti pagine possono essere divise in tre parti:
I) Calcolo delle dislocazioni in un reticolo esposto a irraggiamento

II) Descrizione di una esperienza sull'effetto Uberall

III) Studio della polarizzazione del fascio gamma e possibilità di misurare la polarizzazione usando un cristallo come analizzatore, oppure la produzione di coppie di elettroni. Nella prima parte vengono considerati i fenomeni che accompagnano il passaggio dei gamma attraverso il cristallo in riferimento alla possibilità di provocare dei danni considerevoli al reticolo cristallino.

Si giunge al risultato, che il numero di atomi dislocati per cm3 e per sec, che indicheremo con R_d di circa 10^{11} atomi/cm3 sec.

Per un tempo di esposizione pari a quella effettuata nell'esperienza da noi descritta il numero relativo di atomi dislocati (atomi dislocati su atomi presenti) è circa 10 appare chiara.
ro che questi effetti sono trascurabili e che la periodicità
del reticolo stesso e la sua regolarità sono scarsamente alte-
ratì dopo l'esposizione.
Per alcuni valori dell'energia dei quanti la sezione d'urto per
dislocazione da gamma calcolata a Frascati è stata confrontata
con un calcolo analogo pubblicato del Journal of Applied Physic
(8 - 1959) e i risultati sono in buon accordo.
Nella seconda parte dopo una breve esposizione della teoria di
Uberall sulla cui scorta è stata condotta da Bologna, Diambrini
e Murtas l'esperienza di cui parleremo, si dà una descrizione
dell'apparato sperimentale, e infine si discutono i primi risul-
tati ottenuti confrontandoli con i calcoli di Uberall e con quel-
li recentissimi di Schiff non ancora pubblicati.
I calcoli di Schiff sono un tentativo di spiegare i risultati
negativi dell'esperienza di Panofsky e Saxena eseguita a Stanford,
e del lieve disaccordo tra la teoria di Uberall e l'esperimento
eseguito a Cornell da Frisch e Olsen.
Nella terza parte infine si sviluppa un calcolo teorico per ve-
dere se è possibile usare per misure di polarizzazione di un fa-
scio gamma ottenuto da bremsstrahlung in targhetta cristallina
un secondo cristallo la cui funzione è quella di un analizzatore.

Ci si aspetta infatti che la variazione della sezione d'urto totale per la produzione di coppie in funzione di θ avvenga in maniera diversa, a seconda se ci si muove lungo un diametro parallelo alla direzione di polarizzazione o normale a questa.

I calcoli, eseguiti con molte approssimazioni, danno risultati troppo poco rilevanti per poter sperare di osservarli sperimentalmente.

Si studiano allora altre maniere di potere misurare la polarizzazione di un fascio attraverso la produzione di coppie di elettroni.
PARTE PRIMA

CALCOLO DELLE DISLOCAZIONI IN UN RETICOLO DI UN CRISTALLO ESPOSTO A TRAGIAMENTO

I principali fenomeni che accompagnano l'attraversamento della materia da parte dei raggi gamma sono:

1°) L'effetto fotoelettrico
2°) L'effetto Compton
3°) La produzione di coppie

Ciascuno di questi tre effetti provoca, nell'interno della targhetta colpita dai raggi gamma, un flusso di elettroni i quali urtando contro un nucleo del reticolo cristallino possono provocare una o più dislocazioni, nel caso della produzione di coppie la dislocazione contrariamente a quanto avviene negli altri due casi (1 e 2) può essere provocata direttamente dal quan-
to stesso, infatti in questo caso l'energia corrispondente al momento di rinculo acquisita dal nucleo può essere superiore all'energia che trattiene l'atomo nella sua posizione di equilibrio nel reticolo.

L'effetto fotoelettrico, considerando l'alta energia del fascio gamma che investe la targhetta, dà contributi che risultano senz'altro trascurabili rispetto a quelli dovuti all'effetto Compton (2°) e alla produzione di coppie (3°).

Cominciamo dunque con lo studiare il numero di dislocazioni che avvengono per effetto Compton:

NUCLEI DISLOCATI PER EFFETTO COMPTON

Consideriamo un flusso monocromatico di fotoni \(\Phi \) fotoni \(x \) \(x \) cm\(^{-2} \) sec\(^{-1} \) allora il numero di elettroni per cm\(^3\) prodotti per effetto Compton con energia \(E \) nel range unitario è

\[
\Phi \cdot n_0 \cdot C(E)
\]

dove:

\(n_0 \) = numero di atomi per cm\(^3\) del bersaglio
σ_t = sezione d'urto Compton

Il flusso $\phi_\beta = \text{elettroni cm}^{-2} \cdot \text{sec}^{-1}$ di elettroni si calcola in questa maniera: il numero di elettroni che passano da energia E a valori inferiori di E nel materiale è:

$$\phi_\beta (E) \left(- \frac{dE}{dx} \right)$$

per la conservazione del numero totale degli elettroni si deve avere:

$$\frac{d}{dE} \left[\phi_\beta \left(- \frac{dE}{dx} \right) \right] = \phi_\gamma \sigma_\gamma \frac{m_o}{\epsilon}$$

integrando con la condizione $\phi_\beta (E_{max}) = 0$ (maxima energia trasferita $E_{max} = \frac{2E_0^2}{m c^2 + 2E_0}$)

$$\phi_\beta (E) = m_o \left(- \frac{dE'}{dx} \right)^{-1} \int_{E}^{E_{max}} \phi_\gamma \frac{\sigma_c (E')}{\epsilon} dE'$$

Il numero di atomi dislocati per cm3 per sec che chiameremo è:

$$R_d = \int_{E_t}^{E_{max}} \frac{d}{dx} \sigma_c (E) \phi_\beta (E) dE$$

dove E_t è la minima energia che può avere un elettrone per produrre una dislocazione

σ_d = sezione d'urto per dislocazione da elettroni.
Calcolo di Φ_{β}

$$\Phi_{\beta} = n_o \left(\frac{-dE}{dx} \right)^{-1} \int_{E}^{E_{\max}} \Phi_{\gamma} \sigma_c (E') \, dE'$$

dove:

$$\frac{-dE}{dx} = \alpha \left[\frac{1 + \frac{E}{\mu}}{E} \right]$$

$$\alpha = 2 \pi e^4 n_o z^2 L$$

$$L = 10$$

$$\mu = mc^2$$

$$z = 14$$

per calcolare l'integrale che compare nella precedente espressione facciamo le seguenti posizioni:

$$\xi = \frac{E}{E_{\gamma}}$$

$$\sigma_c = \sigma_0 \frac{\xi^2 z^2 \mu}{E_{\gamma}}$$

$$\gamma' = \frac{E_{\gamma}}{\mu}$$

$$\sigma_0 = \frac{\xi^2}{mc^2}$$

dopo di che la sezione d'urto Compton diviene

$$\sigma_c (\xi) = \sigma_0 \left\{ \frac{1}{1 - \xi} + 1 - \xi + \frac{\xi}{\gamma^2 (1 - \xi)} \left[\frac{\xi}{1 - \xi} + 2 \gamma' \right] \right\}$$
da cui si ha
\[\phi_0 = n_o \cdot \left(\frac{dE}{dx} \right)^{-1} \int \frac{E}{E_y} \phi_v \phi_0 \psi(E) \, dE = \frac{E}{2 \sigma(E+1)} \frac{\phi_y}{E_y} \cdot \]
\[\left\{ \int \ln \frac{E_y - E_m}{E_y - E} + i \left(E_m - E \right) - \frac{1}{2} \frac{E_y^2}{E_y^2} \left(E_m^2 - E^2 \right) + \frac{E_m - E}{E_y - E} \right\} \]

avendo posto
\[p = \frac{-Y_1^2 + 2Y + 2}{Y_1^2} \]
\[i = \frac{1}{E_y} \frac{Y_1^2 + 2Y + 1}{Y_1^2} \]
\[j = \frac{E_y}{Y_1^2 (E_y - E_m)} \]

Espressione della sezione d'urto di dislocazione (1)

Un elettrone di velocità \(\beta = \frac{v}{c} \) e energia cinetica \(E = mc^2 \left(\frac{1}{\sqrt{1 - \beta^2}} \right) \) ha un momento \(p = \frac{m \beta}{\sqrt{1 - \beta^2}} c^2 \) misurato in unità pc,.

Nelle collisioni con nuclei presenti varia praticamente solo la direzione del momento, per cui l'energia trasferita \(T \) è
\[T = \frac{1}{M_x^2} \frac{P^2}{2} \sin^2 \frac{\theta}{2} = \frac{2m}{M_x^2} \cdot \frac{E \sin^2 \frac{\theta}{2}}{mc^2} \left(E + mc^2 \right) \] (1)

(1) *Solid state Physics* Vol 2 (1956) pag. 331
dove

θ è l'angolo rappresentato in figura tra la direzione iniziale e finale dell'elettrone incidente

M_2 è la massa del nucleo scatteratore

E è l'energia cinetica relativaistica dell'elettrone

Ponendo $T_m = \frac{2m}{M_2} \frac{E}{m c^2} \left(E + 2m c^2 \right)$

si ha

$T = T_m \sin^2 \frac{\theta}{2}$

dalla (1) ponendo $T = E_d$ con E_d energia di dislocazione e un $\frac{\theta}{2} = 1$

si ricava l'energia limite E_t per cui l'elettrone può produrre una dislocazione

$$E_d = \frac{2m}{M} \frac{E_t}{\mu} \left(E_t + 2\mu \right)$$

$$E_t = \left(-\frac{2m}{M} + \frac{M}{M^2} + \frac{2m}{M} \frac{E_d}{\mu} \right)^{\frac{1}{2}} 2m$$

prendendo come valore di E_d 13 ev (1)

si ha $E_t \approx 0.15$ Mev

Pomessi queste considerazioni esprimiamo la sezione d'urto per dislocazione per elettroni, che nel libro già citato è data in funzione del β della particella, in funzione dell'energia.

Posto:

$$b' = \frac{2 \frac{e^2}{\mu} \beta^2}{\kappa \beta^2}$$

$$\alpha = \frac{2 \frac{e^2}{\kappa \beta^2}}{\kappa \beta^2} \approx 0.10$$

(1) Effect of radiation in solids pag. 61
l'espressione come è sul citato libro è

\[\sigma_d = \frac{\pi}{4} \beta^2 \left[\frac{T_m}{E_d} - 1 - \beta^2 \ln \frac{T_m}{E_d} + \pi \alpha \beta \left\{ \frac{2}{\left(\frac{T_m}{E_d} \right)^2} - 1 \right\} - 2 \left(\frac{T_m}{E_d} \right)^{-2} \ln \frac{T_m}{E_d} \right] \]

che espressa in funzione di \(E \) diviene:

\[\sigma_d = \frac{\pi}{4} \beta^2 \frac{1}{(E_0 + h)^2} \left[\frac{2m}{M \mu} \frac{E}{E_d} - 1 \right] \frac{E}{(E_0 + h)^2} \ln \left[\frac{2m}{M \mu} \frac{E}{E_d} \right] \]

\[+ \pi \alpha \left(\frac{E}{E_0 + h} \right) \frac{1}{E + \mu} \left\{ 2 \left(\frac{2m}{M \mu} \frac{E}{E_d} \right)^{-2} - 1 \right\} - 2 \left(\frac{2m}{M \mu} \frac{E}{E_d} \right)^{-2} \ln \left[\frac{2m}{M \mu} \frac{E}{E_d} \right] \}

la formula data precedentemente vale per tutti i ranghi di energie ma per i valori di energia più spesso incontrati in questi calcoli dove \(E \) è quasi sempre maggiore di \(mc^2 \), è pure utile la seguente formula asintotica

\[\sigma_d \approx \frac{8 \pi}{E_d \mu m c^2} \frac{\alpha_h^2}{R_h^2} \]

dove

\[\alpha_h = \text{raggio di Bohr} = \frac{1}{4 \pi^2 m c^2} = 5,291 \times 10^{-10} \text{ cm} \]

\(R_h = \text{energia di Rydberg per l'idrogeno} = 13,54 \text{ ev} \)

Nel caso del silicio che è quello che a noi interessa la \(\sigma_d \) assume il valore di

\[\sigma_d \approx 4,4 \times 10^{-25} \text{ cm}^2 \]
Dopo quanto si è detto siano in grado di potere dare l'espressione del prodotto $\phi Swing_a$:

$$
\phi Swing_a = \frac{g \phi Y}{E_r E (E^2 - 1)} F \ln \frac{E_Y E_m}{E_Y - E} - \frac{1}{2} (E_m - E)^2$$

$$+ \frac{E_m - E}{E_Y - E} \left[\frac{y_y E (E + 2 \mu) - 1 - \frac{E (E + 2 \mu)}{(E + \mu)^2}}{(E + \mu)^2} \right]$$

$$+ \pi d \frac{\sqrt{E (E + 2 \mu)}}{E + \mu} \left\{ \left[\frac{y_y E (E + 2 \mu) - 2 - \ln y_y E (E + 2 \mu)}{E + \mu} \right] \right\}$$

In questa formula y, μ hanno il significato di pag. 8.

$$
\mu = \frac{\pi \sigma^2 \rho \frac{\mu^4}{2 L^2}}{N E_a \mu} = 6,35 \times 10^{-25} \text{ cm}^{-2} \text{ MeV}^{-2}
$$

$$y = \frac{2 m}{M E_a \mu} = 5,85 \text{ MeV}^{-1}
$$

Riportiamo qui la tabella di alcune delle grandezze caratteristiche del silicio, elemento che costituisce la targhetta monocristallina, che sono servite per calcolare alcune quantità che compaiono con frequenza nei calcoli.

$Z = 14$

$M = 28$ moli

$= 2,33 \, g/cm^3$

$n_0 = 5,04 \times 10^{22}$ atomi/cm3

$m = 1.945 \times 10^{-5}$

$M_2 \sigma^2 = 26218$ Mev

$E_d = 13 \, eV$

$E_t = 0.20$ Mev

Per ottenere il numero di atomi dislocati bisogna integrare il prodotto $\frac{\Phi}{c_0} \cdot \sigma$ da E_t e E_{max}. L'integrazione non è elementare e sarà fatta usando l'approssimazione di Simpson.

Quanto è stato detto vale nel caso di un flusso monocromatico di quanti gamma, nel caso di uno spettro continuo come quello che ha origine dal fenomeno di bremsstrahlung bisogna ancora eseguire una integrazione che tenga conto della funzione di distribuzione dei gamma.

Risultando questo troppo laborioso si fa la seguente approssimazione: si considera il fascio totale di fotoni costituito da vari fasci monocromatici a ciascuno dei quali viene attribuita la
energia del punto di centro; si calcola quindi il contributo di ognuno di questi fasci alla dislocazione dovuta agli elettroni Compton; la loro somma è il risultato da noi cercato.

Il limite inferiore delle energie dei fotoni che considereremo è 0,4 Mev. essendo questa l'energia che deve avere un fotone perché esso possa provocare un elettrone Compton non l'energia superiore a E_0.

Nei precedenti calcoli è stata adoperata una formula della perdita di energia per unità di percorso che non tiene conto delle perdite di energia per irraggiamento, questo specialmente per i fotoni più penetranti porta una certa differenza al valore del flusso interno di elettroni.

