Laboratori Nazionali di Frascati

LNF-55/43 (14.11.55)

G. Salvini: CARATTERISTICHE PRINCIPALI DELL'ELETTROSINCROTRONE DA 1000 MeV - DATA 31.10.55.
CARATTERISTICHE DELL'ELETTROSINCROTRONE DA 1000 MEV

(Date 31 Ottobre 1955.)

I dati che seguono cancellano per il nostro progetto, ove diversi, quelli contenuti nelle relazioni: Gruppo teorico 16, Gruppo teorico 17, G 13, G 16, G 17, G 18, M 52. Si chiede che questi dati vengano indicati con la Sigla 31/10/55. Si può verificare che essi non differiscono da quelli contenuti nella relazione G 16 che in pochi particolari.

È da sottolineare che alcuni di questi dati potranno ancora essere variati nel futuro: una discussione delle possibili varianti è data nelle appendici della presente relazione. Queste appendici sono fondamentali per l'intelligenza del progetto.
§ 1. - Dati fondamentali

Energia finale \(E_{\text{max}} = 1000 \text{ MeV} \)
Induzione finale sull'orbita principale \(B_{\text{max}} = 9260 \text{ gauss} \)
Raggio orbita principale \(R = 360 \text{ cm} \)
Numero dei tratti rettilinei \(= 4 \)
Lunghezza tratto rettilineo (nominale) \(L = 120.6 \text{ cm} \)
Indice del campo\(^{1}\) \(n = 0.61 \)
Energia di iniezione (totale) \(E_1 = 2,5 \text{ MeV} \)
Distanza tra i poli (= altezza traferro)\(^{2}\) \(= 8.6 \text{ cm} \)
Larghezza dei poli alla base minore (= larghezza traferro)\(^{2}\) \(= 22.7 \text{ cm} \)
Iniettore: Cockcroft e Walton in gas compresso

Eccitazione del magneti:\(^{3}\) Sinusoidale a 20 periodi \((\omega = 125,66 \text{ sec}^{-1}) \) con componente continua (bias) regolabile tra 4170 e 4630 gauss (questi numeri possono essere leggermente modificati dalle caratteristiche del ferro scelto).

\(^{1}\) - Per questi dati vedi appendice n° 1
\(^{2}\) - Per questi dati vedi appendice n° 2
\(^{3}\) - Per questi dati vedi appendice n° 3; in essa si precisa anche il problema della spiralizzazione alla iniezione.
Da queste grandezze fondamentali si ricavano le seguenti grandezze derivate:

Lunghezza orbita principale

Lunghezza di un settore curvo (nominale)

Fattore di allungamento

\[\lambda = \frac{(2 \sqrt{R} + 4 \ell)}{2 \sqrt{R}} \]

Periodo di rivoluzione finale (\(\beta = 1 \))

\[T_{\infty} = 9,154 \times 10^{-8} \text{ sec} \]

Frequenza di rivoluzione finale (\(\beta = 1 \))

\[\nu_{\infty} = 10,924 \times 10^{6} \]

Energia massima irradiata in un giro

\[L^P = 25 \text{ KeV} \]

Oscillazioni di Betatron:

Lunghezza d'onda dei tratti sinusoidali verticali

\[\lambda = 2896 \text{ cm} \]
\[\kappa = \frac{\lambda}{2\pi} = 461 \text{ cm} \]

Lunghezza d'onda dei tratti sinusoidali orizzontali

\[\lambda_h = 3625 \text{ cm} \]
\[\kappa_h = 577 \text{ cm} \]

Lunghezza d'onda della sinusode approssimante verticale

\[\lambda_{\nu} = 3179 \text{ cm} \]

Lunghezza d'onda della sinusode approssimante orizzontale

\[\lambda_{\lambda} = 3983 \text{ cm} \]

Numero oscillazioni per giro:

verticali

\[Q_v = 0,363 \]

orizzontali

\[Q_\beta = 0,568 \]
Caratteristiche all’iniezione (grandezze derivate):

Velocità all’iniezione \(\beta' = \frac{v_i}{c} = 0,9789 \)

