Laboratori Nazionali di Frascati

LNF - 53/65
3.11.1953.

G. Salvini: SULLA CONVENIENZA DI DEFORMARE IL CAMPO MAGNETICO ALL'INIEZIONE IN MODO DA OTTENERE UNA SPIRALIZZAZIONE NON COSTANTE E QUINDI PIU' CONVENIENTE.
1. a.) Se si segue il meccanismo dell'iniezione sino ad ora proposto dal gruppo teorico, noi abbiamo che gli elettroni iniettati tangenzialmente all'orbita istantanea di equilibrio percorreranno una spirale \( \varphi \) a passo costante. Questo passo non può uscire da un limite inferiore (per es. 3-5 mm) imposto dalle dimensioni dell'iniettore, e da un limite superiore imposto dal tempo richiesto acciocché la R.F. sia pronta a catturare gli elettroni prima che la spiralizzazione sia finita. Non è escluso sano ad ora che questi limiti siano contraddittori.

b.) Quanto sopra vale per \( \varphi = \text{cost.} \); ci si chiede in questa proposta se la situazione può migliorare se si assume, anziché \( \varphi = \text{cost.} \), una spiralizzazione decrescente al decrescere del raggio dell'orbita ed eventualmente funzione del tempo. Per esempio una \( \varphi \) che si riducesse col decrescere del raggio di curvatura della spirale (fig. 1) potrebbe permettere nello stesso tempo di evitare l'iniettore (poiché \( \varphi \) è ampia vicino all'iniettore) e di attendere a sufficiente la R.F. (poiché \( \varphi \) è minima presso l'orbita stabile ed all'interno di essa).

Riteniamo che tra le condizioni necessarie perché questa possibilità si realizzi vi sia almeno quella che n resti compresa tra 0 ed 1 (o tra circa 0 e .8, tenendo conto delle sezioni diritte), sicchè durante la fase di iniezione si abbiano ancora le condizioni generali di focalizzazione, pur con ampiezze e lunghezze d'onda di Betatron molto
variata. Le considerazioni che seguono ripettono questa condizione.

a.) Si consideri il grafico di Fig.3. Sulle ascisse sono allineati i valori dei raggi. L'orbita stabile si ha a \( r_a = 330 \text{cm} \); \( x = r - r_a \) è la distanza (\( > 0 \) per raggio \( > r_a \)) dall'orbita stabile. Sulle ordinate sono allineati i valori del campo magnetico, quelli intorno a 15 gauss che interessano l'iniezione.

Le rette (in realtà iperboli molto lente) 1-1'; 2-2' etc. sono le rette che descrivono il campo magnetico al variare di \( x \) e per ciascun tempo (rette isocrone). Il tempo è un valore parametrico dato accanto a ciascuna retta. Le rette 1-1' etc. sono quelle per \( n = 0.6 \).

Sia \( 0 \) il "momento" di iniezione, di un elettrone immesso tangente alla sua orbita di equilibrio. L'iperbole \( O-0' \) passante per \( O \), e di equazione \( (8)(r_a + x) = \text{cost.} \), è il luogo dei raggi di equilibrio per quel-
lelettrone. La proiezione sulle ascisse dei segmenti \( LM, MN, ... \), intercetti nell'iperbole dalle 1-1', 2-2', ..., sono il passo di spiralisazione.

Se si assume \( n = \text{cost.} = 0.6 \) per tutto il processo di iniezione, la spiralizzazione potrà al massimo durare un \( \Delta \chi \) pari al tempo che in-tercorre tra le rette 1-1' ed \( n-n' \).

b.) La durata a disposizione diviene maggiore se si assume che le isocrone 1-1', 2-2', ..., non siano parallele, e cioè non sia \( n = \text{cost.} \), ma \( n = n(\tau) \), con la sola condizione \( 0 < n < 0.8 \).

La situazione resta ancora topologicamente la stessa di Fig.3, ma deformata in modo da avere più ampi valori di \( \chi \) alla iniezione, invece valori minimi di \( \chi \) (e quindi un maggior tempo a disposizione per la R.F.) per \( x < 0 \).