Riferendoci ai calcoli assumendo come valore della perdita di energia per unità di percorso quello dato dalla formula:

$$\left(-\frac{dE}{dx}\right) = n_0 \cdot E \cdot \alpha d \quad \alpha d = \frac{2^2 \cdot \xi^2}{1 + 4} \left[1 + \ln (183 \cdot \xi^{-5}) + \frac{2}{3} \right]$$

si ha

$$\frac{\phi}{\phi_0} (E) = \frac{134}{E^2 \left[1 + \ln (183 \cdot \xi^{-5}) + \frac{2}{3} \right]} \cdot \frac{4}{E} \cdot \frac{\tilde{\Gamma}}{\tilde{\Gamma} \cdot \frac{\bar{\eta}}{E \cdot \bar{\eta}}}$$

$$\left\{ \frac{\ln \frac{E_V - E_m}{E_V - E} + \zeta (E_m - E)}{2 E_V} \cdot \frac{E_m - E}{2 E_V} + \delta \cdot \frac{E_m - E}{E_V - E} \right\}$$
con il significato dei simboli dato precedentemente.

Questa formula sarà usata per tutti quei valori dell'energia per i quali le perdite di energia per irraggiamento superano quelle per collisione. Nei dintorni del valore dell'energia per cui le due formule di perdite di energia sono uguali si commette un errore del 50% considerando una sola di esse ma questo intorno è breve e nell'integrazione della funzione l'errore diviene trascurabile.

Calcolo del valore di \(E \) con \(\frac{dE}{dx} \) _rad \(= \) \(\frac{dE}{dx} \) _col

\[
\frac{2\pi e^2 n_0 Z \cdot 10}{\hbar E} \left(\frac{\mu + E}{\hbar E} \right) = \frac{n_0^2 \cdot 2}{137} \left[\ln \left(\frac{13 \cdot 2 \cdot \frac{1}{3}}{3} \right) + \frac{2}{3} \right] E
\]

\(E = 18.2 \) Mev

Trovata l'espressione generale del prodotto \(\phi_p \sigma_d \) il procedimento seguito per calcolare il numero totale di dislocazioni è stato il seguente: fissato il valore dell'energia dei fotoni si è calcolato il flusso di fotoni a quella energia e a una distanza dal convertitore pari a quella della targhetta del monocrystallo inserita nello spettrometro, dopo di che si è calcolato il valore del prodotto \(\phi_p \sigma \) per vari valori di \(E \) e per quel valore di \(E \)
e poi integrata questa funzione con l'approssimazione di Simpson. Ripetendo queste operazioni per vari valori di E, si sono ottenuti i vari contributi alla dislocazione totale da parte dei singoli fasci monocromatici nei quali avevamo decomposto idealmente il fascio di bremsstrahlung, riportati in grafico questi valori in funzione di E, l'area racchiusa dalla curva congiungente i vari punti e l'asse delle E rappresenta il nostro risultato e cioè le dislocazioni avvenute nel nostro cristallo per effetto Compton.

La quantità R_d è stata ricavata con un'integrazione approssimata (regola di Simpson) i punti della funzione integrando sono stati riportati in grafico.

Riproduciamo uno di questi grafici per mostrare l'andamento della funzione ϕ_d^C per vari valori di E.

Riportiamo appresso una tabella dei valori delle seguenti grandezze al variare di E_{γ}:

- Φ_{γ} = flusso di fotoni di energia E_{γ}
- E_m = massima energia trasferita all'elettrone
- R_d = numero di dislocazioni per cm3 e per sec.
- d = sezione d'urto per dislocazione.

Tabella

<table>
<thead>
<tr>
<th>E_{γ} (Mev)</th>
<th>Φ_{γ} fotoni cm$^{-2}$ sec</th>
<th>E_m (Mev)</th>
<th>R_d cm$^{-3}$ sec</th>
<th>σ cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$24,3 \times 10^7$</td>
<td>$0,80$</td>
<td>$6,25 \times 10^6$</td>
<td>$0,51 \times 10^{-24}$</td>
</tr>
<tr>
<td>2</td>
<td>$12,2$</td>
<td>$1,77$</td>
<td>$9,92$</td>
<td>$1,61$</td>
</tr>
<tr>
<td>3</td>
<td>$9,03$</td>
<td>$2,76$</td>
<td>$13,2$</td>
<td>$2,90$</td>
</tr>
<tr>
<td>4</td>
<td>$6,07$</td>
<td>$3,76$</td>
<td>$11,8$</td>
<td>$3,86$</td>
</tr>
<tr>
<td>5</td>
<td>$4,87$</td>
<td>$4,76$</td>
<td>$11,5$</td>
<td>$4,67$</td>
</tr>
<tr>
<td>6</td>
<td>$4,06$</td>
<td>$5,75$</td>
<td>$10,9$</td>
<td>$5,33$</td>
</tr>
<tr>
<td>E_Y (Mev.)</td>
<td>ϕ_Y anni \ sec</td>
<td>E_m (Mev.)</td>
<td>R_d \ atomi \ cm sec</td>
<td>σ_d \ cm2</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>7</td>
<td>3,47 10^7</td>
<td>6,75</td>
<td>10,8 10^6</td>
<td>5,89 10^{-24}</td>
</tr>
<tr>
<td>8</td>
<td>3,19 "</td>
<td>7,75</td>
<td>10,3 "</td>
<td>6,39 "</td>
</tr>
<tr>
<td>9</td>
<td>2,69 "</td>
<td>8,75</td>
<td>9,47 "</td>
<td>6,87 "</td>
</tr>
<tr>
<td>10</td>
<td>2,44 "</td>
<td>9,75</td>
<td>9,62 "</td>
<td>7,82 "</td>
</tr>
<tr>
<td>20</td>
<td>1,21 "</td>
<td>19,75</td>
<td>6,96 "</td>
<td>11,41 "</td>
</tr>
<tr>
<td>50</td>
<td>0,48 "</td>
<td>49,75</td>
<td>2,87 "</td>
<td>11,91 "</td>
</tr>
<tr>
<td>100</td>
<td>0,23 "</td>
<td>99,75</td>
<td>1,11 "</td>
<td>9,54 "</td>
</tr>
<tr>
<td>150</td>
<td>0,15 "</td>
<td>149,75</td>
<td>0,58 "</td>
<td>7,87 "</td>
</tr>
<tr>
<td>200</td>
<td>0,11 "</td>
<td>199,75</td>
<td>0,36 "</td>
<td>6,73 "</td>
</tr>
<tr>
<td>300</td>
<td>0,06 "</td>
<td>299,75</td>
<td>0,18 "</td>
<td>5,36 "</td>
</tr>
</tbody>
</table>

Riportati su un grafico i valori di $R_d (E_Y)$ in funzione di E_Y si è trovato il numero di dislocazioni dovute agli elettroni Compton, calcolando l'area racchiusa dalla curva con il metodo della pesata si ha

$$\int_{0,4}^{1000} R_d (E_Y) \ dE_Y = 5,15 \cdot 10^8 \ \text{atomo} \ cm^3 \ sec$$

I calcoli eseguiti per ottenere il precedente valore del
numesp di dislocazioni per cm3 e per sec presuppongono un range degli elettroni inferiore allo spessore del cristallo, questo non è il caso attuale dove in realtà lo spessore del cristallo è assai inferiore al range medio degli elettroni, il risultato ottenuto è un valore per eccesso in quanto gli elettroni non perdettero tutta la loro energia nell'interno del bersaglio come si era supposto.

CALCIOLO DEI NUCLEI DISLOCATI NELLA PRODUZIONE DI COPPIE.

La dislocazione nel processo di produzione di coppie può avvenire nei due seguenti modi:

I) per rinculo del nucleo

II) per urto di un nucleo contro un elettrone della coppia.

Per ottenere la sezione d'urto di dislocazione nel processo (I) bisogna considerare la funzione di distribuzione dei momenti di rinculo del nucleo nel processo della produzione di coppie (lnt).

Integrare questa funzione tra il valore del momento a cui corrisponde un'energia pari a E_d e il massimo momento trasferito.

Chiamando $\sigma_d^{(r)}$ la sezione d'urto per dislocazione per rinculo si ha

$$\sigma_d^{(r)} = \int_{Q_d}^{Q_m} \frac{P(Q,K)}{Q_d} dQ$$

\(Q_d\) = momento in unità 2mc corrispondente a un'energia del nucleo pari a \(E_d\).

\(Q_m\) = massimo momento in unità 2mc trasferito al nucleo

\(K\) = energia del quanto incidente

\(P(Q,K)\) = funzione di distribuzione dei momenti di rinculo

la \(P(Q,K)\) soddisfa la seguente condizione

\[
\int_{Q_{\text{min}}}^{Q_{\text{max}}} P(Q,K) \, dq = \sigma(K)
\]

\(\sigma(K)\) = sezione d'urto totale per produzione di coppie da quanti di energia \(K\).

Questa relazione è stata adoperata da Luttinger e Slotnick come "test" dei loro calcoli confrontando il risultato del loro integrale con la sezione d'urto totale di Bethe e Heitler.

Le integrazioni sono eseguite per via grafica con le curve calcolate nell'articolo di Luttinger e Slotnick.

Per ottenere \(N_{d}^r\) il numero di atomi dislocati per \(cm^3\) è per secondo nel processo di produzione di coppie, a causa del solo rinculo, del nucleo, bisogna moltiplicare \(\sigma_d^r\) per il flusso di fotoni \(\phi_\gamma\) e per \(n_\gamma\), numero di atomi per \(cm^3\) del silicio.
\[R_d^n \left(E_y \right) = \frac{r}{\sigma_d} \left(E_y \right) \rho_{\gamma} \left(E_y \right) n_0 \]

Nella pagina seguente riportiamo in una tabella, analoga alla tabella I, i valori in funzione di \(E_y \) delle seguenti grandezze:

Appresso riportiamo il grafico della funzione di distribuzione dei momenti di rinculo del nucleo nel processo della produzione di coppie. \(\chi = \frac{E}{mc^2} \)
<table>
<thead>
<tr>
<th>$E_{\bar{\nu}}$ (MeV)</th>
<th>$\Phi_{\bar{\nu}}$</th>
<th>θ_d</th>
<th>R_{d}^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.07×10^7</td>
<td>6.77×10^{-26}</td>
<td>2.07×10^5</td>
</tr>
<tr>
<td>10</td>
<td>$2.38 \text{ "} $ $</td>
<td>$16.5 \text{ "} $</td>
<td>$1.98 \text{ "} $</td>
</tr>
<tr>
<td>16</td>
<td>$1.50 \text{ "} $ $</td>
<td>$17.3 \text{ "} $</td>
<td>$1.30 \text{ "} $</td>
</tr>
<tr>
<td>30</td>
<td>$0.80 \text{ "} $ $</td>
<td>$24.3 \text{ "} $</td>
<td>$1.00 \text{ "} $</td>
</tr>
<tr>
<td>40</td>
<td>$0.61 \text{ "} $ $</td>
<td>$24.3 \text{ "} $</td>
<td>$0.74 \text{ "} $</td>
</tr>
<tr>
<td>50</td>
<td>$0.48 \text{ "} $ $</td>
<td>$28.0 \text{ "} $</td>
<td>$0.66 \text{ "} $</td>
</tr>
<tr>
<td>100</td>
<td>$0.23 \text{ "} $ $</td>
<td>$52.0 \text{ "} $</td>
<td>$0.60 \text{ "} $</td>
</tr>
<tr>
<td>200</td>
<td>$0.11 \text{ "} $ $</td>
<td>$70.2 \text{ "} $</td>
<td>$0.38 \text{ "} $</td>
</tr>
<tr>
<td>300</td>
<td>6.50×10^5</td>
<td>$77.5 \text{ "} $</td>
<td>$0.25 \text{ "} $</td>
</tr>
<tr>
<td>400</td>
<td>$4.56 \text{ "} $ $</td>
<td>$80.9 \text{ "} $</td>
<td>$0.19 \text{ "} $</td>
</tr>
<tr>
<td>500</td>
<td>$3.46 \text{ "} $ $</td>
<td>$82.0 \text{ "} $</td>
<td>$0.14 \text{ "} $</td>
</tr>
<tr>
<td>600</td>
<td>$3.08 \text{ "} $ $</td>
<td>$83.7 \text{ "} $</td>
<td>$0.13 \text{ "} $</td>
</tr>
<tr>
<td>700</td>
<td>$2.37 \text{ "} $ $</td>
<td>$84.9 \text{ "} $</td>
<td>$0.10 \text{ "} $</td>
</tr>
<tr>
<td>800</td>
<td>$2.09 \text{ "} $ $</td>
<td>$85.4 \text{ "} $</td>
<td>$0.09 \text{ "} $</td>
</tr>
<tr>
<td>900</td>
<td>$1.89 \text{ "} $ $</td>
<td>$86.0 \text{ "} $</td>
<td>$0.08 \text{ "} $</td>
</tr>
</tbody>
</table>

Riportati in grafico i valori di R_{d}^n in funzione di $E_{\bar{\nu}}$ si è misurata l’area racchiusa dalla curva la quale fornisce il numero di dislocazioni per cm3 e per sec dovute al rinculo del nucleo.
nel processo della produzione di coppie, si ha

\[R^e_d = 2.39 \times 10^7 \text{ atomi cm}^{-3} \text{ sec}^{-1} \]

CALCOLO DELLE DISLOCAZIONI PRODOTT\'E DAGLI ELETTRONI GENERATI NEL PROCESSO DI PRODUZIONE DI COPPIE.

Ragionando come nel caso delle dislocazioni prodotte dagli elettroni Compton, si ha

\[R^e_d = n_0 \int \sigma(E) \frac{dE}{dx} \]
dove \(\sigma \) è dato dalla solita espressione

\[\sigma(E) = \frac{dE}{dx} \]

(2)

\[\sigma(E) = (E, E') \]

\(\sigma(E, E') \) = sezione d'urto per produzione di coppie \(\phi_\gamma \) = flusso di fotonii

\(n_0 \) = numero di atomi per cm\(^3\) del Si

Porre come limite superiore nell'integrale che compare in (2) l'energia \(E_m \) presuppone che il bersaglio abbia dimensioni maggiori del range medio degli elettroni.
Quando ipotizziamo nel caso del monocristallo da noi preso in esame e per gli alti valori dell'energia che incontriamo è ben lungi dall'essere verificata.

Gerchiamo allora di tener conto delle piccole dimensioni del monocristallo e calcolare il flusso Φ di elettroni prodotto in uno spessore molto piccolo

$$\Phi (E, x) = \left(\frac{dE}{dx} \right)^{-1} \int_E \Phi \cap n_0 \cap dE$$

supponendo che $\frac{dE}{dx}$ non vari sensibilmente nell'interno del monocristallo.

$$\frac{d\Phi}{dx} = \left(\frac{dE}{dx} \right)^{-1} \lim_{\Delta x \to 0} \int_E \Phi \cap n_0 \cap dE$$

$$\Phi (E, \Delta x) = \frac{d\Phi}{dx} \Delta x = n_0 \Phi \cap \Delta x$$
Per ricavare R_d^P il numero di atomi dislocati per cm3 e per sec dal flusso di elettroni prodotti nella creazione di coppie calcoliamo prima dR_d^P/dx e poi moltiplichiamo questa quantità per lo spessore del monocrystallo.

Le considerazioni svolte sopra valgono sia per gli elettroni che per i positroni, il comportamento di queste due particelle differisce solo a fine range, quindi i calcoli saranno eseguiti solo per una di queste due particelle e il risultato finale sarà moltiplicato per due.