Durata di un giro all’iniezione \(T_i = 9,35 \times 10^{-8} \text{ sec} \)

Frequenza di rivoluzione all’iniezione \(\frac{I}{T_i} = 10,69 \text{ MHz} \)

Campo magnetico sull’orbita principale all’iniezione \(B_i = 22,7 \text{ gauss} \)

Caratteristiche della Radiofrequenza:

Armonica \(K = 4 \)

Frequenza finale \((v = c) \) \(\nu_\infty = 43,70 \text{ MHz} \)

Frequenza all’iniezione \(\nu_i = 42,78 \text{ MHz} \)

Ampiezza teorica della modulazione di frequenza \(= 2,11\% \)

§ 2. – Dati di costruzione. Magnete –

Tipo(4) : (Cfr. Dis.I) struttura a C con ciambella esterna

Poli(5) : (Cfr. Dis.I) poli mobili fissati alle ali del C

Altezza del traferro al livello dell’orbita principale(5) : \(= 8,6 \text{ cm} \)

Larghezza della base minore dei poli(5) \(= 22,7 \text{ cm} \)

(4) – Vedi appendice n°2 e relazione interna G 15.
(5) – Vedi appendice n°2, in particolare per quanto riguarda una soluzione alternativa.
Struttura azimutale (Cfr. § 1 e Dis. n°3): 4 quadranti

Peso del ferro (approssimato) = 9,3x10^4 Kg

Numero di spire per quadrante = 12

Peso del rame (approssimato) = 0,8 - 1x10^4 Kg

Tipo di ferro usato: lamierino al silicio ARMCO DI-MAX 19 - spessore = 0,35 mm

Induzione massima nel traferro = 9260 gauss

Induzione massima media nel ferro (approssimata) = 14.000 gauss

Induttanza del magnet = 18,5x10^-3 Henry

Energia massima nell'aria = 2,65x10^5 Joule

§ 3. - Dati di costruzione - Alimentazione del magnete.

Tipo(6); (Cfr. Dis. 2) corrente alternata parzialmente polarizzata con corrente continua.

Frequenza di alimentazione = Frequenza di ripetizione =

= 20 periodi/sec

Potenza del banco di condensatori in parallelo al magnet (calcolata a 20 periodi al secondo) = 10.560 KVA

Capacità del banco di condensatori = 3.420 µ Farad

Valore dell'induttanza di protezione (approssimata: Cfr. Dis. 2) = 5,6x10^-2 Henry

Potenza prevista per il generatore c.a. = 510 KVA

Potenza prevista per il generatore c.c. = 315 Kw

(6) - Vedi per lo schema di alimentazione le varie relazioni del gruppo Magnet.
§ 4; - Dati di costruzione - Iniettore(7)

Tipo: Cockcroft e Walton in gas compresso.
Pressione del gas nella tank: 15 atmosfere.
Tipo del gas: azoto con percentuale di CO2 o Freon (~10%)
Dimensioni approssimative di ingombro:
- lunghezza: 5 m
- larghezza: 3,5 m
- altezza: 3,5 m

Materiale della tank: acciaio inossidabile.
Energia degli elettroni: 2,5 MeV (totale)
Corrente massima: 200 mA
Durata dell'impulso: da 1 a 10 µ sec
Capacità della colonna fissa: 1,57 m µ F
Frequenza di alimentazione: ≥ 1000 c.p.s.
Frequenza di ripetizione: 20 c.p.s.
Corrente continua: 100 µ A
Struttura elettrica: 5 stadi da 400.000 volt, raddrizzatori al selenio
Potenza dell'impianto: 10 KVA
Ripple: dell'ordine di 2 x 10⁻⁴
Deflettore: elettrostatico
Stabilità richiesta alla massima iniezione: 2 %

(7) Il progetto si è fatto all'Istituto Superiore di Sanità, che ne curerà anche la realizzazione e la messa a punto.
Dimensioni del fascetto all'iniezione: 1 x 1 cm2
Apertura angolare del fascetto all'iniezione: $\pm 3 \times 10^{-3}$ rad

§ 5. - Dati di costruzione - Radiofrequenza.

