AN OVERVIEW OF EXPERIMENTAL STUDIES ON H/PD OVER-LOADING WITH THIN PD WIRES AND DIFFERENT ELECTROLYTIC SOLUTIONS

A. Spallone1, F. Celani1, V. Di Stefano2, P. Marini2

1 INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy

2 EURESYS, Via Lero 30, 00129 Roma, Italy

Abstract

Hundreds of electrolytic loading tests of thin Pd wires in different experimental conditions have been performed in order to find out the best procedures for a stable, high Hydrogen overloading into the Palladium lattice.

In a very diluted acid solution thin Pd cathodes (50 or 100 μm in diameter) and tick Pt anodes (0.5 mm in diameter) were used in a parallel or coaxial geometry. Normalised resistance (R/R_o) of the Pd cathode was on-line and continuously measured in order to assess the actual H/Pd values.

Different electrolytic solutions have been tested by adding to the acid solution very low amounts of Ca, Sr, Li and Hg ions; high loading H/Pd ratios have been achieved with a satisfactory grade of reproducibility.

Several loading procedures have been performed in a wide range of electrolysis current (from a few mA up to one hundred mA) and at different Hg ion concentrations.

The obtained results allowed for the definition of a loading protocol capable to insure very high H/Pd over-loading. Stable $R/R_o \leq 1.2$ values (corresponding to H/Pd ratios ≥ 1) can be currently achieved with an extremely low electrolytic power supply (10 V; 5 mA).

Invited paper at
ICCF11, October 30, November 5, (2004) Marseille (France)
1. INTRODUCTION

During the last 6 years we spent a lot of efforts in order to find out the best Hydrogen loading procedures of thin Pd cathodes.

Most of the researchers agree that, in cold fusion experiments, in order to obtain stable and reproducible excess heat, it is necessary to achieve and maintain very high $D/Pd \ (\approx 0.85)$ loading ratios [Ref. 1]. The poor results generally achieved by the conventional electrolytic techniques, based on the use of LiOH solutions, especially from the point of view of their reproducibility, induced us to develop a completely different approach. In fact, in our previous papers, we have reported a reproducible procedure to achieve very high loading ratios using Palladium thin wires ($H/Pd \approx 1$) [Ref.s 2,3]. This procedure is based on the increasing of the cathodic over-voltage (which is known to be the main controlling parameter of the $H(D)-Pd$ loading) by modifying the nature of the cathode surface (i.e. by inducing the formation of a very thin layer of an alkaline-earth carbonate on its surface).

2. EVALUATION OF THE H/Pd RATIO

In order to estimate the actual H/Pd atomic ratio of the Pd cathode during the electrolytic loading process, we measured the electrical normalised resistance ($R/\!Ro$) of the Pd wire; i.e. the ratio between the actual resistance (R, during the loading) and that of the electrode at the beginning of the electrolysis (Ro), when the value $H/Pd= 0$.

The loading ratio was inferred and continuously monitored by means of the well known relationship [Ref.s 4,5,6] between the resistance and the $H(D)$ content in the Pd matrix (Fig. 1). The actual known values of this relationship terminate at $H/Pd= 0.9$, corresponding to $R/\!Ro= 1.40$. Beyond such values the correspondence can be estimated only by a linear extrapolation. Accordingly, it is possible to asses that the ratio $H/Pd= 1.00$ is roughly achieved when $R/\!Ro=1.20$.

3. EXPERIMENTAL APPARATUS

A schematic diagram of the experimental set-up is shown in Figure 2. The vessels are typically cylindrical glass beakers of different sizes (from 0.5 up to 5 litres).

The power supply can operate either at constant D.C. current or at constant D.C. voltage. The cathode is grounded. The voltage is applied to the anode through a home-made impedance adapter circuit (impedance booster), in order to avoid a current feed-back from the A.C. measuring circuit. The latter is essentially composed by a pulse generator (allowing for sinusoidal, square and triangular wave forms; we always used the sinusoidal ones) and a ground home-made coupling circuit (ground return, both for the D.C. and A.C. generators).

Temperature sensors (based on Silicon integrated circuit) are located inside the cell (into the solution at 3 different levels) and outside the cell (2 for the thermal bath and 1 for the room temperature) and on-line monitored.

The Pd cathode, because of its favourable surface/volume ratio, allows for a very fast Hydrogen absorption and its high resistance (about 8 Ω) favours both the accuracy and the precision of the measurements. Furthermore, the $1/r$ dependence of the electric field around the
wire allows for a sharp increase of the pH value just in its proximity, thus promoting the carbonate precipitation in that region only [for more details see: Refs. 2,3].