Anche in questo caso consideriamo lo spettro di bremsstrahlung costituito da vari fasci monocromatici per ciascuno dei quali calcoleremo il contributo alla dislocazione totale, la somma di questi contributi sarà il risultato voluto.

Calcoliamo $R_d(E_Y)$

$$R_d(E_Y) = \frac{dR_d}{dx} \Delta x$$

$$\frac{d}{dx} R_d(E_Y) = \left\{ \gamma \frac{d\sigma}{d\xi} G_d \right\} \frac{n_0}{E_t} \frac{dE}{d\xi} = \frac{E_n n_0^2 \rho_Y C(E_t E_Y) C_p (E)}{E_t} dE$$

dove $E_m = E_Y - 2me^2$

Per risolvere il precedente integrale facciamo la seguente appross-
simulazione; consideriamo la sezione d’urto di produzione di coppie differenziale nell’energia di un ramo approssimabile a una funzione a gradino costante nell’intervallo

\[\frac{E}{E_y - 2m c^2} = 0,05 \quad \text{-------} \quad 0,95 \]

Il valore della costante si calcola nella seguente maniera, deve volere la seguente relazione:

\[0,95 \]

\[\sigma (E, E_y) \quad d \frac{E}{E_y - 2m c^2} = \sigma (E_y) \]

\[0,05 \]

dove \(\sigma (E_y) \) è la sezione d’urto per produzione di coppie di Bethe e Heitler.

Nella nostra approssimazione \(\sigma (E, E_y) = \text{cost.} \) si ha:

\[0,9006 (E_y) = \sigma (E_y) \]

quindi

\[\sigma (E, E_y) = \begin{cases} \sigma (E_y) & 0,05 (E_y - 2m c^2) \leq E \leq 0,95 (E_y - 2m c^2) \\ 0 & E > 0,05 (E_y - 2m c^2) \end{cases} \]

Fissato il valore di \(E_y \) per calcolare \(\frac{dR}{dx} (E_y) \) resta da risolvere l’integrale da \(E_t \) a \(0,95 E_y \) della sezione d’urto per dislocazione dei nuclei da parte degli elettroni \(\sigma (E) \) questo integrale sarà risolto graficamente.

Riportiamo appresso in una tabella le seguenti grandezze in fun-
\[\sigma^k_d \text{ = sezione d'urto per dislocazione da elettroni prodotti nella creazione di coppie in targa sottole} \]

\[\sigma^r_d = \sigma^d + \sigma^p \]

\[\frac{dR_d}{dx} = \text{ atomi cm}^{-1} \text{ atomi dislocati per cm}^3 \text{ e per sec per cm} \text{ di bersaglio percorso} \]

\[R_d = \frac{dR_d}{dx} \times \text{ atomi dislocati in un bersaglio di spessore } x \]

Supponiamo \(x = \text{ cm} \).

<table>
<thead>
<tr>
<th>(E \gamma) (Mev)</th>
<th>(\sigma^k_d \text{ cm}^2)</th>
<th>(\frac{dR_d}{dx} \text{ atomi cm}^{-1} \text{ cm}^3 \text{ sec})</th>
<th>(R_d \text{ atomi cm}^{-2} \text{ sec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2,01 (10^{-25})</td>
<td>8,90 (10^6)</td>
<td>8,90 (10^5)</td>
</tr>
<tr>
<td>4</td>
<td>5,37 "</td>
<td>14,38 "</td>
<td>14,38 "</td>
</tr>
<tr>
<td>5</td>
<td>8,72 "</td>
<td>19,32 "</td>
<td>19,32 "</td>
</tr>
<tr>
<td>6</td>
<td>12,94 "</td>
<td>26,28 "</td>
<td>26,28 "</td>
</tr>
<tr>
<td>7</td>
<td>16,6 "</td>
<td>28,8 "</td>
<td>28,8 "</td>
</tr>
<tr>
<td>8</td>
<td>23,4 "</td>
<td>37,4 "</td>
<td>37,4 "</td>
</tr>
<tr>
<td>9</td>
<td>28,1 "</td>
<td>38,0 "</td>
<td>38,0 "</td>
</tr>
<tr>
<td>10</td>
<td>33,8 "</td>
<td>41,4 "</td>
<td>41,4 "</td>
</tr>
<tr>
<td>20</td>
<td>107,2 "</td>
<td>65,6 "</td>
<td>65,6 "</td>
</tr>
<tr>
<td>30</td>
<td>187,2 "</td>
<td>75,2 "</td>
<td>75,2 "</td>
</tr>
<tr>
<td>40</td>
<td>287,0 "</td>
<td>86,4 "</td>
<td>86,4 "</td>
</tr>
<tr>
<td>E_y (MeV)</td>
<td>$\sigma_d \text{ cm}^2$</td>
<td>$\frac{dR_d}{dx} \text{ atomi cm}^{-1} \text{ cm}^2 \text{ sec}$</td>
<td>$R_d \text{ atomi cm}^{-2} \text{ sec}$</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>50</td>
<td>388.0×10^{-25}</td>
<td>93.4×10^6</td>
<td>93.4×10^5</td>
</tr>
<tr>
<td>100</td>
<td>954×10^{-25}</td>
<td>110.6</td>
<td>110.6</td>
</tr>
<tr>
<td>200</td>
<td>219×10^{-24}</td>
<td>117.4</td>
<td>117.4</td>
</tr>
<tr>
<td>300</td>
<td>343</td>
<td>112.4</td>
<td>112.4</td>
</tr>
<tr>
<td>400</td>
<td>47.4×10^{-23}</td>
<td>109</td>
<td>109.10</td>
</tr>
<tr>
<td>500</td>
<td>60.3</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>600</td>
<td>73.5</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>700</td>
<td>85.7</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>800</td>
<td>98.5</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>900</td>
<td>111</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>950</td>
<td>118</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>995</td>
<td>132</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Riportando in grafico i valori di $R_d (E_y)$ calcolati in funzione di E_y, misuriamo l'area intrappiata dalla curva e dall'asse delle E_y la quale rappresenta il numero di nuclei dislocati dagli elettroni prodotti nella creazione di coppie in un bersaglio nello spettrometro del sincrotrone di Frascati si ha:
\[R_d = 1.008 \times 10^{11} \frac{\text{atomi}}{\text{cm}^3 \text{sec}} \]

sommando a questa quantità i valori di \(R_d \) trovati precedentemente dovuti agli altri effetti si ha

\[R_d = 1.013 \times 10^{11} \frac{\text{atomi}}{\text{cm}^3 \text{sec}} \]

La quantità di maggior interesse è il numero relativo di dislocazioni, la quale è

\[\frac{R_d}{n_o} = 2 \times 10^{-13} \text{ cm}^{-3} \text{ sec}^{-1} \]

per un'esposizione di circa 700 ore. Quella effettuata dal monocristallo nel corso dell'esperienza si ha un numero relativo di dislocazioni

\[2 \times 10^{-13} \times 700 \times 60^2 = 7.2 \times 10^{-8} \]

Come abbiamo già detto per alcuni valori dell'energia dei gamme è stata calcolata la sezione d'urto per dislocazione in silicio per due valori dell'energia di dislocazione

\[E_d \text{ 15 e 30 e.v.} \]

Riponiamo in grafico le due curve calcolate da Julius Cahn e quella calcolata in questa tesi per un valore di \(E_d \) di 13 e.v.
Il primo grafico confronta le sezioni d'urto per dislocazioni provocate dagli elettroni Compton C^c_d, il secondo la sezione d'urto per dislocazione di un nucleo nel processo di produzione di coppie.

L'accordo per la G^c_d se si tiene conto del diverso valore di E_d usato nei due calcoli, può essere ritenuto più che soddisfacente.

Per la G^k_d l'andamento lievemente diverso si può spiegare tenendo conto del fatto che nei calcoli da noi eseguiti, interessando più che altro l'andamento della curva alle alte energie, è stato considerato lo spessore del bersaglio infinitesimo rispetto al range medio degli elettroni, e questo per i bassi valori dell'energia a cui è fatto il confronto non è esatto.
EFFETTI DI INTERFERENZA NELLA BREMSSTRAHLUNG E NELLA PRODUZIONE DI COPPIE ALLE ALTE ENERGIE.

Generalmente i fenomeni interferenziali di radiazioni qualsiasi causati da strutture periodiche, sono rilevanti quando la lunghezza d'onda della radiazione è confrontabile con il passo della struttura periodica.

Un'eccezione a questa regola, notata già nel 1950 e studiata da Ferretti (3), è costituita dall'irraggiamento dovuto a particelle cariche (bremsstrahlung) che attraversano un cristallo, dove si nota che variazioni notevoli della perdita di energia della particella avvengono al variare della inclinazione della traiettoria rispetto ai piani di simmetria del cristallo, e questo avviene in maniera tanto più rilevante quanto maggiore è l'energia del primario.

Questo aspetto curioso del fenomeno di interferenza è dovuto, come si vedrà, al fatto che il momento trasferito al nucleo è piccolo qualunque sia l'energia del primario e può essere spiegato in maniera semplice in base ad alcune considerazioni fatte da Uberall. Questi ha anche calcolato in maniera esatta la portata del fenomeno, fornendo risultati direttamen-
te confrontabili con l'esperienza.

Un esperimento su questo effetto è stato compiuto dal gruppo: Bologna Diambrini e Murtas dei laboratori nazionali di Frascati con un dispositivo sperimentale che sarà ampiamente descritto in seguito.

Se studiamo il problema della bremsstrahlung e della produzione di coppie in approssimazione di Born, cioè considerando l'elettrone incidente e emergente nel caso della bremsstrahlung schematizzabile con un'onda piana, l'elemento caratteristico è la quantità:

\[\int V(r) \exp \left(-\frac{q}{\alpha r} \right) \, dr \]

che dal punto di vista matematico è la trasformata di Fourier del potenziale \(V(r) \) nella quale \(q \) è il momento trasferito al nucleo.

Prendiamo in esame la produzione di coppie (per la bremsstrahlung valgono ragionamenti analoga) e vediamo come la periodicità del potenziale influisce sull'andamento del fenomeno attraverso la quantità (1).

Indichiamo con:

- \(K \) il momento del primario in unità \(mc^2 \)
- \(E \) l'energia del primario
- \(p_+ \) momento dell'elettrone positivo in unità \(mc^2 \)
\[= 33 = \]

\[p = \text{momento dell'elettrone negativo in unità } \text{m}^2 \]
\[E_+ = \text{energia dell'elettrone positivo in unità } \text{m}^2 \]
\[E_- = \text{energia dell'elettrone negativo} \]

Valgono le seguenti relazioni:

\[p_+^2 = E_+^2 - 1 \]
\[q = k - p_+ - p_- \]
\[k = E_+ + E_- \]

Assumiamo la direzione di \(k \) coincidente con lo asse \(z \) e dimostriamo che la componente \(q_z \) del momento trasferito è dell'ordine di \(k^{-1} \) mentre la componente \(q_1 \) è dell'ordine di \(1 \). Questa dimostrazione ci delimiterà la zona dello spazio dei momenti nella quale si mantengono i momenti di rinculo:

\[q_z = k - p_+ \cos \theta_+ - p_- \cos \theta_- \]
\[q_1 = p_+ \sin \theta_+ + p_- \sin \theta_- - \frac{p_+}{2} \sin \theta_+ p_- \sin \theta_- \cos \phi \]

Gli angoli hanno il significato mostrato in Fig. (1).

Nelle formula di Bethe Heitler per l'approssimazione delle alte energie e dei piccoli angoli compare un termine del tipo \(\Theta_+ E_+ \left(1 + \Theta_+ \right)^{-1} \). Questo termine dà una preferenza alla sezione d'urto per angoli dell'ordine di \(E_+^{-1} \). Sviluppando l'espressione di \(q_- \) e \(q_1 \) per piccoli angoli e ponendo \(\Theta_+ = E_+^{-1} \) si ha:
\[q^2 = K - p_+ (1 - \theta_{\frac{1}{2}}^2) - p_- (1 - \theta_{\frac{1}{2}}^2) \]
\[= \int + \sqrt{E_+^2 - 1} \cdot \frac{\theta_{\frac{1}{2}}^2}{2E_+} + \sqrt{E_-^2 - 1} \cdot \frac{1}{2E_-} = 2 \int \]
\[q_{11}^2 = \frac{E_+^2 - 1}{E_+} + \frac{E_-^2 - 1}{E_-} + 2 \frac{\sqrt{E_+^2 - 1}}{E_+} \frac{\sqrt{E_-^2 - 1}}{E_-} \cos \theta \]
\[\simeq 1 - \frac{1}{E_+} + 1 - \frac{1}{E_-} + 2 \left(1 - \frac{1}{2E_+^2}\right) \left(1 - \frac{1}{2E_-^2}\right) = 2 \]
\[\int = K - p_+ - p_- \geq \frac{k}{2E_+ E_-} \]

Fig. 1 relazioni angolari nella produzione di coppie.
RELAZIONI ANGOLARI NELLA PRODUZIONE
DI CUPPE DA FOTONI POLARIZZATI
rappresenta il minimo momento trasferito al nucleo.

Il fatto che \(q_2 \approx S e q_1 = 1 \) vuol dire che la produzione di coppie (lo stesso vale per la bremsstrahlung) avviene principalmente in maniera che il momento del nucleo si mantenga in una regione dello spazio dei momenti a forma di disco.

Questo disco è spostato rispetto all'origine dello spazio dei momenti di una quantità \(S \) ed il suo spessore è dell'ordine di \(S \) mentre le sue dimensioni trasversali sono nell'ordine di 1.

Il disco è normale a \(k \).

Se usiamo una targhetta cristallina dovremo mettere in (1) il potenziale del cristallo.

\[
\tilde{V}_{\text{cristal}} = \sum \sqrt{\left(\frac{a_i}{b} + \frac{l}{b} \right)}
\]

dove \(b \) è il vettore del reticolo cioè il vettore che ha come componenti \(a_1, a_2, a_3 \) dove \(a_i \) rappresenta il vettore fondamentale di un'asse cristallino.

Considerando la periodicità del cristallo possiamo sviluppare il potenziale nel suo interno in serie dopodiché introducendo questo potenziale la (1) diviene:

\[
\sum \int e^{i \frac{q \cdot z}{2}} \tilde{V}(z) e^{i \frac{q \cdot z}{2}} dz
\]
Il cui quadrato è uguale alla sezione d'urto differenziale, e da
propriamente
il fattore caratteristico del cristallo. Si può dimostrare
che il fattore del cristallo è esprimibile nella seguente
forma
\[\left| \sum \mathcal{E}^{\mathbf{g} + \mathbf{q}} \right|^2 = \frac{\sin^2 \left(\frac{\pi}{2} N \mathbf{a} \cdot \mathbf{q} \right) \sin^2 \left(\frac{\pi}{2} N \mathbf{a} \cdot \mathbf{q} \right) \sin^2 \left(\frac{\pi}{2} N \mathbf{a} \cdot \mathbf{q} \right)}{\sin^2 \left(\frac{\pi}{2} \mathbf{a} \cdot \mathbf{q} \right) \sin^2 \left(\frac{\pi}{2} \mathbf{a} \cdot \mathbf{q} \right) \sin^2 \left(\frac{\pi}{2} \mathbf{a} \cdot \mathbf{q} \right)} \]
che può essere approssimata con
\[\left| \sum \mathcal{E}^{\mathbf{g} + \mathbf{q}} \right|^2 \approx \left(\frac{2 \pi}{N} \right)^3 N \left(\frac{\mathbf{q}}{2 \pi} \right) \delta \left(\mathbf{q} - 2 \pi \mathbf{a} \right) \]
dove \(\delta \) è la funzione di Dirac vettoriale e \(\mathbf{a} \) rappresenta il
vettore fondamentale del reticolo inverso, il quale, nel caso
di un cristallo cubico, è costituito da un insieme di punti
a coordinate multiple intere della quantità \(\frac{1}{\mathbf{a}} \), \(\mathbf{a} \) è il passo
del reticolo diretto. \(N \) è il numero di atomi del cristallo \(\Delta \)
è il volume della cella fondamentale del reticolo diretto.