Si consideri per es. la fig.4. Le definizioni sono le stesse che in Fig.3. In ogni curva isocrona 1-1', 2-2', ..., \( 0 < n < 0.8 \); \( \chi \) è massimo presso l'iniezione (come si desidera) e decresce al calare di \( x \). Il tempo
c.) La soluzione grafica data in Fig. 4 non è la migliore (essa corrisponde all'esempio numerico dato in fondo a questa nota). Mi sembra possibile arrivare a spiralizzazioni doppie e con tempo doppio o quasi che nel caso della iniezione con \( n = \text{cost.} \) Non è esclusa insomma, sino a questo punto, la possibilità di estendere \( \Delta T' \) sino ad una decina di microsecondi.

J. a.) La proposta qui contenuta corrisponde dunque ad avere \( n = n(r, t) \) anziché \( n = \text{cost.} \). Un modo per impostare la discussione può essere per esempio il seguente.(?)

Supponiamo che il campo \( B \) (ciascuna delle componenti \( B_{x} \)) abbia la forma, in vicinanza dell'iniezione,

\[
B(x, t) = B_{0} \omega (t_{0} + t)(1 - \frac{nx}{r_{0}}) + k(x, t)t
\]

nella quale \( B_{0} \omega (t_{0} + t)(1 - \frac{nx}{r_{0}}) \) è la solita forma vicino alla iniezione, mentre \( k(x, t)t \) è un termine perturbativo, che varia il valore di \( n \) nel tempo e che si può realizzare ad esempio con correttive coils.

Il campo (1) soddisferà alle nostre condizioni di iniezione se si può mettere nella forma (condizione necessaria ma, può essere, non sufficiente):

\[
B(x, t) = B_{0} \omega (t_{0} + t)(\frac{r_{0}}{r_{0} + x}) \quad = B_{0} \omega (t_{0} + t)(1 - n(x, t) \frac{K}{r_{0}})
\]

con \( 0 < n(x, t) < 0.8 \)

Uguagliando le (1) e la (2), e ponendo \( B_{0} = B_{0}'; n(x, t = 0) = n \), abbiamo:

\[
lg \left[ \frac{k(x, t)t}{(1 - \frac{nx}{r_{0}}) \frac{B_{0}(t_{0} + t)}{B_{0}'(t_{0} + t)}} \right] = \frac{\frac{K}{r_{0}}}{lg \left(1 - \frac{x}{r_{0}}\right)}
\]

\[
n(x, t) = \frac{\frac{K}{r_{0}}}{lg \left(1 - \frac{x}{r_{0}}\right)}
\]
Affinché $0 < n(x, t) < 1$ (assumiamo $1$ anziché $0$ per brevità) le funzioni sotto logaritmo debbono essere o entrambe $> 0$ entrambe $< 1$, e la funzione sotto logaritmo al numeratore deve essere più prossima ad $1$ della funzione a denominatore. Quindi:

per $x > 0$ si ha

$$\frac{n}{r_0} < \frac{K(x, t) t}{B_0 \omega(t + t_0)} < (n-1) \frac{x}{r_0}$$

per $x < 0$ si ha

$$\frac{nx}{r_0} < \frac{K(x, t) t}{B_0 \omega(t + t_0)} < \frac{x}{r_0} (n-1)$$

b.) Esempio numerico.-

Sia ad esempio

$$K(x, t) = K_0 x$$

quindi

$$B(x, t) = B_0 \omega(t_0 + t) \left[ (1 - \frac{nx}{r_0}) + \frac{K_0 x t}{B_0 \omega(t_0 + t)} \right]$$

e chiediamo una perturbazione $K_0$ tale che per $\frac{nx}{r_0}$ $x = -A$ (A è la semiampiezza della ciambella) il campo salga due volte più lentamente che per $x = A$

Questo può imporsi ponendo

$$B_0 \omega(t_0 + t) \left[ 1 + \frac{nx}{r_0} - \frac{2K_0 At}{B_0 \omega(t_0 + t)} \right] = B_0 \omega t_0 \left[ 1 + \frac{nx}{r_0} \right]$$

quindi in prima approssimazione:

$$B_0 \omega t - 2K_0 At = 0 ; \quad K_0 = \frac{B_0 \omega}{2A}$$

Il campo $B(x, t)$ ha in tal caso la forma:

$$B(x, t) = B_0 \omega(t_0 + t) \left[ 1 - \frac{nx}{r_0} + \frac{x t}{2At_0} \right]$$

