Laboratori Nazionali di Frascati

LNF - 53/36
18.7.1953.

G. Canarutto e G. Sacerdoti: RELAZIONE SUI COLLOQUI AVUTI COL PROF. SOMEDA A PADOVA IL 17.7.1953.
RELAZIONE SUL COLLOQUIO AVUTO COL CHIARISSIMO PROF. SOMEDA NELLA SEDE DELLA
FACOLTÀ DI ELETTRONICA DELL'UNIVERSITA' DI PADOVA IL 17 LUGLIO 1958 DAL
L'ING. CANABUTTO E DALL'ING. SACERDOTI.

Argomenti trattati:
1) Generalità sull'araldite
2) Disposizione costruttiva delle bobine.
3) Fissaggio delle bobine esterne
4) Montaggio delle bobine
5) Sistemi di eccitazione del magnete del Sincrotron:
 a) Alternatore che fornisce tutta la potenza attiva e reattiva.
 b) Choke-coil
 c) Motore a tensione continua ed alternata
 d) Metodo con mutua induttanza proposto dal Prof. Someda.

1) Il Prof. Someda ci ha consegnato dei campioni di araldite fusa con e senza
quarzo. Ci ha fatto notare come l'araldite fusa con quarzo abbia tutto
l'aspetto di una pietra dura. Sembra che dal punto di vista della resistenza
meccanica essa dia sufficienti garanzie e per quel che riguarda l'eventuale
emissione di vapori dal materiale stesso celpito degli elettroni sia necessario
procedere a delle prove sperimentali. Ci sono stati forniti alcuni campioni
di araldite fusa all'Università di Padova ad altri dell'ICRA svizzera. Quan
to all'uso di, araldite come isolante il Prof Someda richiamava la nostra
attenzione sul fatto che il coefficiente di dilatazione dell'aralditesia
maggiore di quello del rame.

II. Per quanto riguarda la disposizione costruttiva delle bobine, il prof. Someda
acconsente alla soluzione – già usata in un suo precedente trasformatore che lavora
a 60 A/mm – con tutti i conduttori quadrati a spigoli arrotondati con foro cir
colare centrale, per il raffreddamento con acqua. Ciò' affinché ogni conduttore
provi da un proprio raffreddamento e non vi siano da temere discontinuità tra
due piattine adiacenti; accennato però da parte nostra al fatto delle piccole
differenze di temperatura in gioco, il prof. Someda ammette la possibilità
diusare piattine rettangolari o quadrate in parallelo, delle quali queste
ultime sì sono provviste di unale di raffreddamento. In questo caso occorre
poò temere con azione meccanica quanto più possibile aderenti tra di loro le
piattine rettangolari e quelle quadrate.

3) Per quanto riguarda il fissaggio delle bobine esterne, in linea di massima
il Prof. Someda è favorevole ad un "L" di metallo non magnetico e non massiccio
che venga fissato sulla lastra che poggià lamierini – per la bobina superiore
e al supporto dei lamierini per la bobina inferiore. Un fissaggio con viti avvite
tate su alcune lamina di rame che s'immettono su un isolante a sua volta reso se
lidiale col supporto non dà alcuno a prima vista sufficienti di solidità. Le bobi
ne esterne vanno schermate (strato metallizzato sull'isolante) e messe a terra.

4) Per quanto riguarda il montaggio delle bobine il prof Someda vedrebbe favorevol
mente la costruzione della bobina completa su soggia, e pensa che questa soluzione
potrebbe essere preferita a quella che prevede la costruzione e sistemazione sepe
data delle bobine interne e di quelle esterne con montaggio delle testate in sito.
sistemi di eccitazione ne
gli stati prospettati al Prof. Someda i vari sistemi studiati
eccitazione del sincrotrone. Si possono riportare le seguenti
cosiderazioni:

eccitazione con macchina rotante che fornisce tutta la potenza
tiva e reattiva necessaria all'eccitazione del magnet del syn-

cretrone

Considerato che in tale caso questa macchina da sola dovrebbe
 fornire =17000 KVA, il Prof. Someda consiglia questa soluzione.
Infatti in primo luogo il costo della macchina da sola sarebbe
presumibilmente superiore a 1 costo dell'impianto previsto in b).
Inoltre considerato che il rendimento di tale macchina sarebbe
dell'ordine del 97,5%, si otterrebbero delle perdite di esercizio
dell'ordine 2 o 3 volte di quelle che si avrebbero nel caso b)
Infine, a parte ogni considerazione di costo iniziale e di rendimento,
la sistemazione e la manutenzione di una macchina così grossa,
presenta problemi notevoli e comunque onerosi. A tutto ciò va
ancora aggiunto la considerazione che guasti alla macchina potreb-
ere determinare anche per lungo tempo dell'utilizzo del sincrotrone,
mentre evidentemente più rapida e più facile appare una eventual
sostituzione provvisoria di elementi di condensatori o anche dei
piedini generatori di corrente alternata e corrente continua che
sono previsti nel caso del choke coil.

Per qualsiasi riguarda l'eccitazione con l'uso del choke coil, gen-
ratore c.c., generatore c.a., condensatori, presa visione dei costi
di macchina preventivati per una tale soluzione, il Prof. Someda ha
riconosciuto la convenienza di questa soluzione. Ha esaminato anche
la possibilità di costruire il choke coil con barlamerini in ferro massa
siccio; la soluzione prospettatagli, al prof. Someda sembra giusta.
Ha però consigliato di provare un modello anche in vista di prevedere
le eventuali distorsioni della corrente che potrebbero forse aver-

Per quel che riguarda il motore a corrente alternata e corrente conti-
una insieme il Prof. Someda dice che si hanno problemi difficili-
cili e costosissimi alla commutazione e quindi l'uso di detto
motore non sarebbe certo conveniente per il costo del motore stesso.
Il Prof. Someda ha consigliato di esaminare anche il caso di separ-
are i due circuiti a corrente continua e corrente alternata e compen-
sare l'accoppiamento c.c. - c.a. con una mutua induttanza che crea
una forza controeletricometrica di compenso.