Armonica (frequenza oscillazione cavità risonante /'frequenza rivoluzione): $K = 4$
Tipo di cavità acceleratrici: rientranti (coassiali)
Numero delle cavità acceleratrici (8): 2
Tipo di eccitazione: entrambe ad amplificatore

Energia degli elettroni al passaggio dalla prima alla seconda cavità: $E_p \approx 7$ MeV
Massima modulazione prevista sulla prima cavità: 2,5% (42,6 – 43,7 MHz)
Frequenza fissa della seconda cavità: 43,7 MHz
Massima tensione alla gap della prima cavità (RF1) (9): 7000 Volt
Massima tensione alla gap della seconda cavità (RF2) (10): 5 x 104 Volt
Potenza massima dell'impianto R.F. 60 KW
La cavità R.F. 2 lavora sotto vuoto.

(8) - Vedi appendice n°4
(9) - Vedi appendice n°3
(10) - Non è escluso che una tensione finale di $\sim 30 - 35,000$ volt sia sufficiente (v. rapp.19 del Gruppo Teorico).
Funzionamento RF₁ : pulsato 20 periodi al secondo
Tempo di utilizzazione : dipende dalla spiralizzazione
Funzionamento RF₂ : pulsato 20 periodi al secondo
Tempo di utilizzazione : 50 % (~ 24.000 µ secondi)
Raffreddamento RF₂ : acqua circolazione chiusa; aria ciclo aperto.

§ 6. - Dati di costruzione - Ciambella a vuoto.

Pompe a diffusione = 4
Capacità di ogni pompa a diffusione = 3000 l/sec
Rotative = 4
Capacità di ogni pompa rotativa = 60 mc/h
Pressione finale = 10⁻⁵ ~ 10⁻⁶ mm Hg
Materiale ciambella : vetro pyrex
Sezione ciambella : (cerchi raccordati)
Dimensioni ciambella (esterne) (11) = 230x78 mm
Spessore ciambella = 8 ~ 11 mm
Lunghezza sull’orbita principale di un settore della ciam-bella = 565 mm

(11) - La ciambella avrà le dimensioni massime compatibili con il trasferro scelto. Vedi quindi anche appendice n°2.
§ 7. - Edificio

I disegni degli edifici del Sincrotrone e dei laboratori sono a disposizione degli interessati presso la Sezione Acceleratore. Il disegno n° 3 si limita a dare una vista sintetica della macchina entro il suo edificio. Lo studio completo si trova presso il progettista Ing. Scaccia, dell'Istituto Superiore di Sanità.

§ 8. - Quadro dei tempi

Un quadro dei tempi di approntamento delle diverse parti è dato in Dis. 4. Sono indicati con un asterisco i tempi che dipendono ormai da precisi impegni delle Ditte. I tempi dati iniziano dal 1° agosto 1955, poiché in questa data la Ditta Ansaldo San Giorgio ha iniziato i lavori di progetto per il magnet. Purtroppo è da tenere presente che ben poche sono le Ditte capaci di rispettare scrupolosamente gli impegni presi.

A proposito dei tempi facciamo presente che in questa relazione non si parla delle altre apparecchiature occorrenti per le esperienze con il Sincrotrone, quali ad esempio i magneti analizzatori, gli spettrometri di coppia elettroniche, le camere di taratura del fascio, l'elettronica rapida di uso corrente nelle esperienze con contatori.

L'approntamento di queste apparecchiature è solo in piccola parte responsabilità della Sezione Acceleratore, poiché all'attrezzatura fondamentale contribuiranno le altre Sezioni e Sottosezioni dell'I.N.F.N.

Il Sincrotrone qui descritto sarà in grado di contribuire effettivamente alla ricerca scientifica soltanto dopo che queste apparecchiature saranno costruite ed efficienti.
- APPENDICI -

In queste appendici indichiamo i problemi attualmente più vivi per noi, ed i nomi delle persone che vi si dedicano. Complete informazioni possono trovarsi nelle relazioni della Sezione Acceleratore o presso le persone indicate.