Per ottenere la sezione di urto totale bisogna integrare
sugli angoli di emissione della coppia. Questo equivale a in-
tegrare su \(\mathbf{q} \), in questa integrazione il contributo principa-
le proviene dalla zona del disco.

Con l'aiuto del fattore (2) siamo ora in grado di spie-
gare in maniera qualitativa il fenomeno. Consideriamo infatti la Fig. (2), la zona tratteggiata rappresenta il disco dei momenti di rinculo e i punti sono i punti del reticolo inverso.
Il disco nello spazio del reticolo inverso.

\hat{b}_i sono i vettori fondamentali del reticolo inverso $|\hat{b}_i| = \|a\|. $
Il termine (2) mostra che la sezione d'urto è diversa da zero quando il momento di rinculo coincide con un punto del reticolo inverso, poiché al variare della direzione iniziale di k il disco si sposta mantenendosi normale a k, esso spazza diverse zone del reticolo inverso comprendendo nel suo interno più o meno punti di questo e di conseguenza al variare di O si modifica la sezione d'urto.

Queste considerazioni ci permettono di stabilire quali devono essere i valori delle energie in gioco per poter osservare sperimentalmente l'effetto; si deve avere infatti che lo spessore del disco dei momenti non superi

\[\frac{2\pi}{\alpha} \text{ volte} \]

la distanza minima tra due punti del reticolo inverso, cioè si deve avere:

produzione di coppie

\[S = \frac{\kappa}{2E^+E^-} < \frac{2\pi}{\alpha} \quad (1, a) \]

bremsstrahlung

\[S = \frac{\kappa}{2E^+E^-} < \frac{2\pi}{\alpha} \]

e nel caso del silicio dove $a = 1,40 \times 10^3$ unità
si ha $\kappa = 130 \text{ Mev}$ da (1,a)

$E_1 = 80 \text{ Mev}$ da (1,b)
= 39 =

Queste considerazioni sono state fatte per un cristallo ideale nel caso di un cristallo reale si deve prendere in esame la agitazione termica. Si ha così una attenuazione delle proprietà periodiche del cristallo, il che diminuisce lo effetto ma non ne varia qualitativamente l'andamento.

Nell'articolo di Uberall si sviluppa in dettaglio il calcolo dell'effetto moltiplicando la sezione d'urto differenziale per un atomo per il fattore del cristallo e integrando sugli angoli di emissione; si tiene conto dell'agitazione termica.

I risultati finali danno la sezione d'urto per produzione di coppie e per bremsstrahlung in funzione di O con energie di 600 e 1000 Mev per i seguenti elementi Cu, Pt diamante.

Nell'esperienza che verrà descritta nelle prossime pagine la targhetta usata è di silicio, è stata calcolata per questo elemento la sezione d'urto per produzione di coppie con gamma di 900 Mev per vari valori di Θ e si è trovato una variazione teorica di circa 5% tra la sezione d'urto a Θ = 0 e a valori di Θ per i quali la sezione d'urto diventa massima e costante.
DESCRIZIONE DELL'APPARATO Sperimentale

Lo scopo della esperienza descrittà è la misura della variazione della sezione d'urto per produzioni di coppie in una tarhetta di silicio cristallino al variare dell'angolo θ tra l'asse cristallino (1,0,0) e la direzione del fascio gamma.

Fig. 3

L'apparato sperimentale schematizzato in figura è costituito da questi elementi:
DISPOSIZIONE Sperimentale
1) Collimatore
2) Pulitore
3) Covertitore di silicio montato su sistema ruotante con strumento per misurare gli angoli
4) Spettrometro a coppie

La descrizione dello spettrometro può ancora essere divisa nelle seguenti parti:
4a) Campo magnetico
4b) Camera a vuoto
4c) Contatori e collegati dispositivi elettronici.

COLLIMATORE

La collimazione del fascio deve essere tale da evitare eventuali integrazioni sull'angolo 0, bisogna fare in maniera che la apertura del fascio sia piccola rispetto ai valori angolari che determinano una apprezzabile variazione della sezione d'urto. Questi valori sono di qualche milliradiane. Una tale collimazione si è ottenuta con un collimatore da 3 mm di diametro posto a 10,60 metri dal convertitore del sincrotrone, questo sottende un angolo di 0,75 milliradiane.
Tra il collimatore a cui si è accennato e la targhetta interna al sincrotrone è stato posto un altro collimatore per la seguente ragione: il fascio gamma urtando contro le pareti del collimatore vicino alla spettrometro dava origine a sciami di elettroni e fotoni di bassa energia questi ultimi non potendo essere eliminati attraverso il magnet pulitore costituisco una fastidiosa sorgente di fondo.

L'aggiunta del secondo collimatore fa in modo che gli sciami siano prodotti dallo spettrometro in quanto il fascio già collimato passa nel secondo collimatore strisciando appena le pareti.

Il coefficiente di trasmissione di questo sistema di collimazione è di circa del 1,3%. Con questo rapporto di trasmissione si ha ancora un buon numero di conteggi per unità di tempo. L'intensità del fascio fornita da questa collimazione è stata studiata in maniera tale da rendere buono il rapporto tra conteggi veri e spuri.

PULITORE

Il pulitore è costituito da un magnete a mantello che fornisce un valore di B nell'interno della Gap circa 12000 gauss.
La distanza tra il pulitore e la targhetta inserita nello spettrometro è stata calcolata in maniera che elettroni di energia di 1000 Mev con direzione iniziale uguale a quella del fascio vengano deviati di una quantità superiore al diametro del tubo da vuoto all'ingresso dello spettrometro. Data le seguenti quantità la distanza che risulta si ricava con questo calcolo:

Grandezze:

Altezza tra-ferro 31 mm.

Area traferro: circolare 200 mm.

Induzione massima \(1,9 \frac{Wb}{m^2} \)

diametro tubo da vuoto 20 cm.
Traiettoria dell'elettrone

\[x^2 + (y - R)^2 = R^2 \]

\[R = \frac{p \,(\text{MeV}) \, 3 \times 10^2}{B \,(\text{gauss})} \]

Il punto in cui l'elettrone esci dal campo ha coordinate tali da soddisfare il sistema

\[
\begin{align*}
(x^2 + y^2 - 2 R y &= 0 \\
(x^2 + y^2 - 2 R_1 y &= 0
\end{align*}
\]

\[
\begin{align*}
x &= \frac{2 R_1 R^2}{R^2 + R_1^2} \\
y &= \frac{2 R R_1}{R^2 + R_1^2}
\end{align*}
\]

\[
\tan \frac{\varphi}{\varphi'} = \frac{x_1 - x_2}{y_1 - y_2} = \frac{0 - \frac{2 R_1 R^2}{R^2 + R_1^2}}{R - \frac{2 R R_1}{R^2 + R_1^2}} = \frac{2 R_1 R^2}{R^3 - R R_1^2}
\]

\[
\frac{\ln}{\ell} = \tan \varphi = 0,14 \quad \ell > \frac{20}{0,14} = 140 \text{ cm}
\]

COVERTITORE E SISTEMA RUOTANTE

La targa di silicio è montata su un dispositivo nel quale l'interno della camera a vuoto ed è comandata con movimenti dall'esterno. I movimenti possibili sono le rotazioni su un'as-
se verticale e una traslazione orizzontale. Gli angoli sono misurati con il dispositivo rappresentato in figura.

Sfruttando le proprietà speculari della targhetta di silicio l'immagine di una crocetta messa a fuoco dal proiettore sul cristallo viene raccolta sullo schermo graduato sul quale si leggono direttamente gli angoli del cristallo rispetto alla posizione di allineamento dell'asse (1,0,0) con il fascio.

Questa posizione è contraddistinta dal coincidere dell'intersezione della crocetta con il punto 0,0 dello schermo.

La sensibilità del dispositivo è di 1 milliradiente dello
stesso ordine di grandezza cioè dell'incertezza sugli angoli dovuta alla collimazione del fascio.

SPETTROMETRO A COPPIE

Il magnete dello spettrometro ha la forma rappresentata in figura.

Fig. magnete dello spettrometro.
= 47 =

I poli molto schiacciati e la compattezza della struttura evitano perdite di flusso e il campo che ne deriva è molto omogeneo nella gap. Il poco spazio disponibile per gli avvolgimenti ha reso necessario il passaggio di un'alta intensità di corrente il che richiede un raffreddamento a circolazione d'acqua forzata.

Alcune delle caratteristiche essenziali del magnete sono riportate nella seguente tabella:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>campo massimo</td>
<td>20 Kgauss</td>
</tr>
<tr>
<td>altezza intraferro</td>
<td>100 mm. ± 0,5 mm.</td>
</tr>
<tr>
<td>corrente massima</td>
<td>2100 A c.c.</td>
</tr>
</tbody>
</table>

L'uniformità del campo nell'interno dell'intraferro è stata misurata eseguendo alcune misure della grandezza dove \(B \) è il campo in un certo punto, coincidente con la componente verticale, e \(B_c \) è il campo al centro del convertitore. Il valore di \(B_c \) si mantiene inferiore a 0,01.

Riportiamo appresso un grafico della misura di \(\frac{B}{I} \) in funzione di \(I \) dove \(I \) rappresenta la corrente di alimentazione. La misura è stata eseguita con il metodo delle risonanze nucleari.

Durante l'esperienza il valore della corrente di alimentazione è misurato continuamente per evitare variazioni di \(B \) do
vute alle fluttuazioni della corrente stessa, lo strumento usato per la misura è il seguente: una resistenza torata posta alla linea di alimentazione genera una differenza di potenziale che è misurata con un ponte Leeds Northup con la precisione di 1 a 10000.

CONTATORI ED ELETTRONICA

I contatori sono costituiti dall'insieme di uno scintillatore plastico e da un fotomoltiplicatore 6810A.

La disposizione dei contatori è la seguente: sulle traiettorie di un elettrone e un positrone che si equiripartiscono l'energia di 900 Mev sono stati disposti due contatori che chiameremo A₂ e B₂.

Sulle traiettorie di una coppia nella quale e⁺ ha una energia di 850 Mev e e⁻ di 50 Mev sono stati posti tre contatori che indicheremo con A₁, B₁ e C₁. A₁ è intersecato dalla traiettoria di e⁻. B₁ e C₁, contrariamente agli altri contatori sono inseriti nell'interno dell'intraferro grazie ad opportuni fori praticati nel circuito magnetico.

Il dispositivo è schematizzato in figura.
Le dimensioni degli scintillatori sono le seguenti:

$A_2 \quad L = 8,5 \, \text{cm.} \quad A = 6,0 \, \text{cm.} \quad s = 3 \, \text{mm.}$

$B_2 \quad L = 8,5 \, \text{cm.} \quad A = 6,0 \, \text{cm.} \quad s = 3 \, \text{mm.}$

$A_1 \quad L = 1,0 \, \text{cm.} \quad A = 4 \, \text{cm.} \quad s = 3 \, \text{mm.}$

$B_1 \quad L = 3,0 \, \text{cm.} \quad A = 4 \, \text{cm.} \quad s = 3 \, \text{mm.}$

$C_1 \quad L = \text{cm.} \quad A = 7 \, \text{cm.} \quad s = 3 \, \text{mm.}$

L e A rappresentano i lati dello scintillatore, s lo spessore.

Le dimensioni sono state calcolate in maniera da avere un buon numero di conteggi per unità di tempo, nonostante la ridotta intensità del fascio. Infatti il numero di conteggi per unità di tempo è proporzionale sia all'intensità del fascio che alla superficie dello scintillatore. Però aumentando l'intensità del fascio si aumenta proporzionalmente il rapporto $\frac{N_s}{N_c}$ dove N_s rappresenta il numero di coincidenze pure e N_c tale rapporto è indipendente come vedremo dalla larghezza del contatore.

Un semplice calcolo che dimostra quanto si è detto può essere impostato così: siano:

$N_c = \text{numero di elettroni per impulso}$

$W = \text{energia del fotone}$

$\lambda = \text{spessore in lunghezza di radiazione del convertitore}$
dN_\gamma = \text{numero di fotoni con energia tra } W \text{ e } W + \text{d}W

\delta = \text{spessore del convertitore in coppie misurato in lunghezze di radiazione}

dN_p = \text{numero di coppie con energia tra } W \text{ e } W + \text{d}W

si ha allora:

dN_\gamma = N_e \delta \frac{\text{d}W}{W}

dN = N_e \delta \frac{\text{d}W}{W} = k \frac{\text{d}W}{W}

Calcoliamo ora in base a questi dati il numero di coincidenze buone per impulso. Supponiamo che la distribuzione delle coppie in funzione dell'energia di un ramo sia uniforme, il che equivale ad approssimare la sezione d'urto di Bethe Heitler a una funzione a gradino.

Se fissiamo E_+ in un contatore la frazione di coppie contatate è \(\frac{E_-}{W} \) e viceversa fissato E_- la frazione di coppie contatate è \(\frac{E_+}{W} \). Il numero di coincidenze buone sarà dunque

\[N_c = k \frac{\Delta E_+}{W} \frac{\Delta E_-}{W} = k \frac{E^2}{W} \]

Calcoliamo il numero delle coincidenze casuali per impulso. Un contatore posto per ricevere un elettrone positivo di energia
E' e di dimensioni tali da accettare energie tra $E_+ + \Delta E_+$
rieverrà un numero di elettroni per ogni energia W dei fotoni
dato da $k \frac{\Delta W}{W} \Delta E_+$
questo numero va sommato per W
da E_+ a E_m cioè si ha:

$$N = \Delta E_+ K \int_{E_+}^{E_m} \frac{dW}{W^2} = K \Delta E_+ \left[\frac{1}{E_+} - \frac{1}{E_m} \right]$$

il numero delle coincidenze casuali è dato da:

$$N_{nc} = \frac{2}{t^2} \frac{N_2^2}{c} = \frac{2}{t^2} \frac{\tau}{K} K^2 (\Delta E_+)^2 \left[\frac{1}{E_+} - \frac{1}{E_m} \right]^2$$
dove t = durata dell'impulso
τ = tempo di risoluzioni della coincidenza

Dissiamo $W = E_m$ e coppia equipartite $E_+ = \frac{E_m}{2}$ si ha:

$$N_{nc} = k \frac{\Delta E_+^2}{E_m}$$

$$N_s = \frac{2}{t^2} \frac{\tau}{k^2} \frac{\Delta E_+^2}{E_m^2}$$

$$\frac{N_s}{N_{nc}} = \frac{2}{t} \frac{\tau}{E_m} \frac{\Delta E_+^2}{K \Delta E_+^2} = \frac{2}{t} \frac{\tau}{K} = \frac{2}{t} \frac{\tau}{K} N_e K S$$
Il rapporto \(\frac{N}{N_0} \) è quindi indipendente da \(\Delta E \) quindi si può aumentare la larghezza del contatore senza alterare questa quantità. La larghezza del contatore effettua una media dell'effetto studiato rispetto all'energia bisognerà quindi mantenere E entro limiti che non disturbino lo studio dell'effetto.