--- The geometry of the electrolytic cell strongly affects the loading process: the relative position of the electrodes is crucial for a proper set up of the primary electric fields during the electrolysis [Ref.7]. Moreover we have to take into account that during the loading the Pd wire’s length remarkably increases (5→15%); the wire is consequently forced to bend and the original distance of the electrodes could be significantly changed. We tested 2 different Pd-Pt electrodes distance values (variable from 1.5 cm up to 7 cm) in 2 different geometries:

1) a parallel geometry with Pd and Pt wires of the same length at the same distance;
2) a Pd central axial geometry with 4 Pt wires cylindrically located around the cathode at the same distance.

--- The electrodes are about 25 cm long; The Pt wire (sector AB as drawn in Fig. 2) was 1 mm thick; Pd cathodes of 2 different thickness values (50 or 100 µm) were used. A pick-up junction divides the Pd wire in 2 equally long sectors (sectors CD and DE named “up” and “down” as drawn in Fig. 2 of electric resistance about either 2 or 8 Ω respectively for either 100 or 50 µm Pd diameters) allowing for the measurement of the resistances of the correspondent wire segments.

--- H₂O, Ethyl Alcohol (C₂H₅OH) or Methyl Alcohol (CH₃OH) were used for the preparation of the electrolyte (in order to reduce the impurities present in commercial heavy water [Refs.8,9] some tests using alcohol based electrolytes were previously performed in the electrolytic loading in D₂O/C₂H₅OD solvents; in the present work the alcohol based electrolytes were also tested for Hydrogen loading).

As above reported, very low concentrations (less than 1 mMole) of HCl or H₂SO₄ were added to the electrolytes in order to maintain the pH around 4.5 -5.5; the anode-cathode electrolytic resistance ranged between 1 and 5 KΩ).

--- Small amounts (tenth of µMoles) of different alkaline elements such as Ca, Sr and Li were added to the electrolyte, according to an our original procedure previously developed in order to improve the H/Pd loading (motivations and details of this addition are also reported in [Ref.3])

--- Finally, many tests have been performed by adding very small amount of HgCl₂ (ranging from 0.1 up to 10 µMoles) to the electrolyte. In some tests very small amounts of Hg (estimated on the order of tenth of nMole) were actually present in the electrolyte (nominally Hg²⁺ free). In fact, in consequence of the de-loading process of the cathode normally effected at the end of a set of experiments, the Hg amalgam previously formed on the Pd surface in the cathodic cycles is stripped away during the final anodic cycle and some residual traces normally remains on the Pt surface even after the Hg containing electrolyte has been fully removed. Hg traces on the Pt surface go back into solution as soon as the cathodic cycle of the new set of experiments starts up.

Mercury, as it is shown below plays a fundamental role in the over-loading process.
4. H/Pd LOADING PROCEDURE

In the achievement of very high H/Pd loadings, the role played by the electric parameters (Anode-Cathode voltage and current) is crucial with any given cell geometry and electrolyte. The primary and secondary electric field [Ref.7] operating onto the Pd cathode may produce an Hg and alkaline element containing deposit with a particular structure, which seems to be responsible for the Pd-bulk over-loading.

In order to produce this particular structure, we tried several procedures, changing electrolysis current values not only at the electrolysis start up (Start in Low current: SL or Start in High current; SH) but also during the electrolysis when the Pd electrode had been loaded and was steady, after the ”peak value” of R/Ro=1.8 (as referred at the Fig. 1).

Low current (Low: L) means just a few milli-Amperes (2→10 mA and 5→15 Volts), high current (High: H) means some tens of milli-Amperes (30→150 mA and 50→200 V) and mean current (M) is occurring in the middle range.

In the following a list of these loading procedures (depending on the Hg deposition onto the Pd) is reported:

- **Start and Load**: start at constant current (Low or High) until the Pd cathode reaches a consistent over-loading (R/Ro<1.3); in general, if the Hg concentration is high, when the current is switched off, a very slow de-loading occurs (in one test no de-loading was observed along two days) [Ref.10]. We call this condition H/Pd-locked.

- **OFF/ON**: if the Pd electrode is loaded just over the R/Ro “peak”, the current is switched off, allowing for the Pd to de-load to the “peak”; the current is then switched on (either at low or at high current); this cycle can be repeated several times until the Pd reaches a high loading. This procedure can be applied when the Hg concentration is very low and the “ON” condition is corresponding to high current during the previous cycles.

- **L/H**: is similar to OFF/ON, but the current is not switched off, and “OFF” corresponds to a low current while “ON” corresponds to a high current.

- **L/H/L**: is similar to the previous L/H, but after Pd achieves high and steady loading at high current condition, current is set in low condition; at this low current a fast de-loading occurs, but sometimes the de-loading stops and Pd reloads slowly up to high values (sometimes higher than the ones obtainable at high current). This procedure is effective when Hg is neither very diluted nor very concentrated.