Appendice n° 1.

La scelta teorica del valore di n e la traduzione in pratica del valore teorico.

a) Per quanto riguarda la scelta di n, vedi Rapporto Teorico n° 16, pag.2, e Rapporto G 13, pag.2. Delle risonanze indicate in questo rapporto è stata studiata dal Gruppo Teorico la:

$$ p = -2; \quad q = 3; \quad r = 0 $$

per un semplice caso non lineare. Impiegando il metodo di Kryloff e Bogoliuboff si conclude che in condizioni di esatta risonanza (per noi $n = 0.634$) le soluzioni corrispondenti alle possibili condizioni iniziali divergono tutte, più o meno lentamente. Questo studio non è tuttavia risolutivo, e per chè non fornisce informazioni sulla larghezza (in λn) della risonanza, e per l'arbitrarietà dell'omissione di altre perturbazioni.
Un'altra risonanza studiata, la

\[p = -1; \; q = -1; \; r = 2; \; n_{ris} = 0,593 \]

si presenta notevolmente più complicata e per il momento non vi sono indicazioni sul comportamento delle sue soluzioni.
Quanto sopra si accenna è documentato presso il Gruppo Teorico.

b) Per determinare il profilo radiale dei poli si sono fatte misure su modelli in ferro massiccio ed in lamierino, eccitati in corrente continua (nostri rapporti finali in preparazione). Si sono provati diversi profili, e sino ad ora si è arrivati a realizzare un valore di \(n \) contenuto entro i limiti \(n_{teorico} \pm 0,1 \equiv 0,61 \pm 0,1 \) su una estensione \(\frac{h}{L}\) pari al 50 - 55% della base minore del polo \(L_{b} = 227 \text{ mm} \) (V. Dis.1). E' improbabile che si possano trovare risultati migliori di questi se ci si limita a modificare il profilo dei poli.

Altri metodi per allargare l'estensione radiale \(\frac{h}{L}\) in prossimità dell'iniezione sono allo studio presso il Gruppo del magnete. Si osservi che a tutt'oggi non sono soddisfatte le richieste del Gruppo Teorico sulle dimensioni del trasferro utile (V. Appendice n°2); i grafici dei risultati sono stati tracciati da Canarutto e da Ghigo che si sono particolarmente dedicati al problema.
c) Quanto detto in b) riguarda l'estensione di n utile
quale si ottiene in misure in corrente continua, quindi
l'estensione utile della gap a campi medi (600 - 6000 gauss)
quando gli effetti della rimanenza (Diambrini, Relaz. M 53),
delle correnti parassite, delle saturazioni nel ferro sono
trascurabili. Altra questione è il conoscere l'estensione
della regione utile della gap all'iniezione (22,7 gauss).
Molto verrà allora chiesto alle correcting coils (V. nostra
relazione; Amman ha in corso una relazione completa in pro-
posto. Il progetto è affidato ad Amman, Corazza, Salvini,
Sanna), ed una parte dell'aggiustamento per focalizzare il
fascio sarà necessariamente empirica. Infatti appare a tut-
t'oggi difficile che n possa misurarsi all'iniezione con er-
rore minore di 0,1 (studi in proposito sono avviati da Ghigo
e Quercia). La tecnica in preparazione è quella delle peaking
strips. I problemi magnetici connessi a questa tecnica sono
stati particolarmente studiati da Diambrini.
I limiti di n qui dati sono sinora più o meno gli stessi ritro-
vati da altri sperimentatori in macchine analoghe.

Appendice n° 2.

Le dimensioni del traferro. La struttura del magnete.
Non è escluso che le dimensioni del traferro vengano ulterior-
mente modificate, e se mai allargate. Infatti i risultati teori-
ci indicano che, con le ipotesi fatte sull'iniettore e sulla
inomogeneità del campo, è conveniente disporre di un trasferro utile (interno alla ciambella) di 66 x 177 mm² (vedi rapporto teorico n° 17, pagg. 5, 8, 10, 11) mentre è praticamente certo che queste dimensioni interne non sono compatibili con quelle esterne della ciambella date in §. 6, almeno nei riguardi dell'altezza (230 x 78 mm²). (Il vuoto e la ciambella sono affidati a Corazza. Per la statica della ciambella vedi Rapporto T 20 di Persico e Bernardini).