Gli scintillatori sono ricoperti da una capannina a pareti interne riflettenti costituite di alluminio di circa 3 x x 10^{-3} gr. /cm^2 di spessore. Esternamente sono stati accuratamente schermati dalla luce. Una guida di luce collega lo scintillatore con il fotocatodo del 6810A. I contatori sono stati messi a punto usando una sorgente \(^3\) ben collimata e variando i vari parametri del fototubo (griglia schermo, griglia focalizzatrice e tensione di placc) sino a trovare il massimo rapporto tra segnale e fondo. Gli impulsi del fotomoltiplicatore sono prelevati in placc e formati con un cavo di circa 1,5 min.

SCHEMA DI REGISTRAZIONE

Presentiamo lo schema a blocchi del dispositivo che registra le coincidenze \(A_2 + B_2 \).
Sistema di registrazione
schema a blocchi
gli impulsi prelevati in placca dei fotomoltiplicatori A_2 e B_2 si presentano alla coincidenza doppia rapida tipo C.R.68 del C.E.I.E., di qui passano a un amplificatore rapido tipo A.R.62 C.E.I.E.

La presenza del discriminatore rapido impedisce che la scala rapida parta per segnali di singola.

Il circuito che si snoda accanto a quello descritto precedentemente, è analogo al primo con la sola variante che il segnale di un ramo della coppia è ritardato di una quantità superiore al tempo risolutivo della coincidenza e quindi i segnali registrati dalle scale S_1 (scala rapida Hewlett Packard) e S_2 (scala lenta S.11 dell’Itatelettronica) del secondo canale sono dovuti a coincidenze spurie le quali vanno sottratte al conteggio registrato dal primo canale dei contatori A_2 e B_2.

Per i contatori A_1, B_1 e C_1 vale uno schema complessamente analogo a quello descritto per il conteggio delle coincidenze ritar-date.

Gli impulsi generati dei vari blocchi sono stati esaminati per vedere se erano privi di code e verificare l'assenza di riflessioni dovute a cattivi adattamenti tra i successivi stadi. Riportiamo alcune fotografie fatte con un oscillografo ra-
pido (Tetroys 517) delle uscite dei seguenti blocchi del canale $A_2 + B_2$ epindidenza rapida fig. 1
amplificatore rapido Fig. 2

discriminatore Fig. 3
come si vede dalle fotografie le caratteristiche dei vari im-
pulsi possono essere considerate buone in quanto i tempi di salita e la durata totale degli impulsi sono sempre dell’or-
dine dei nanosecondi, e non si vede presenza di riflessioni.

E’ stata tracciata la curva di discriminazione della coincidenza $A_2 + B_2$ variando la posizione dell’Helipot del discriminatorre rapido riportiamo il grafico relativo dal qua-
le si vede il buon pianerottolo del canale $A_2 + B_2$.

I cavi che portano gli impulsi dei contatori A_2 e B_2 introdurre un ritardo diverso per i due rami. A installazione terminata si è dovuto fare una nuova curva di risoluzione per determinare il ritardo da aggiungere a uno dei due rami per ri-
portare la coincidenza a centro campana.

Diamo appresso la curva di risoluzione ottenuta dal quale si ricava tra l’altro anche il potere risolutivo che risulta uguale a quello già misurato dal C.E.L.E.B. (6 n.sec.)

SCHERMATURA DEI CONTATORI

Eseguendo misure di fondo si è notato che con una lamina di Pb di circa 3 mm di spessore posta di fianco ai contatori diminuisce simmetrici l’il numero di conteggi di fondo registrati dalla
$N = \text{conteggi/dose}$

Curva di Risoluzione della Coincidenza $A_2 + B_2$

$I = VN$

La misura dell'energia trasportata dal fascio di bremsstrahlung con il quale si esegue l'esperimento, è effettuata con una particolare camera a ionizzazione: il quantametro di Wilson. Il quantametro è stato costruito in maniera da dare una risposta uguale a quella del quantametro usato a Cornell per la misura dell'intensità del fascio del sincrotrone di Cornell.

Il quantametro è costituito da un insieme di dodici lastre di rame dello spessore di 1 cm separate alternativamente da strati di 1 mm e 2 mm di una miscela gassosa al 95% di Argon e al 5% di CO₂.

L'energia trasportata dal fascio di bremsstrahlung

\[U = \int_{0}^{E_0} Kn(K) \, dK \]

è data dalla seguente espressione

\[U = \frac{r \cdot w \cdot q}{e} = \text{cost. } q \]

dove
q è la carica raccolta dagli elettrodi della camera
e è la carica dell'elettrone
w è l'energia di ionizzazione
r è il rapporto della energia perduta nel rame e nel gas
Si suppone che le perdite di energia siano dovute solo a
ionizzazione.

La costante che lega U a q può essere misurata sperimentalmente e calcolata teoricamente con il seguente risultato:
\[
\text{cost}_{sp} = 4.55 \frac{\text{Mev}}{\text{Coul}}
\]
\[
\text{cost}_{tor} = 4.82 \frac{\text{Mev}}{\text{Coul}}
\]

Opportuni accorgimenti rendono largamente indipendente la
risposta del quantametro dall'allineamento del fascio rispetto
all'asse del quantametro.

Più precisamente la risposta del quantametro non cambia
per uno spostamento parallelo dei due assi di qualche cm e i-
oltre rimane costante per un angolo tra i due assi minori di
45°.

Nella figura si può vedere la disposizione delle lastre
di rame a cui si è accennato sopra.
PRIMI RISULTATI DELL'ESPERIENZA

Con il dispositivo sperimentale descritto sono state eseguite le seguenti misure:

1) variazione di \(N(\theta) \) numero di coppie prodotte nel cristallo al variare di \(\theta \)

2) variazione dell'effetto con l'energia dei fotoni primari
nel grafico di figura la curva a tratte continuo rappresenta la quantità

\[
\frac{g(y, \theta)(1 - \frac{\theta^2}{2}) - g(y, 0)}{g(y, 0)}
\]
In ordinate: \(\frac{N(\theta) - N(0)}{N(0)} \)

\(N(\theta) = \)Numero di coppie simmetriche

in monocristallo di Si.

fotoni di 900 MeV

\(\theta \) = angolo tra il fascio e l'asse 100
in funzione dell'angolo \(\theta \) tra l'asse \((1, 0, 0)\) del cristallo di silicio e la direzione dei quanti gamma. La quantità \(G(y, 0) \) è proporzionale alla sezione d'urto per produzione di coppie in cristallo di silicio a angolo \(\theta \) e per una ripartizione dell'energia della coppia \(y = \frac{E}{k} \) nel caso di figura \(y = 0.5 \).

Nella curva teorica si è tenuto conto della correzione che bisogna apportare per la produzione di coppie nel campo dell'elettrone per la quale non si prevedono effetti interferenziali apprezzabili.

Il fattore \((1 + \frac{\theta^2}{2}) \) rappresenta la correzione per lo effetto di spessore cioè per l'aumento di spessore che incontrano i gamma quando la targa è inclinata di un angolo \(\theta \).

I punti sperimentali sono dati dalla seguente espressione:

\[
\frac{N(\theta) - N(0)}{N(0)}
\]

dove \(N(\theta) \) rappresenta il numero di coppie per unità di dose ricavato dalla seguente espressione:

\[
N(\theta) = N_s(\theta) - N_r(\theta) + N_{sf} - N_{rf}
\]

\(N_s(\theta) \) rappresenta il numero di coincidenze simultanee registrate dal ciruito di coincidenza \(A_2 + B_2 \) per unità dose \(N_r(\theta) \).
è il numero di coincidenze casuali registrate da un circuito analogo alla coincidenza $A_2 + B_2$ con un ramo ritardato.

N_{sf} e N_{rf} rappresentano le stesse quantità registrate senza la targhetta cioè le coincidenze simultanee e casuali dovute al fondo.

Ciascun punto è la media di più determinazioni eseguite nelle varie esposizioni.

L'errore statistico assoluto è di circa il 6% per il risultato di ogni esposizione. Si è ottenuto un tale errore eseguendo circa 50.000 conteggi per punto. L'errore è stato calcolato con la forma della propagazione degli errori e ha l'espressione seguente:

$$
\frac{\Delta N(\theta) - \bar{N}(\theta)}{\bar{N}(\theta)} = \frac{\bar{N}(\theta)}{\bar{N}(\theta)} \sqrt{\frac{1}{\bar{N}^2(\theta)} - \frac{1}{\bar{N}^2(\theta)}}
$$

e con circa 50.000 conteggi per punto si ha un errore del 6%.

Come ulteriore verifica dei calcoli eseguiti da Uberall è stato studiato l'andamento dell'effetto di interferenze in funzione dell'energia, e sono attualmente in corso, per questo delle misure concepite in questa maniera:

Fissata a 900 Mev l'energia delle coppie rivelate dalla coincidenza $A_2 + B_2$ si misura la differenza percentuale tra i con-
teggi eseguiti a $\theta = 0$ e a $\theta = 0,06$ rad. Diminuendo il valore del campo magnetico nello spettrometro si diminuisce l'energia totale delle coppie rivelate dai contatori A_2 e B_2 e calcolando di nuovo la differenza percentuale dei conteggi $\theta = 0$ e a $\theta = 0,06$ rad si deve trovare secondo le previsioni di Uberall un valore più basso di quello riscontrato per le energie maggiori.

Il grafico riportiamo l'andamento teorico della quantità: per $0 = \text{cost}$ e E variabile

$$
\frac{\sigma(\theta, E) - \sigma(0, E)}{\sigma(0, E)}
$$

i punti sperimentali non sono stati riportati essendo l'esperienza ancora in corso di determinazione.
DISCUSSIONE DEI RISULTATI Sperimentali

I risultati ottenuti dimostrano chiaramente che la teoria svolta da Uberall può ritenersi confermata da questa esperienza, entro gli errori sperimentali.

Due altre esperienze sono state eseguite, prima di questa descritta nelle precedenti pagine, sugli effetti interferenziali dei cristalli.

La prima condotta di Panofsky e Saxena a Stanford. Questi cercarono di mettere il variare della sezione d'urto di bremsstrahlung in funzione dell'angolo tra il fascio di elettroni e l'asse di un cristallo di Si, ma dalla loro esperienza non risultò l'effetto previsto.

Una seconda esperienza eseguita da Frisch e Oleson a Cornell rivelò la variazione della bremsstrahlung al variare dell'inclinazione dei piani di simmetria del cristallo.

Il dispositivo sperimentale usato da Frisch e Oleson può essere descritto schematicamente così: elettroni da 1 Bev del sincrotron di Cornell vengono fatti spiralizzare su un cristallo attraversandolo lungo l'asse (1,1,0).

Il fascio di bremsstrahlung che ha così origine viene collimato e fatto passare successivamente su due contatori S e H separati da 5 cm di piombo e preceduti da 3 mm di piombo.

A causa degli sciami che si originano nel piombo il secondo contatore è più sensibile ai quanti penetranti mentre S ha
una risposta proporzionale ai quanto poco sopra i 50 Mev.

Un aumento del rapporto S/H indica il previsto aumento
della radiazione molle, con il diminuire dell'angolo.

Il cristallo inizialmente allineato al fascio è stato
ruotato intorno a un asse orizzontale e si è ottenuto una
curva del tipo di figura.
RAPPORTO $\frac{S}{H}$ IN FUNZIONE DI Θ
In una seconda prova il cristallo inclinato in verticale di circa 20 milliradiani è stato ruotato in orizzontale ottenendo come rapporto S/H la retta rappresentata nel grafico della pagina precedente.

La teoria di Uberall prevedeva per l'esperienza di Frisch e Olsen un minimo per \(\theta = 0 \) il quale non è stato rivelato dall'esperimento.

L'esperienza di Panofsky e Saxena può essere descritta da quanto segue: una terghetta di Silicio cristallino di 0,013 in. di spessore è stata esposta al fascio di elettroni dell'acceleratore lineare di Stanford.

Il cristallo era montato su un doppio goniometro per permettere rotazioni del cristallo intorno a due assi complanari perpendicolari al fascio. La posizione di zero del goniometro era aggiustata in maniera da corrispondere al fascio di elettroni perpendicolare al piano (100) del cristallo.

Il fascio di Bremsstrahlung è stato analizzato facendo produrre ai qualsiasi gamma pioni di una data energia in una terghetta di polietilene.

Il conteggio è stato esaminato su un range di circa 0,010 rad. Sono stati eseguiti circa 1500 conteggi per punto. Non è
stata rivelata alcuna significante variazione dell'intensità del fascio di bremsstrahlung al variare dell'orientazione del cristallo.

In base a questo disaccordo e al risultato negativo dell'esperienza di Panofsky e Saxena, Schiff ha sottoposto a una attenta critica le approssimazioni fatte da Uberall nei suoi calcoli.

La prima di queste approssimazioni che è stata presa in esame da Schiff è l'approssimazione di Born.

I fenomeni della bremsstrahlung e della produzione di coppie sono stati trattati da Uberall in approssimazione di Born.

L'elettrone incidente e l'elettrone emergente, nel caso della bremsstrahlung per esempio, sono considerati come un'ondata piana e la relazione tra momento e energia è quella di un elettrone libero:

\[p^2 = \sqrt{E^2 - 1} \text{ unità } m c^2 \]

dell'influenza

Se invece teniamo conto del potenziale del cristallo sullo stato dell'elettrone vale la seguente relazione:

\[E = \sqrt{p^2 + 1} + \xi \quad (1) \]

\[p = \sqrt{(E-\xi)^2 - 1} \approx E - \xi - \frac{1}{2(E-\xi)} \approx E - \xi - \frac{1}{E} \]
è il minimo momento trasferito al nucleo passo dal valore

\[\delta = \eta_0 - \kappa - \eta_0 f - \kappa \frac{\eta}{E_0 E_0} \]

(2)

\[\delta = \frac{\kappa}{E_0 E_0 f} - (\varepsilon_0 - \varepsilon_f) \]

(3)

dove \(\varepsilon_0 \) e \(\varepsilon_f \) sono le quantità definite dalla (1) per lo stato iniziale e finale dell'elettrone.

Il termine correttivo in (3) ha un certo range di valori in corrispondenza della diversa situazione iniziale e finale che si verifica per i vari elettroni che prendono parte al procedimento di bremsstrahlung, questo equivale a una traslazione del disco dei momenti nello spazio del reticolo inverso di una quantità che è dell'ordine di grandezza di \((\varepsilon_0 - \varepsilon_f)\).

Un valore approssimato del fattore correttivo è stato calcolato da Schiff il quale ha trovato un valore di circa 20 e.v.

Appare chiaro che se il valore della correzione è dello stesso ordine di grandezza della quantità \(\delta \) i fenomeni di interferenza assumono uno aspetto diverso da quello previsto da
Abbiamo visto che il disco dei momenti di rinculo del nucleo si trova nello spazio del reticolo inverso spostato rispetto all'origine di una quantità dell'ordine di δ e questo determina il minimo della sezione d'urto in corrispondenza al valore di $\theta = 0$.