Le disequazioni (4) divengono semplicemente:

$$\frac{n-1}{r_0} < \frac{t}{2At_0} < \frac{n}{r_0}$$

e quindi

$$t < \frac{2 n At_0}{r_0}$$
Assumiamo ad esempio (questi dati coincidono con quelli dell'esempio di fig. 4):

\[ B_0 = 10^4 \text{ gauss} ; \quad \omega = 4 \frac{\pi}{\tau} ; \quad (dB/dt = 1.25 \times 10^5 \text{ gauss/sec}); \]

\[ B_0 \omega t_0 = 15 \text{ gauss} \quad (\text{quindi} \quad t_0 = 15/1.25 \times 10^5 = 1.2 \times 10^{-4} \text{ secondi}); \]

\[ A = 10 \text{ cm} ; \quad r_0 = 330 \text{ cm} \]

Si trova:

\[ t < 4.2 \times 10^{-6} \text{ secondi} \]

Questo significa che passeranno 4.2 microsecondi prima che la n esca dai limiti 0,1, per effetto della perturbazione data dalla \( K_0 t_0 \).

La spiralizzazione \( \mathbf{S} \) all'inizio per un campo dato dalla (5)

\[ \mathbf{S} = r_0 \left( \frac{\tau}{2t_0} + \frac{\Delta B_0}{B_0} \frac{1}{1 - \eta + \frac{\tau}{2t_0}} \right) \]  

ove \( \tau \) è il tempo per un giro completo degli elettroni (circa 1 microsecondo), e \( \Delta B \) è la variazione di campo in tale tempo, pari a \( \frac{\tau}{t_0} \).

La \( \mathbf{S} \) quindi può scriversi:

\[ \mathbf{S} = 330 \frac{3\tau/2t_0}{1 - \eta} = 330 \times 3 \times 10^{-7} \text{ cm} = 1 \text{ cm} \]

La spiralizzazione che fosse \( K = 0 \) (caso di \( n = \text{cost.} \)) sarebbe invece

\[ \mathbf{S}' = r_0 \frac{\tau}{0.4 t_0} = 3.3 \times 10^2 \times \frac{10^{-7}}{0.5 \times 10^{-4}} = 0.66 \text{ cm} \]

Quindi con l'introduzione della deformazione \( K \) noi riusciamo ad avere una spiralizzazione maggiore ed a disporre di un tempo maggiore prima che gli elettroni urtino la parete interna. (Da notare che in fig. 4 il "tempo" che intercorre tra \( K \) ed \( N \) è ancora disponibile). In fig. 4 si vede, seguendo le varie isocroni, l'andamento del campo descritto in questo esempio numerico.

Infatti dalla

\[ B_0 \omega t_0 \left( l - \frac{\eta}{r_0} \right) \left( r_0 + x \right) = \frac{r_0}{r_0 \omega (t_0 + \tau) \left( l - \frac{\eta}{r_0} \right) + \frac{k_0 x}{r_0} \left( t_0 + \tau \right)} \]

si ricava il valore di \( \mathbf{S} = A \cdot x \) risolvendo rispetto ad \( x \). Per un campo della forma

\[ \mathbf{S} = B_0 \left( t \right) \left( l - \frac{\eta}{r_0} \right) + \frac{k_0 x}{B_0 \left( t \right)} \]

si trova

\[ \mathbf{S} = \frac{\Delta k_0 t + \Delta B}{l - \eta} \]  

(\text{E})
Quanto si è detto e le figure 3 e 4 valgono, al variare dei valori del parametro $t_1$ per qualche valore $w$.

4. Ripetiamo che l'esempio dato in Fig.4 non è probabilmente il più efficace. D'altra parte tutto quanto qui si è detto è re
do incerto dal fatto che non sappiamo come reagiscano le oscillazio
ni di betatron ad un $n$ funzione non lenta del tempo.

Se il gruppo teorico non avrà obiezioni fondamentali può dir
si sin d'ora che la realizzazione delle correcting coils adeguate
per variare $n$ per alcuni microsecondi è probabilmente possibile. In
caso positivo verranno fatte delle stime e delle proposte concrete.

G. Salvini — 3 Novembre 1953
ISOcroni presso l'Iniezione

3) \( n = \xi = \text{cost.} \)
regime di tempo e zona dipendente
Zona media, soluzione
fiocchi presso l'immersione
b) escopo per $a = n < p$