D'altra parte è da dire che la gap attuale (227 x 86) è già circa la massima compatibile con il nostro tipo di magnete a lamierini, date le nostre esigenze di precisione e di solidità dell'intera struttura del magnete. Ulteriori varianti di altezza e di larghezza difficilmente potrebbero andare oltre il 10 - 15%.

La situazione è stata particolarmente discussa tra Agno, Persico e Salvini, in una riunione del 20 gennaio 1955 (vedi verbale relativo) e successivamente tra Persico e Salvini in queste ultime settimane. Si è deciso che nel modello lungo un metro in Scala 1 : 1 del nostro magnete (metro campione) si proveranno due tipi di poli: il primo tipo di poli corrispondente alla gap riportata in questo testo (227 x 86) e l'altro per una gap maggiorata di un 10 - 15% nelle due dimensioni, e di forma da definirsi. Attualmente sono troppo incerte le nostre conoscenze sulle proprietà del nostro iniettore e sulle effettive qualità del nostro campo magnetico per anticipare una decisione.
E' da notare che le modificazioni leggere nell'intraferro possono farsi variando la forma dei poli e senza mutare il disegno fondamentale del magnete (vedi Relazione M 54, e disegni del magnete).

La struttura del magnete è stata studiata in collaborazione tra la Sezione Acceleratore (Sacerdoti, Toschi, Salvinini) e la Ditta Ansaldo San Giorgio. Il progetto è ormai condensato in disegni costruttivi che sono attualmente in esame presso la nostra Sezione.

Appendice n° 3:

Sull'ampiezza della componente continua di alimentazione del magnete; sul rallentamento del campo nell'intraferro durante e dopo l'iniezione.

a) Come si è detto, il valore del campo nell'orbita principale
all'iniezione è di 22,7 gauss. A seconda del valore della corrente continua nella eccitazione del magnete noi abbiamo all'iniezione diversi valori di \(\frac{dB}{dt} \approx \dot{B} \), cui corrispondono diversi valori della spiralizzazione degli elettroni verso l'orbita di equilibrio.

I valori di \(B \) sono limitati superiormente ed inferiormente dalle esigenze dell'iniezione e della Radiofrequenza. I valori del bias (corrente continua) dell'eccitazione del magnete sono a loro volta limitati dalle proprietà magnetiche del ferro. Il gioco delle varie esigenze può farsi nei seguenti termini.

b) Per quanto riguarda le relazioni tra la corrente continua e la corrente alternata nella eccitazione del magnete, è da dire che \(B_{\text{min}} \) dovrebbe probabilmente restare al disotto di un certo limite (p.e. \(B_{\text{min}} \leq -100 \) gauss), ed essere comunque negativo (essendo \(B_{\text{max}} > 0 \)). Questo si richiede per poter "lavare" almeno in parte il magnete di ferro, riducendone la rimanenza. Non è ancora possibile stabilire il valore di tale limite (probabilmente tra \(-700\) e \(-100\) gauss), e questo problema verrà chiarito nel metro campione. Se il limite inferiore di \(B_{\text{min}} \) fosse incompatibile con le esigenze della R.F.,

\[(\ddagger)\] Vedi Rapporto Gruppo Tecnico n°15. Riassumendo, si ammette che il campo magnetico principale vari nel tempo con la legge:

\[
B_e = B_b - B_a \cos \omega t
\]