Se il fattore correttivo è pure dell'ordine di δ il disco dei momenti interseca il piano per l'origine normale all'asse del reticolo inverso anche per $\theta = 0$ e scompare il minimo della sezione d'urto per questo valore dell'angolo di incidenza.

Calcoliamo il valore di δ per le tre esperienze rispettivamente di Frisch e Olsen e Panofsky e Saxena e quella di Bologna Biambrini e Murtas per vedere se in esse si verifica la situazione.

Supponiamo che il fattore correttivo nel caso della produzione di coppie sia dello stesso ordine di grandezza di quello calcolato da Schiff per la bremsstrahlung.

Frisch e Olsen hanno usato elettroni di incidenti di energia di 1000 Mev e rivelato fotoni di circa 100 Mev per cui si ha:

$$\delta = \frac{10^2 \cdot 0.25}{2 \cdot 9 \cdot 10^{-5}} = 14\, \text{eV}$$
quindi nell'esperienza di Frisch e Olsen il minimo momento trasferito al nucleo è dell'ordine di grandezza del fattore correttivo calcolato da Schiff, questo spiega il fatto che i risultati dell'esperienza eseguita a Cornell non confermavano esattamente i calcoli di Uberall. Nelle condizioni sperimentali in cui si trovavano Frisch e Olsen la approssimazione di Born non è adatta a dare una buona descrizione del fenomeno.

Panofsky e Saxena hanno usato elettroni dell'acceleratore lineare di Stanford di energia di 600 Mev e hanno rivelato fotoni di 250 Mev, si ha in questo caso

$$\delta = \frac{0.25 \ 250}{2 \cdot 2 \cdot 3 \cdot 4 \cdot 10^5} \approx 150 \text{ eV}$$

per cui l'approssimazione di Born è giustificabile.

Nell'esperienza eseguita a Frascati il minimo momento trasferito è:

$$\delta = \frac{0.25 \cdot 10^5}{2 \cdot 2 \cdot 5 \cdot 10^5} = 500 \text{ eV}$$

molto maggiore quindi del fattore correttivo calcolato da Schiff e anche in questo caso i calcoli di Uberall devono essere ri-tenuti validi.

Schiff ha anche calcolato il termine di smorzamento dovuto alla agitazione termica usando per lo spettro di vibrazione.
del reticolo una forma più approssimata dello spettro di Debye.

Il risultato di questa migliore approssimazione è la sostituzione del fattore di smorzamento e^{-Aq^2} con il termine e^{-Bq^2} con $B > A$.

Riportiamo in grafico le due curve teoriche usando in una il termine e^{-Aq^2} e nell'altra e^{-Bq^2}.

I risultati sperimentali sembrano accordarsi meglio con la curva calcolata da Uherall.
Polarizzazione del fascio di bremsstrahlung da monocristalli

L'attuale lavoro sulla fisica delle alte energie mostra un crescente uso della polarizzazione come uno strumento per ottenere ulteriori informazioni sulle interazioni delle particelle elementari.

In special modo nella fotoproduzione di pioni se si dispone di un fascio polarizzato e se si è in grado di misurare la polarizzazione attraverso relazioni ben note, possono essere separato negli esperimenti, termini della sezione d'urto che hanno la stessa variazione polare ma differente comportamento nell'azimuth.

Appare evidente come sia desiderabile effettuare esperimenti con fotoni polarizzati a energie superiori alla soglia di produzione di mesoni.

Fotonì energetici polarizzati possono essere ottenuti producendo bremsstrahlung in targhetta amorfa sottile e selezionando un cono di apertura angolare dell'ordine di \(\frac{m_0 c^2}{E_0} \), dove \(E_0 \) è l'energia iniziale degli elettroni, oppure producendo bremsstrahlung in una targhetta cristallina e utilizzando l'intero
cono del fascio gamma.

Lo studio teorico della polarizzazione del fascio di bremsstrahlung in targa cristallina è stato fatto da Ube-
rall (U) dal cui articolo ricaviamo quanto segue. Il cono di bremsstrahlung in targa amorfà presenta una certa polarizz-
azione per alcuni angoli.

Dette $C_\perp (\nu, \psi, \nu)$ e $C_{\parallel} (\nu, \psi, \nu)$ le sezioni di urto differenziali per produzione di radiazione polarizzata normal-
mente e parallellamente al piano di emissione (ν, ν) si definisce polarizzazione la seguente quantità

$$P = \frac{C_\perp - C_{\parallel}}{C_{\perp} + C_{\parallel}}$$

dove

$C_{\perp} + C_{\parallel} = C$

$k =$ energia del quanto gamma

$u = \frac{E_1}{\theta_1}$

$E_1 =$ energia dell'elettrone iniziale

$\theta_1 =$ angolo tra p_1 e k

$p_1 =$ momento dell'elettrone iniziale

$\psi_1 =$ angolo tra i piani p_1 e e k

$e =$ vettore di polarizzazione
In targaetta amorfa vi è simmetria rispetto alla direzione iniziale dell'elettrone, e integrando la sezione d'urto differenziale su tutti gli angoli di emissione non si ha più polarizzazione.

Una targaetta cristallina determina un piano preferenziale il piano di p_\parallel e a_\parallel dove a_\parallel è il versore dell'asse cristallino, ne deriva che anche a integrazione effettuata rimane una netta polarizzazione rispetto a questo piano.

L'uso di radiazione polarizzata ottenuta da cristalli presenta i seguenti vantaggi sperimentali rispetto alla polarizzazione naturale del cono di bremsstrahlung.

Con targaetta amorfa si poteva ottenere radiazione polarizzata solo separando una frazione del cono di bremsstrahlung di apertura $\Delta \theta = 1$ che a 1000 Mev corrisponde a un angolo di 10^{-3} rad e questo è molto difficile a realizzarsi, inoltre a causa dello scattering degli elettroni nell'interno della targaetta bisogna usare sessori del convertitore molto sottili in maniera che l'angolo medio di scattering sia inferiore all'angolo che si vuole separare.

Usando targaetta cristallina e sfruttando l'intero cono
di bremsstrahlung oltre all'evidente guadagno di intensità si diminuiscono notevolmente le difficoltà sperimentali connesse all'esigenza di ottenere piccoli angoli, in quanto l'ordine di grandezza degli angoli per i quali si ha una notevole polarizzazione è determinato da 6 angoli tra \(p_1 \) e \(a_1 \) che è circa 10 volte più grande dell'angolo naturale della bremsstrahlung = \(\frac{\text{m_0}}{E_f} \).

Per lo studio quantitativo della polarizzazione il procedimento è il seguente: si definisce la polarizzazione rispetto al piano \((p_1, a_1) \) si moltiplicano le sezioni d'urto differenziali calcolate da May (M) per produzione di radiazione polarizzata normalmente e parallelamente al piano \(p_1, a_1 \), per il fattore del cristallo e si integra poi sugli angoli di emissione.

A integrazione eseguita si ottiene una polarizzazione \(\vec{P} \) funzione di \(\theta \) e data dalla seguente espressione:

\[
\vec{P} = \frac{2 \vec{\sigma}_\perp - \vec{\sigma}}{\vec{\sigma}}
\]

l'indice \(\perp \) indica che si considera la parte interferenziale della sezione d'urto per bremsstrahlung (Überall Ph. Rev. 103 1055) e \(\vec{\sigma} \) è la sezione d'urto totale in targaletta di cristallo.
Introducendo i valori di $\sigma_{1,2}$ e C nell'espressione di P si ha:

$$P = \psi_3^0 \left[\frac{1 + (1 - x)^2}{1 - x} \left(2 \ln \beta + \frac{3 + \frac{1}{2}}{3} \psi_1^0 \right) - \frac{2}{3} \left(2 \ln \beta + \frac{3 + \frac{1}{2}}{3} \right) \right]$$

dove le funzioni sono le stesse usate per il calcolo della sezione d'urto interferenziale per produzione di coppie e le loro espressione è data da Uberall nel suo articolo sui fenomeni interferenziali per la produzione di coppie e lo bremsstrahlung in monocristalli.

$$
\psi_3^0(x) = \frac{1}{\pi} \int_0^\infty \frac{e^{-A q^2} q^3 \delta q}{(p^2 + q^2)^2} \left(\frac{\epsilon q^2 - 1}{3 \epsilon q^4} (\epsilon q^2 - 1)^2 \right)\, dq
$$

$$
\Theta = \frac{\Theta}{\delta} \quad \rho = \frac{S}{\frac{1}{2} \pi} \quad \beta = 1 + \frac{1}{2} \rho
$$

$$
B = dA \quad \Delta = \frac{S}{\Delta} \left(1 + U^2 \right) + \beta^2 \geq \beta^2 \quad E_i(-x) = \int_x^{\infty} e^{-t} \, dt
$$

$$
S = (1 + B) e^B E_i(-B)
$$

L'andamento della polarizzazione in funzione di Θ è stato calcolato per una targhetta di silicio a temperatura ambiente per fotoni di 200 e 300 Mev prodotti da elettroni di 1000 Mev; con la calcolatrice elettronica I.B.M. Riportiamo i grafici.
della P in funzione di θ nelle Fig.
Ci proponiamo ora di studiare l'andamento della \(P \) per il diamante nelle stesse condizioni di temperatura e di energia degli elettroni ma per fotoni di 300 e 500 Mev.

Per calcolare numericamente il valore della polarizzazione conviene esprimere la in termini della funzione errore, si ha:

\[
\kappa \psi^o_3 (b) = \frac{8}{3} \frac{b}{b^2} \left[\psi (D^2 b^2) \right] + \frac{1}{3} \frac{\phi}{(b+1)^4} \left[1 - \frac{1}{b^2} \left(\frac{D^2 b^2}{b+1} \right) \right] - \frac{2}{5} \frac{b+1}{b} e^{-\frac{D}{b}} + \frac{1}{3} \frac{\phi}{(b+1)^4} \left[1 - \frac{1}{b^2} \left(\frac{D^2 b^2}{b+1} \right) \right] - \frac{2}{5} \frac{b+1}{b} e^{-\frac{D}{b}}
\]

\(b = \frac{x}{x^2} \), \(x = \frac{A}{2b^2} \), \(D = \frac{A}{b^2} \), \(A = 12.8 \), \(\phi (x) = \frac{2}{\sqrt{\pi}} \int e^{-t^2} dt \)

\[\kappa = \frac{A \delta}{2 \pi} \]

Riportiamo in una tabella i valori delle funzioni \(\kappa \psi^o \), \(\psi_2^o \), \(\psi_3^o \) in funzione di \(\tau \):

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>(\kappa \psi^o_2)</th>
<th>(\kappa \psi^o_3)</th>
<th>(\kappa \psi^o_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0485</td>
<td>0.0280</td>
<td>-0.0925</td>
</tr>
<tr>
<td>15</td>
<td>0.1668</td>
<td>0.1245</td>
<td>-0.1440</td>
</tr>
<tr>
<td>25</td>
<td>0.3222</td>
<td>0.3127</td>
<td>-0.0757</td>
</tr>
<tr>
<td>50</td>
<td>0.3780</td>
<td>0.4310</td>
<td>-0.0269</td>
</tr>
<tr>
<td>100</td>
<td>0.2990</td>
<td>0.3465</td>
<td>-0.03196</td>
</tr>
<tr>
<td>150</td>
<td>0.2386</td>
<td>0.2683</td>
<td>0.04506</td>
</tr>
</tbody>
</table>
Note le funzioni ψ_1, ψ_2 in funzione di ζ ricaviamo facilmente i valori della polarizzazione in corrispondenza agli stessi valori di

$$x = \frac{k}{E_1} = 0,3$$

ζ $\quad \rho$
10 $-0,204$ 10 $-0,0636$
15 $-0,263$ 15 $-0,0917$
25 $-0,116$ 25 $-0,0445$
50 $-0,0402$ 50 $-0,0155$
100 $0,0521$ 100 $0,0192$
150 $0,0783$ 150 $0,0278$
200 $0,0826$ 200 $0,0285$
300 $0,0712$ 300 $0,0238$

Come si vede dalla tabella per $x=0,3$ cioè per fotoni da 300 Mev si ha una polarizzazione del 26%. Si possono dare diverse esperienze di fotoproduzione di mesoni disponendo di un fascio gamma sufficientemente polarizzato.

Riportiamo in grafico (Fig.) la quantità $|\psi_1|$ in fun-
$x = 0.5$
zzone di e le polarizzazioni a \(x = 0,3 \) e \(x = 0,5 \) in funzione di \(\tau \)
Vista la possibilità di procurarsi un fascio gamma parzialmente polarizzato è ora interessante studiare qualche maniera per misurare quantitativamente la polarizzazione del fascio usando qualche interazione di gamma polarizzati con la materia che sia ben nota.

Nelle pagine seguenti analizzeremo qualche possibilità di misura della polarizzazione dei gamma.
MISURE SULLA POLARIZZAZIONE DEL FASCIO DI BREMSSTRAHUNG

Una prima misura indiretta del grado di polarizzazione del fascio gamma può essere effettuata con una misura sulla bremsstrahlung grazie ai legami matematici che intercorrono tra le funzioni.

Introdotta una targhetta cristallina nell'interno del sincrotrone analizziamo l'andamento della sezione d'urto per bremsstrahlung $\sigma(\theta)$ in funzione di θ e poiché l'espressione della polarizzazione è stata ricavata in maniera analoga a quella della $\sigma^-(\theta)$ se le formule che danno il valore di questa sono verificate sperimentalmente, riportando su uno stesso grafico le quantità P e $\sigma^-(\theta)$ in funzione di θ possiamo dire che a una certa variazione percentuale della sezione d'urto $\sigma(\theta)$ verificata sperimentalmente corrisponde una certa polarizzazione quale è data dalle formule.

Naturalmente una misura diretta della polarizzazione è più desiderabile.

Per eseguire una misura della polarizzazione bisogna sfruttare interazioni dei quanti gamma con la materia la cui natura
sia ben nota. Tali sono le interazioni elettrodinamiche.

Sfortunatamente però nel misurare la polarizzazione dei quanti gamma penetranti studiando la distribuzione anizutale degli elettroni Compton o delle coppie si incontrano delle notevoli difficoltà sperimentali.

La sezione d'urto Compton al di sopra dei 100 Mev è estremamente piccola e difficilmente se ne può studiare l'andamento in funzione degli angoli a quelle energie.

Nella produzione di coppie gli angoli tra i due rami sono dell'ordine di \(\frac{1}{E_0} \) e a energie di circa 300 Mev è molto difficile poter risolvere le differenze anizutali.

Una maniera molto elegante di superare queste difficoltà potrebbe essere fornita dall'uso di un secondo cristallo che funga da analizzatore, sempre che con questo metodo si riesca a ottenere differenze percentuali nella produzione di coppie superiori al 2% in modo che gli effetti del cristallo analizzatore non siano coperti dalla fluttuazione statistica.

Nelle seguenti pagine si studia quantitativamente l'effetto di un convertitore cristallino su un fascio polarizzato.
STUDIO DELLA POLARIZZAZIONE DEL FASCIO USANDO COME ANALIZZATORE
UNA TARGHETTA CRISTALLINA.

Riprendiamo lo schema usato da Uberall per spiegare qualitativamente il fenomeno di interferenza nella produzione di coppie in monocristalli.

