C. Bernardini, A. Turrin: CALCOLO DEL RENDIMENTO MEDIO DI INIEZIONE.
ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione Acceleratore

Relazione n° T28

27 settembre 1956

C. Bernardini - A. Turrin

Calcolo del rendimento medio d'iniezione.

Introduzione: È stato calcolato il rendimento medio di iniezione per il progetto 31.X.55 con i dati forniti dal Gruppo Iniettore e con quelli relativi alle misure dell'indice del campo n eseguite sul metro campione. La zona di campo utile è stata stimata in base ad un calcolo eseguito mediante la calcolatrice FINAC. Si trova quale risultato finale che le spiralizzazioni optimum si aggirino intorno a 3–4 mm nel caso di iniezione ad energia costante, potendosi ottenere rendimenti dello stesso ordine con spiralizzazioni maggiori e prezzo di un trackig parziale.

Risultato numerico: Con spiralizzazioni dell'ordine di 3–4 mm si salva dagli urti contro l'iniettore e la ciambella il 75–20% delle particelle iniettate.
I. Dati sul deflettore elettrostatico e sul campo magnetico del Sinocrono all'iniezione.

A) Dati del deflettore.

- Larghezza radicale della bocca: 1 cm
- Spessore del bordo interno: 0.2 cm
- Spread angolare del fascio: $\pm 3 \times 10^{-3}$ rad
- Spread nei momenti: $\delta_{y/x} = \pm 2.5^\circ$
- Energia cinetica d'iniezione: 2 MeV
- Durata dell'impulso: da 1 a 10 μsec.

In mancanza di informazioni sulla distribuzione laterale angolare ed energetica degli elettroni iniettati si suppone che esse siano uniformi. Anche il flusso di elettroni iniettati si suppone costante nel tempo.

B) Dati sul campo magnetico all'iniezione.

- Larghezza del pianerottolo:

 - In cui: $n = 0.61 \pm 0.05$

 - (a bassi campi)

 - $2 \times$ ampiezza massima dell'orbita chiusa per effetto di un campo $B_z(\Theta)$: 3.5 cm (stimata ma non misurata)

II) Stima della zona di campo utile.

Dalle misure eseguite sul Bob e sul metro campione risulta per $n(x)$ un andamento pianeggiante in una zona di centro $r=R$. Al di fuori del tratto pianeggiante l'andamento di $n(x)$ assume bruscamente grandi penenzenze e valori molto grandi (positi va verso l'esterno e negativi verso l'interno).
Trascurando l'effetto delle sezioni dritte si può concludere con un calcolo analitico che le oscillazioni orizzontali e verticali sono stabili in tutta la regione in cui \(\theta < \theta_{0} \).

(Vedi fig. I)

E' stato commissionato alla FINAC un calcolo per l'estrazione del la zona di campo utile tenendo conto dell'effetto delle sezioni dritte. Il risultato è stato che la zona utile comprende ancora parte dei gomiti destro e sinistro al di là del piano rottolo.

Si può allora convenire di definire zona utile quella che esclude i gomiti destro e sinistro. Con ciò si rinuncia a considerare utile una stratta fascia di zona utile (\(\pm 1 \) cm).

T) La condizioni affinché la generica particella sia salva alla fine dell'iniezione.
Le condizioni affinché una generica particella iniettata si salvi dall'urto contro l'iniettore e non esca dalla zona utile sono le seguenti:

\[
\begin{cases}
\frac{\Phi_{\text{in}}}{2} + \frac{y_0}{2} \sin k \Phi < \Phi_{\text{in}} - (x - \Delta x)(1 - \cos k \Phi) \quad \text{(inietto)} \\
\left[(x - \Delta x) + \frac{y_0^2}{x} \right]^2 < \left[(x - \Delta x) + D_e \right]^2 \quad \text{(confine esterno)} \\
\left[(x - \Delta x) + \frac{y_0^2}{x} \right]^2 < \left[x' - (x - \Delta x) - D_e \right]^2 \quad \text{(confine interno)}
\end{cases}
\]