\[
= B_{\text{min}} + 2 B_a \sin \frac{\omega t}{2}, \text{ con } B_{\text{min}} = B_b - B_a
\]
e della iniezione, allora dovremmo ricorrere ad un "lavag-gio" del campo addizionale, per esempio (Persico) inviando opportuni impulsi di corrente mentre il campo magnetico è negativo o comunque sotto il valore di iniezione. Esigenze dell'iniezione. - Durante il processo di iniezione dobbiamo conservare la possibilità di spiralizzazioni comprese tra $G = 1$ cm e $G = 2$ cm, pari, all'iniezione, a $S = 250,000$ gauss/sec e $T = 53,000$ gauss/sec rispettivamente. Valori di $S = 0,2$ cm riportano gli elettroni iniettati contro il de- flettore. Valori $S > 1$ cm riducono di troppo il tempo utile di iniezione (Vedi nostri rapporti del Gruppo Tecnico, in par- ticolare T 3, T 4, T 5, T 6, T 9, T 21).

Esigenze della R.F. (per la cavità RF 1). Le richieste per la cavità RF 1 sono indicate nel grafico di Dis. 5. In esso si è dato il valore massimo di B tollerato dalla RF, in funzione del valore di B al centro del trasferro. Infatti è da dire che le difficoltà tecniche e la potenza richiesta dalla cavità aumentano rapidamente se si chiedono una troppo rapida modula- zione di frequenza (cioè troppo alti valori di $\frac{d\Phi}{dt}$, quindi di $\frac{d\Theta}{dt}$), ed una troppo elevata ampiezza massima di tensione. Nello stesso grafico con il segmento IM si è indicata la con- dizione imposta dalla iniezione (in particolare nel grafico il punto I indica la condizione più severa: $S = 0,2$ cm).

c) Nel grafico di Dis. 5 sono anche indicate le curve $B = B(B)$ per diversi valori di S'. Con le spiralizzazioni
minorì si hanno valori di R_{min} negativi molto bassi o addirittura >0. È probabilé che almeno in questi casi i lavaggi addizionali del campo divengano essenziali.

d) Restano validi i richiami alle tabulazioni dati in Appendice n°3 della relazione G 16, e resta valido l'elenco del problema del rallentamento dato nella stessa Appendice, nel caso improbabile che il rallentamento occorra.

Appendice n° 4.-

Non sono ancora definite le caratteristiche della cavità risonante ad alta tensione (RF_2).

Per quanto riguarda la cavità RF_1, essa sarà del tipo "coassiale" caricato ad un estremo con una capacità. La cavità attualmente in costruzione è a pressione atmosferica (Vedi relazione R 11 di Puglisi, Quercia, Lepri).

G. SALVINI

Roma, 14 Novembre 1955
Sez. Verticale del Magnete

INFN del CNR
SEZIONE ACCELERATORE

L_1 = 618
L_y = 340
L_x = 170
L_2 = 308

R_1 = 2936
R = 3600
R_{min} = 3254

H = 950
L_3 = 227
L_4 = 86

DATA 9.11.1955
CIRCUITO DI ALIMENTAZIONE DEL MAGNETE

\[\frac{c_c}{c_1 \cdot c_2} \approx 3430 \mu F \]

\[c_3 \approx 1140 \mu F \]

\[L_i \approx 0.0185 \text{ Henry} \]

\[L_p \geq 0.056 \text{ Henry} \]
X MAGNETE
- A.G. 1956: 4 MESI
- DIC. 1956: 4 MESI
- GEN. 1956: 3 MESI
- GIU. 1956: 3 MESI
- AGO. 1956: 10 MESI

X ALIMENTAZIONE
- PROGETTO E DISEGNI
- PREPARAZ. ATTREZZATURE
- METRO Speriment.
- PROVE SU METRO
- ESECUZIONE E MONTAGGIO
- 18 MESI
- COstruzione e consegna
- MESSA A PUNTO
- MESSA A PUNTO

MISURE SU MODELLI
- ESCLUSO IL METRO SPERIMENT.
- 11 MESI

VUOTO E CIAMBELLA
- 17 MESI

RF 1 - FM
- 10 MESI

RF 2
- 10 MESI

INIEGTORE E DEFFLETTORE
- 12 MESI
- COSTRUZIONE
- MESSA A PUNTO

X EDIFICIO
- 12 MESI