In esso partendo da considerazioni sull'elemento di matrice

$$\int V(\mathbf{r}) e^{-i\mathbf{q} \cdot \mathbf{r}} d\mathbf{r}$$

di caratteristica essenziale del processo, si ricava tramite lo sviluppo in serie del potenziale periodico del cristallo il quale modifica la sezione d'urto per un singolo atomo. Risulta infatti che in conseguenza del fattore del cristallo il processo può avvenire solo se il momento di rinculo del nucleo rappresentato nello spazio del reticolo inverso coincide con un punto del reticolo inverso stesso.

Poiché il fenomeno della produzione di coppie avviene in modo tale che il momento di rinculo del nucleo si mantiene in una zona dello spazio dei momenti a forma di disco normale alla direzione del quanto incidente e dello spessore di δ (minimo momento trasferito) e di raggio dell'ordine di h_0^2, appare chiaro come la sezione d'urto per produzione di coppie in cristallo dipenda dalla direzione del quanto rispetto all'asse del cristallo,
variano infatti questa varia il numero di punti del reticolo
inverso contenuti nel disco e di conseguenza la probabilità
del processo di produzione di coppie.

Quanto detto vale nel caso di fotoni non polarizzati vedi-
mo cosa si può dire nel caso che i fotoni incidenti siano pola-
risizzati.

Le formule di May (M) per la sezione d'urto di produzio-
di una asimmetria
de di coppie da fotoni polarizzati mostrano l'esistenza azimutha-
tale nell'emissione dei rami della coppia, questa asimmetria si
deve rispecchiare nella forma del disco dei momenti il quale do-
vrà contrarsi nella direzione parallela alla polarizzazione e
dilatarsi in quella normale a tale direzione.

L'intersezione del disco dei momenti con il reticolo inverso
sarà quindi diversa per uguali valori di θ a seconda della pola-
rizzazione del fascio. Quindi si può avere un metodo per mis-
rare la polarizzazione del fascio studiando l'andamento della
sezione d'urto per produzione di coppie in funzione dell'angolo
tra la direzione del fascio incidente e l'asse del cristallo u-
sato come convertitore.

Per uno studio quantitativo dell'effetto si procede in que-
sta maniera. Consideriamo la sezione d'urto differenziale di May

\[d \sigma = \frac{d \sigma}{d \Omega} (d \sigma + d \Omega) \]

\[= \frac{\beta^2}{1 + \beta^2 \cos^2 \theta} \left(\frac{\cos^2 \theta}{(m c^2)^2} \right)^2 \]

\[+ \frac{\beta^2}{1 - \beta^2 \cos^2 \theta} \left(\frac{\cos^2 \theta}{(m c^2)^2} \right)^2 \]

con

\[\theta = \frac{\beta^2}{1 + \beta^2 \cos^2 \theta} \]

\[d \Omega = \sin \theta d \theta d \phi \]

\[\beta = \frac{E}{E} \]

\[\alpha = \frac{\beta}{10} \]

e le relazioni angolari di Fig.

\[\mathbf{a} = \text{vettore di polarizzazione} \]

\[\mathbf{E}, \mathbf{B} \text{ hanno il solito significato}. \]
RELAZIONI ANGOLARI NEGLIA PRODUZIONE DI COPIE DA FOTONI POLARIZZATI
In una targa cristallina c'è un piano preferenziale che è quello della direzione iniziale della particella incidente e dell'asse del cristallo, terremo conto di questo piano preferenziale introducendo l'angolo tra il piano \mathbf{k} e $a_1 \mathbf{k}$ e riferendo i vari angoli a questo piano, si hanno pertanto i seguenti angoli.

$$\psi = \mathcal{A} (\mathbf{k}, a_1 \mathbf{k})$$

$$\psi_1 = \mathcal{A} (\mathbf{k}, a_1 \mathbf{p})$$

$$\psi_2 = \mathcal{A} (\mathbf{k}, a_1 \mathbf{p})$$

$$\vartheta_3 = \mathcal{A} (\mathbf{p}, a_1)$$

$$\vartheta_2 = \mathcal{A} (\mathbf{p}, a_1)$$

$$\vartheta = \mathcal{A} (\mathbf{k}, a_1)$$
RELAZIONI ANGOLARI NELLA PRODUZIONE DI COPPIE DA FOTONI POLARIZZATI IN CRISTALLO
Riprendiamo la formula di May e operiamo il seguente cambiamento di variabili.

\[
\begin{align*}
\psi_1 &= \psi - \psi^+ \\
\psi_2 &= \psi - \psi^- \\
u &= E^+ \theta^+ \\
v &= E^- \theta^-
\end{align*}
\]

Introducendo le approssimazioni delle alte energie e dei piccoli angoli e trascurando il termine in \(q^2 \) la sezione d'urto diviene:

\[
d\sigma = \frac{\bar{D} dE^+ u d\nu d\psi^+ d\psi^-}{\pi^2 \kappa^2 (q^2 + \kappa^2)^2} \left[\frac{\omega_\nu (\psi - \psi^+)}{\nu} + \omega_\nu (\psi^+ - \psi^-) \right]^{\frac{2}{\kappa^2}}
\]

Questo'espressione deve essere moltiplicata per il fattore del cristallo e quindi integrata in \(d\nu d\psi d\psi^+ \). Si avrà come risultato una sezione d'urto funzione di \(\theta \) e di \(\psi \).

FATTORE DEL CRISTALLO

Come già fatto da Uiberall \((\nu')\) il fattore del cristallo può essere espresso nella seguente maniera

\[
(2\pi)^3 N \Delta \sum_q \delta \left(q^2 - 2\pi^2 q^2 \right)
\]

e integrato rispetto ai piani perpendicolari a un versore del reti
collo inverso diviene
\[S(\frac{q}{a}, \frac{q}{a} - \frac{\pi}{a} h) \]
dove \(h \) rappresenta il numero d'ordine dei vari piani del reticolo inverso partendo dal piano passante per l'atomo che ha dato origine al fenomeno e \(g \) il vettore del reticolo inverso, gli altri simboli hanno il solito significato.

Esprimiamo l'argomento della funzione di Dirac mediante le variabili che compaiono nell'espressione finale della sezione d'urto cioè tramite \(u, v, \psi_1 \) e \(\psi_2 \)

\[q \cdot \frac{\alpha}{N} = \frac{\alpha}{\alpha} \left(k - \frac{1}{2} - \frac{\theta}{2} \right) = \theta_1 \cos \theta - \theta_2 \cos \theta_1 - \frac{\theta}{2} \cos \theta_2 \]

\[q \cdot \frac{\alpha}{N} = k \left(1 - \frac{\theta^2}{2} \right) - \theta_1 \left(1 - \frac{\theta_1^2}{2} \right) - \theta_2 \left(1 - \frac{\theta_2^2}{2} \right) \]

\[\begin{cases} \theta_1^2 = \theta^2 + \theta_2^2 - 2 \theta_1 \theta_2 \cos \psi_1 \\ \theta_2^2 = \theta^2 + \theta_1^2 - 2 \theta_1 \theta_2 \cos \psi_2 \end{cases} \]

\[q \cdot \frac{\alpha}{N} = k - \frac{1}{2} - \theta^2 \left(k - \frac{1}{2} - \frac{\theta}{2} \right) + \theta_1 \theta_2 \left(k - \frac{1}{2} - \frac{\theta}{2} \right) - \theta_1 \theta_2 \cos \psi_1 - \theta_2 \theta_1 \cos \psi_2 \]

\[q \cdot \frac{\alpha}{N} = q \left(u \cos \psi_1 + v \cos \psi_2 \right) \quad q = \frac{\sqrt{u^2 + v^2}}{E} \]

Quindi

\[S \left(q \cdot \frac{\alpha}{N}, \frac{\pi}{a} h \right) = \delta \left[q \left(u \cos \psi_1 + v \cos \psi_2 \right) \right] \]

Calcolato il fattore del cristallo nelle variabili in cui è c-
spressione la sezione d'urto per un singolo atomo, per ottenere la sezione d'urto per produzione di coppie in un cristallo ideale (assenza di agitazione termica) bisogna moltiplicare la sezione d'urto per un singolo atomo per il fattore del cristallo e poi integrare sulle variabili \(u, \nu, \psi_1 \) e \(\psi_2 \). L'integrazione su una di queste variabili può essere effettuata con l'aiuto della funzione di Dirac. Scriviamo formalmente la sezione d'urto per produzione di coppie in un cristallo ideale

\[
\sigma = \frac{\Phi dE}{\pi \hbar c} \frac{N}{\sum_n} J_{n} \int \frac{d\nu d\psi_1 d\psi_2}{(q^2 + \omega^2)^2} \left\{ -\lambda E \left[\frac{\cos(\psi_1 - \psi_2)}{\nu} + \frac{\cos(\psi_1 + \psi_2)}{\nu} \right]^2 \right. \\
+ \lambda^2 \frac{\nu^2 + \nu^2 + 2\nu \cos(\psi_1 - \psi_2)}{\nu^2 \nu^2} \right\} \sum J_1 \frac{1}{\sqrt{\Phi'(a_i)}} \delta(x - a_i)
\]

Allo scopo di eseguire l'integrazione su una delle variabili attraverso la \(\delta \) richiamiamo alcune proprietà di questa funzione

\((1) \)

Se \(\Phi(x) \) è una funzione a un solo valore si ha

\[
\delta \left[\Phi(x) \right] = \sum \frac{1}{|\Phi'(a_i)|} \delta(x - a_i)
\]

dove \(a_i \) sono le radici dell'equazione \(\Phi(x) = 0 \) e \(\Phi'(x) \)
è la derivata della funzione rispetto a \(x \).

Quindi si ha

\[
\int \Phi(x) \delta \left[\Phi(x) \right] dx = \sum \frac{\Phi(x)}{|\Phi'(a_i)|} \delta(x - a_i) dx
\]

\[= \sum \frac{\Phi(a_i)}{|\Phi'(a_i)|} \]
Eseguiamo in base a queste considerazioni l'integrazione su ψ_2

$$\int \sigma(\psi_2) \delta \left[\Phi(\psi_2) \right] \, d\psi_2 = \sum \sigma(a_c) \left| \Phi'(a_c) \right|$$

$$\psi_2 = \arccos \left[\frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a} \right]$$

$$\cos \psi_2 = \frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a}$$

$$\Phi(\psi_2) = \theta(\cos \psi_2 + \cos \psi_1) - \frac{2\pi}{a}$$

$$\Phi'(\psi_2) = \frac{\partial \Phi}{\partial \psi_2} = \theta \sin \psi_2 \left[\frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a} \right]$$

$$\int \sigma(\psi_2) \delta \left[\Phi(\psi_2) \right] = \frac{\theta \sin \psi_2 \left[\frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a} \right]^{1/2}}{\theta \mu \sin \left(\frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a} \right)}$$

Per eseguire l'integrazione su ψ_2 nell'espressione che, dà la sezione d'urto bisogna sostituire ψ_2 con la quantità arcoss

$$\cos \left(\frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a} \right)$$

e moltiplicare l'intero integrando per il fattore:

$$\sin \arccos \left(\frac{q_z - \theta \psi \cos \psi_1 - \frac{2\pi}{a}}{a} \right) = \left[\frac{\theta^2 \mu^2}{(\cos \psi_2 + \frac{2\pi}{a} + q_z)^2} \right]^{1/2}$$

l'espressione a cui si perviene è quindi

$$C_2 = \frac{2 \Phi \alpha E_+}{\pi} \sum \frac{\sigma E}{\kappa^3} \int u \, du \, \nu \, d\nu \, d\psi \left\{ - \frac{1}{E_+} \int E_+ \left[\cos(\psi - \psi_2) \right] \left[\cos^2(\psi - \psi_2) \right]^{3/2} \right\}$$

$$\cos \psi \beta + \sin \psi \left[(1 - \beta^2) \right]^{1/2} \right\} + \kappa^2 \frac{u + n + 2u \nu \cos \psi \beta + 2u \nu \left[\cos \psi_2, \beta + 2u \nu \right]}{u^2 n}$$
avendo posto: \[\beta = q_z - \Theta \nu \cos \psi, - \frac{2 \pi h}{\Theta \nu} \]

con \(|\beta| < 1 \)

e dove

\[q^2 = \delta^2 + \left(\kappa - E \right) \nu^2 \frac{\Lambda}{E} + \left(\kappa - E - \nu \right) \Lambda^2 + 2 \nu \Lambda \cos \psi \beta + 2 \nu \Lambda \cos \psi (1 - \beta^2) \]

Quanto detto vale per un cristallo ideale: se invece prendiamo in considerazione l'agitazione termica si può dimostrare che il fattore del cristallo si spezza in due parti, una cosiddetta continua la quale risulta indipendente da \(\Theta \) e una seconda dipendente da \(\Theta \) la quale si ricava dalla formula per il cristallo ideale moltiplicandola per \(e^{-\Lambda q^2} \) dove \(A \) è un termine caratteristico e dipendente dalla temperatura. Essendo \(A \) dell'ordine di 100, il momento di rinculo del nucleo non può assumere valori elevati senza che l'integrandi che compare nella formula della sezione d'urto interferenziale sia praticamente nullo questo fatto giustifica il trascurare il termine in \(q^2 \) rispetto agli altri due termini nell'espressione della sezione d'urto differenziale.

A integrazione eseguita su tutte le variabili angolari la parte continua della sezione d'urto, comportandosi come la se-
zione d'urto per targhetta amorfa non presenta dipendenza dalla polarizzazione.

Per lo studio della polarizzazione dunque quello che interessa è la parte interferenziale.

Definiremo un rapporto di asimmetria nella produzione di coppie R dato dalla seguente espressione:

\[R = \frac{\sigma_{1}^{r} - \sigma_{1}^{l}}{\sigma} \]

\(\sigma_{1}^{r} \) rappresenta la parte interferenziale della sezione d'urto per \(\Psi = 0 \)

\(\sigma_{1}^{l} \) rappresenta la parte interferenziale della sezione d'urto per \(\Psi = \frac{\pi}{2} \)

\(\sigma \) è la sezione d'urto totale per produzione di coppie, l'espressione di R, trascurando il contributo dei piani reticolari con \(h \neq 0 \) nel caso di coppie simmetriche (\(\mathbb{E}^{+} = \mathbb{E}^{-} \)) è la seguente

\[R = \frac{2 \Phi \frac{d \mathbb{E}^{+}}{K}}{\pi} \int \frac{d u d v d \nu d v \psi}{(3^{2} + q^{2})^{\frac{1}{2}}} \left[\frac{1}{\nu \nu(1 - \rho^{2})^{\frac{1}{2}}} \left[\frac{\cos \Psi^{+} + (1 - \rho^{2})^{\frac{1}{2}}}{\nu + \rho^{2}} \right] \right]^{2} \]

L'integrazione sulle variabili \(u, \psi, v \), non è eseguibile elementarmente e l'integrale che compare nell'espressione di R va calcolato numericamente.

Con il solo scopo di avere un ordine di grandezza del feno-
meno, consideriamo invece delle σ e σ' la loro espressione differenziale in u e v calcolata per il valore più probabile di u e v ($u = v = mc^2$) e eseguiamo graficamente l'integrazione su Ψ' della differenza tra le due sezioni d'urto interferenziali; dopodiché per avere il valore di R bisognerà dividere tale differenza per la sezione d'urto del cristallo differenziale in u e v calcolata per $u = v = mc^2$ e integrata su Ψ'.

I calcoli seguenti sono stati eseguiti per una targhetta di diamante e per fotoni di 300 Mev il valore di σ è stato scelto pari a 25 mrad.