In esso si tien conto dell'effetto delle irregolarità azimutali del campo \(B_\phi(\phi) = B_0 + \Delta B_\phi(\phi) \) sulle oscillazioni delle particelle. Queste condizioni III.I. possono essere interpretate formalmente come le condizioni di non urto per una iniezione in un sincrotrone ideale (privo di irregolarità azimutali del campo) con una apertura radiale \(a' = a - 2A \) (dove \(A \) è l'ampiezza massima della deformazione del cerchio d'equilibrio dovuta a tale irregolarità) e con un affondamento dell'iniettore

\[
D_e = D^* - (A - x_c) > 0
\]
x_c è lo scostamento dell'orbita chiusa dall'orbita ideale d'equilibrio nell'azimuth dove è localizzata la bocca del deflettore. Nel nostro caso (vedi § I) è stato assunto $a' = 8.6 \text{ cm}$. Φ è il numero di rivoluzioni dopo l'istante di iniezione della generica particella.

Φ caratterizza la periodicità delle oscillazioni radiali di betatrone nel nostro Racetrack.

L_x e L_y caratterizzano la lunghezza d'onda delle oscillazioni radiali di betatrone nel nostro Racetrack.

L'angolo x' è contato rispetto l'orbita chiusa sotto l'iniettore. Si presume di inclinare opportunamente il deflettore come nella sottostante figura:

(Nella figura non è stata rappresentata l'inclinazione del deflettore per chiarezza di disegno).

$\overline{x}_{\text{max}}$ = valore massimo di \overline{x} nell'istante in cui è cessata l'iniezione.

IV) Calcolo grafico di Φ.

Per un certo valore di \overline{x} (che determina il trascorrere del
tempo durante l'iniezione), di δ, di $\Delta x = \frac{R}{T_{\text{in}}}$ di D_e e di T_{max} nel piano $(\frac{1}{\gamma}, \frac{1}{\beta})$ le limitazioni III.I. indica- no quanti elettroni iniettati in quell'istante sopravviveran- no alla fine dell'iniezione. Si ottengono figure del tipo

![Diagrama](image)

L'area degli elettroni che si salvano è quella tratteggiata. Se $e(t)\, dt$ è la frazione delle particelle iniettate nell'intervalllo di tempo (T_0, dx) che sopravviveranno alla fine dell'iniezione, si definisce come rendimento medio d'iniezione la quantità

$$\bar{e} = \frac{1}{T_{\text{min}} - T_{\text{min}}} \int_{T_{\text{min}}}^{T_{\text{max}}} e(t) \, dt = \frac{1}{x_{\text{max}} - x_{\text{min}}} \int_{x_{\text{min}}}^{x_{\text{max}}} e(x) \, dx.$$

Se I è la intensità di corrente degli elettroni uscenti dalla bocca del deflettore, segue che il numero degli elettroni salvi alla fine dell'iniezione è

$$I \int_{T_{\text{min}}}^{T_{\text{max}}} e(t) \, dt = IT_0 / \bar{e} \int_{x_{\text{min}}}^{x_{\text{max}}} e(x) \, dx.$$
Il calcolo numerico di β si fa nel seguente modo:

Si trova che per ogni spiralizzazione β il rendimento optimum si ottiene quando

\[\begin{align*}
 D_e + \bar{R}_{\text{max}} &\approx \frac{a'}{2} \\
 D_e &\ll \bar{R}_{\text{max}} - \bar{R}_{\text{min}}
\end{align*} \]

e non muta apprezzabilmente al variare di D_e ed \bar{R}_{max} purchè siano soddisfatte tali condizioni.
I risultati del calcolo sono compendiati nella figura 6.
Per $\delta = 0.7$ cm la durata dell'iniezione per un rendimento optimum è di $\approx 2.5 \mu$sec e la frazione di particelle sopravvissute è il 17°. Per $\delta \succ 0.4$ cm la frazione di particelle salvate va con la legge δ^{-1}, e ciò perché il tempo utile d'iniezione decresce col crescere di δ, mentre $\bar{\delta}$ rimane praticamente costante.
Si può calcolare che con un tracking parziale si possono ottenere rendimenti del $15-30\%$ anche con spiralizzazioni maggiori.