Riportiamo in grafico l'andamento della quantità

$$\sigma'(\psi) = \frac{\frac{1}{\lambda}}{(a^2 + q^2)^2} \left\{ \frac{\mu^2 \psi - \beta^2 \cos \psi \beta + \mu \psi (1 - \beta^2)^{\frac{1}{2}}} \Theta \; mc^2 (1 - \beta^2)^{\frac{1}{2}} \right\}$$

dal grafico si ricava il valore di:

(1)

$$\left[d\sigma_{\perp} - d\sigma_{\parallel} \right] = \frac{2}{\pi \kappa a} \int d\xi \sigma'(\psi) \frac{1}{d\psi} \left[\int d\xi' \right]$$
Poiché la sezione d'urto per produzione di coppie in monocrystalli (diamante) è poco diversa dalla sezione d'urto di Bethe e Heitler, calcolata per il carbonio, per ottenere un valore approssimato di R è sufficiente dividere la (I) per la sezione d'urto di Bethe e Heitler $\frac{d \sigma}{d \omega}$ differenziale in u e v e calcolata per $u = v = mc^2$

$$
\left[\frac{d \sigma}{d u \ d v} \right]_{u = v = mc^2} = \phi \frac{d E_+}{\pi K} \int \frac{d \Phi_+ (1 + c_0 \Phi_+)}{(q^2 + s^2 + 1 + c_0 \Phi_+)^2} = \frac{2 \pi}{K} \frac{\phi \ d \ E_+}{\frac{K}{c^2}}
$$

\[\text{da cui} \]

$$
\left[\frac{d \sigma^I - d \sigma^I}{\ d \sigma_{\nu \mu}} \right]_{u = v = mc^2} = - \frac{2 \phi \ d E_+}{\pi K a} \sim - 4 \ q_0
$$

Abbiamo visto che usando come convertitore gamma una targhetta di diamante è possibile ottenere da elettroni di 1000 Mev fotoni di 300 Mev polarizzati al 26%.

Dagli ultimi calcoli risulta che usando come convertitore in coppie un cristallo di diamante è possibile ottenere da un fascio di fotoni da 300 Mev totalmente polarizzato un rapporto
da asimmetria R di circa il 5%.

Usando dunque una targhetta di diamante come polarizzatore e una seconda come analizzatrice si può sperare di ottenere in ultima analisi, un rapporto di asimmetria di circa 1,3%.

L'effetto è molto piccolo e difficile a rivelarsi sperimentalmente sia perché facilmente può venire mascherato da fluttuazioni statistiche sia perché una leggera ruotazione del cristallo polarizzatore provoca un grosso aumento di fotoni di bassa energia che potendo essere diverso nelle due misure a $\psi = 0$ e a $\psi = \frac{\pi}{2}$ può essere interpretato come una asimmetria in realtà inesistente.

Un tale sistema di polarizzare un fascio gamma e di misurarlo la polarizzazione può risultare possibile disponendo di elettroni di energie maggiori di 1000 MeV in tal caso infatti si può avere un fascio polarizzato al 26% di fotoni di energia superiore ai 300 MeV e precisamente di energia $0,3 E_0$, dove E_0 è l'energia degli elettroni primari.

Disponendo di fotoni energetici polarizzati il rapporto di asimmetria calcolato precedentemente per fotoni di 300 MeV aumenta sensibilmente e si può sperare di eseguire una misura della polarizzazione usando una targhetta di cristallo come analizza-
tore. Ovvero si può disporre di fotoni di energia superiore alla soglia di produzione di mesoni e con valori della polarizzazione maggiore del 26% e avere anche in questo caso un valore del rapporto di asimmetria R maggiore di quello trovato precedentemente.

Nelle prossime pagine accenneremo alla possibilità di studiare la polarizzazione dei gamma studiando l'andamento azimutale delle coppie prodotte.

GIRO SULLA POSSIBILITÀ DI UNA MISURA DELLA POLARIZZAZIONE DI UN FASCIO GAMMA MEDIANTE LA PRODUZIONE DI COPPIE DI ELETTRONI.

Gli elettroni generati da gamma polarizzati hanno un piano preferenziale il quale determina una asimmetria nella sezione d'urto per la produzione di coppie rispetto agli azimuti dei due rami della coppia.

Una misura di questa asimmetria può essere usata per determinare la polarizzazione di un fascio di fotoni. Definiamo per questo un rapporto di asimmetria dato dalla seguente quantità

$$ R = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}} $$
dove $d\mathcal{Q}_{\perp}$ è la sezione d'urto per produzione di coppie differenziale in θ_+ e θ_- e calcolata per $\vec{E} = \vec{0}$ dove \vec{E} è il versore della polarizzazione e \vec{u} è il versore della componente di p_+ perpendicolare a k, $d\mathcal{Q}_{\parallel}$ è la stessa quantità calcolata per $\vec{u} \times \vec{E} = 0$.

E' stata eseguita l'integrazione in θ_+ e θ_- in quanto gli elettroni negativi e positivi si comportano in maniera completamente simmetrica e ogni informazione sulla totalità dei rami di una delle due particelle è trasferibile all'altra particella.

Il calcolo di R è stato eseguito da Maximon e Olsen (M) che hanno ottenuto la seguente formula

$$R = \frac{d\mathcal{Q}_{\parallel}}{d\mathcal{Q}_{\parallel} + d\mathcal{Q}_{\perp}} = \frac{8 E_+ E_- p_+^2 \sin^2 \Theta_+ S^2 \Gamma}{(E_+^2 + E_-^2)(2 + 2 \Gamma) + 2 E_+ E_- (1 + \frac{1}{2} p_+^2 \sin^2 \Theta_+ S^2 \Gamma)}$$

con

$$S^2 = (1 + p_+^2 \sin^2 \Theta_+)^{-1}$$
$$\Gamma = \ln \left(\frac{4 \Gamma^2}{\xi} \right) = 2 - \frac{\rho (\xi)}{\rho (\xi)}$$
$$\rho (\xi) = \frac{\alpha^2}{\sum_{n=1}^{\infty} \frac{1}{n(n^2 + a^2)}}$$
$$\alpha = \frac{2 e^2}{\hbar c} = \frac{2}{\Delta \xi}$$

Calcolismo R nel caso di fotoni di 300 Mev e coppie simmetriche
prodotte in targhetta di alluminio; si ha allora
\[\Gamma = 2.15 \]
\[R = 0.14 \]

Data la proporzionalità tra il rapporto di asimmetria e la polarizzazione, disponendo di un fascio polarizzato a circa il 26% l'effetto da misurare è di circa il 3.5%, quantità sperimentalmente misurabile.

Una misura di questo tipo presenta però eccessive difficoltà sperimentali in quanto bisogna risolvere gli angoli che si uniscono della coppia forma con la direzione del quanto incidente che è dell'ordine di grandezza di qualche milliradian.

Per evitare queste difficoltà sperimentali si può pensare di misurare un nuovo rapporto di asimmetria \(R' \) il quale ci dà un'indicazione della differenza delle coppie prodotte per due direzioni tra loro perpendicolari del vettore di polarizzazione e per le quali un ramo abbia angoli di emissione qualsiasi e l'altro ramo abbia l'azimut fissato e precisamente una volta parallelo e una seconda perpendicolare al vettore di polarizzazione e l'altro angolo qualsiasi.
Il valore teorico di questo rapporto di assimmetria R' si calcola con una semplice integrazione in σ_+ del rapporto R definito precedentemente si ha quindi nel caso sempre di coppie simmetriche

$$R' = \frac{1}{\sqrt{(2 + \Gamma)}} \int \frac{2u^2 du}{(1 + u^2)^2} + \int \frac{2u^3 du}{(1 + u^2)^3}$$

$$u = \frac{P}{\gamma + \Theta} + \int = (1 + u^2)^{-1}$$

Il risultato dell'integrazione con il valore di calcolato precedentemente fornisce un valore di R' pari al 11%.

Supponendo ancora di avere un fascio gamma polarizzato al 25% l'effetto da rivelare risulta quindi di poco più del 2%.

Le difficoltà sperimentali che si incontrano in una misura di questo tipo sono di natura diverse dal caso precedente e sono in primo luogo la piccola entità del fenomeno da rivelare che facilmente può essere mascherato da fluttuazioni statistiche o da derivare dall'apparato di misura ivi compreso il sincrotrone stesso.
La seconda difficoltà consiste nel ruotare il vettore di polarizzazione per operazione che va fatta ruotando il polarizzatore.

La rotazione del polarizzatore deve essere eseguita però in maniera da mantenere costante θ per non variare la distribuzione spettrale del fascio di bremsstrahlung a perità di energia trasportata dal fascio.

Note

È interessante che lo spread in energia ha poco importanza in quanto per coppie simmetriche la quantità R' è indipendentemente dall'energia almeno sino a che si rimane a energie tali da consentire l'approssimazione della schermatura completa.
BIBLIOGRAFIA

PARTE PRIMA

ANON: How radiation affects materials Nucleonics special report sept. 1956 p. 53-88

ARMISTEAD: Conductivity changes in dielectrics during 2.5 Mev X radiation. Atomic energy Comm. report M·I·T 1028 (1955)

BANUS: Gamma ray sensitive alkali halide crystals. Atomic Energy Comm. report A D 11802 (1952)

BILLINGTON: How radiation affects materials: basic mechanisms Nucleonics 14 (9) 54 (1956)

BONFIGLIOLO: L'interesse dello studio degli effetti della radiazione sui solidi Ric. scient. 25-11 1955

BRINKMAN: Production of atomic displacements by high energy particles Am J. Phys. 24- 246 (1956)

BROOM: Lattice defects and the electrical resistivity of metals Phil. Mag. Suppl. 3 - 26 - 1954

BROWN: Annealing of bombardment damage in Ge: Experimental Phis. Rev. 92 591 (1953)

DIENES: Radiation effects in solids (University of Rochester)

DIENES: Displaced atoms in solids- comparison between theory and experiment Delivered at A S T M Los Angeles California
CRAWFORD Radiation effect in crystals Proceedings of the
international conference on the peaceful uses of
atomic energy U. N. Vol 7 p 654

CAHN Irradiation damage in germanium and silicon due to
electrons and gamma rays J of Applied Phis. 30 1953

DUDGALE Recent experiments at Harwell on irradiation ef-
fcts in crystalline solids Report of Bristol con-
ference on defects in crystalline solids The Phys.
society London 1955

EGEN : Preliminary experiments on radiation damage due to
electron bombardment Atomic energy Comm. Report N A A
S R 37 1956

FAN : Irradiation effect in semiconductors (effects of ra-
diation in materials)

FARIS : Compendium of radiation effects on solids Vol 2o A-

JOST : Distribution of recoil nucleus in pair production by
photons Phis. Rev. 80 189 (1950)

GILBERT : The use of cyclotron irradiation in the study of ra-
diation effect of materials. Atomic energy Comm.
Report N A A S R 38 (1950)

HARRISON Theory of radiation damage Phis Rev 98 1530 (1955)

HUNTINGTON : Creation of displacements in radiation damage
Phys Rev 94 1409 (1954)

KLONTZ : Production of lattice defects in germanium by electron

KLONTZ : Electrical properties of electron bombarded Ge
Phys. Rev. 98 (1955)

KOHN : Bombardment damage of germanium crystals by fast e-
electrons Phys. Rev. 94 (1954)
KLEIN : Effects of high energy gamma radiation on dielectric solids Insulation 2 9-13 1956

KOBAYASHI : Radiation effects in alkali halides produced by high energy protons and gamma rays Int. Conf. on peaceful uses of atomic energy p/ 748

KOCH : Semiconducteurs et radiation nucleaires L'onde electrique 35 977-80 (1955)

MARTIN : Application of particles accelerators to the study of radiation damage Atomic energy Comm. Report NAA SR 38 1950

MC LENNAN : Study of ionic crystal under electronic bombardment Canad. J Phys. 29 122 1951

MEECHAM : Electrical resistivity study of lattice defects introduced in vopper by 1,25 Mev electron irradiation at 80° K Phys Rev 103 1965

MONTRALL : Effects of defects on lattice vibration Phys Rev 100 525 1955 102 72 1956

PRESTWICH : Average energy of secondary electrons in anthracene due to gamma radiation Phys Rev 87 1030 1952

PRIMAK : Gamma ray dosage in inhomogeneous nuclear reactors J Appl. Phys 27-54 1956

SEITZ : Displacement of atoms during irradiation (Solid state Physics Vol 2° 1956

SMOLUCHOWSKY : Irradiation of ionic crystals Proc. of the international conf. on the peaceful uses of atomic energy UN 1956 Vol 7 p 632
STRIPP Lattice vibrational spectrum in imperfect crystals
J Chem Phys 22 1578 1954

WALKER Electron irradiation of copper below 10° K Bull Am
Phys Soc 2 1 335 1956

WRUCK Crystal structure as a factor in radiation damage
29 19 1953

YOCKEY Cyclotron techniques for radiation damage study Rev
Scient. Instr 25 1011-19 1954

PARTE SECONDA

BETHE HEITLER Proc of Roy Soc A 146 83 1939

BOLOGNA DIAMBRINI MURTAS C N R N Lab Naz Di Frascati nota
interna n° 21 12 1959

BOLOGNA DIAMBRINI FIGUERA PELEGGINI RISPOLI SERRA TOSCHI
Uno spettrometro a coppia per alte energie C N R N Lab Naz
di Frascati nota interna n° 17 9 1959

BOUMAN Theoretical principles of structural research by
X ray Handbuck der Physik Vol 32 97 237 1957

DYSON UBERALL Phys Rev 99 604 1955

FERRETTI Nuovo Cimento 7 118 1950

FLUBACHER Phil. Mag. 4 273 1959

FRISCH OLSON Detection of coherent bremsstrahlung from
crystals Phys Rev L 3 14 4 1953

PANOFSKY SAXENA Phys Rev L Search for enhancement of bremsstrahlung
produced by 575 Mev electrons in a single crystal
of silicon

SCHIFF Phys Rev (in corso di stampa)

SCHIFF Phys Rev 83 252 1951

SONA Ottica degli analizzatori magnetici nell'approssimazio-
ne di Gauss Applicazione ad un analizzatore da 1000 Mev/c
C N R N Lab Naz Di frascati nota interna n° 3
= 106 =

WHEELER LAMB Proc of Royal Phys. Soc. 55 858 1939
WILLIAMS Kgl Danske Videksab Selskab Mat Fys Medd 13 4 1935
WILSON Precision quantameter for high energy X rays Nuclear Instruments 1 1957 101 106
UBERALL Phys Rev 103 1055 1956

PARTE TERZA
BERLIN MADANSKY Phys Rev 78 623
BORSELLINO Angolo più probabile nell'emisone di coppia Phys Rev 89 1023 1953
HAAKON OLSEN MAXIMON Photon and electron polarization in high energy bremsstrahlung and pair production with screening Phys Rev 114 887 1959
LANDAU Quantum mechanic pag 18 Pergamon press 1958
MAY WICK Phys Rev 81 628 1951
MAY On the polarization of high energy bremsstrahlung and of high energy pairs Phys Rev 84 265 1951
MILLER Polarization du rayonnement de freinage Rapport C E A n° 655 Centre d'études nucleaires de Saclay
TAYLOR MOZLEY Positive pion production by polarized bremsstrahlung Report HEPL 162 1959 Stanford
UBERALL Polarization of bremsstrahlung Phys Rev 107 p 223 1957