5. EXPERIMENTAL TESTS

In Table 1 are reported only the most revealing tests out of the many hundred ones that were performed. In this table all the above cited parameters are reported, that is: cell geometry, Pd thickness, electrolytic solution, electric values, loading procedure. The column “best R/Ro” means the final H/Pd over-loading reached applying the proper procedure (relative to “up” and “down” Pd sectors).

The 20 tests in Table 1 are in chronological order (from 1998 till 2004) and some of them have been repeated many times; the “best R/Ro” reproducibility was very poor at the beginning (about 10%) and increased with time reaching at present reasonably good values (>50%).
particularly when the Hg concentration is finely tuned and an optimal “current cycle” procedure is adopted.

In Fig.3 and Fig.4 are reported the values of R/Ro vs time (corresponding to the parameters of Tab.1,1 and Tab.1,2: the first two rows of Table 1). In these figures it is possible to see that alkaline elements like Ca and Sr are quite equivalent for the achievement of high loadings with a high Hg concentration. A typical “Start and Load” procedure is also shown. In this case the Pd electrode very often appears to be covered with a very thin Hg film which is nevertheless so impervious as to explain the observed very slow de-loading process when the current is switched off (load+lock).

In Fig.5 and Fig.6 a typical OFF/ON operation is shown in connection with runs with Sr and “residual” Hg (Tab.1,3 and Tab.1,4). It is shown that it is possible to achieve a high and steady loading from low loading (R/Ro=1.8→1.2). Moreover, the de-loading curve (electrolysis in OFF for 1 day) shows that the resistance measurements are correct and consistent (peak at R/Ro=1.8 and return to R/Ro=1.0, i.e. the starting condition); the de-loading vs time curve allows for the observation of the typical $\beta \rightarrow \alpha + \beta$, Pd-H, lattice phase transition (occurring at R/Ro \approx 1.68, H/Pd \approx 0.6 at room temperature and at a pressure of 1 atmosphere [Ref.11]).

In Fig.7 (run of Tab.1,7) it is shown the role played by the Hg addition during the run (at the time of about 75 Ksec) in combination with a Low/High operation; high loading values persist even when the current is decreased.

The effects of the substitution of H$_2$O with Ethyl Alcohol (as base for the electrolyte) are shown in Fig.8 (run of Tab.1,11): the presence of Sr+Hg in sulphuric environment is effective for reaching very high loading, by applying a OFF/High/Low current procedure.

Even with very small Hg additions (down to 0.5 μMoles), it is possible to reach very high loadings (R/Ro=1.05) as shown in Fig.9 (run of Tab.1,15). In this case just a Start-Low/High current variation is sufficient to trigger the loading process.

By exchanging Sr with Li similar high loading effects are obtained (runs of Tab.1,16→1,19) but additions of fair amounts of Hg (1 μMole), cause the role played by the electrolytic current to become crucial, as shown in Fig.10 (run of Tab.1,20). In this plot, the first run is performed at Low current (5 mA) resulting in a poor loading. On the contrary with the subsequent run, which was started with a Medium range current of 36 mA (after a de-loading at R/Ro=1, with -5 mA anodic current) a steady high loading (R/Ro=1.2) was obtained within a few hours.

Several tests with Methyl Alcohol have also been performed showing loadings around R/Ro=1.3.

We never measured “anomalous” temperature variations inside the cell even when very high loadings were achieved.
Tab.1 – The most relevant tests (out of many hundred ones) showing high over-loadings performed by different solutions, elements addition and loading procedures (tests are been performed at room temperature of about 22 ±5°C).

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>Alkaline Element</th>
<th>Power (µM)</th>
<th>LOAD procedure</th>
<th>“best”</th>
<th>Remark (set-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>H₂O=2400cc +HCl=140</td>
<td>CaCl₂= 70</td>
<td>Hg = 10</td>
<td>(60;20)</td>
<td>Off/ON (+ deload)</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>H₂O=2400cc +HCl=140</td>
<td>SrCl₂ = 35</td>
<td>Hg = 10</td>
<td>(40;20)</td>
<td>Off/ON</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>H₂O=2400cc +HCl=210</td>
<td>SrCl₂ = 180</td>
<td>very low (<< 0.1)</td>
<td>(150;90)</td>
<td>LOW/HIGH</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>H₂O=2400cc +HCl=210</td>
<td>SrCl₂ = 180</td>
<td>very low (<< 0.1)</td>
<td>(150;65)</td>
<td>OFF/ON</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>H₂O=2400cc +HCl=500</td>
<td>SrCl₂ = 20</td>
<td>very low (<< 0.1)</td>
<td>(100;77)</td>
<td>OFF/ON</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>H₂O=2400cc +HCl=250</td>
<td>SrCl₂ = 160</td>
<td>very low (<< 0.1)</td>
<td>(150;70)</td>
<td>OFF/ON</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>H₂O=25000cc +HCl=250</td>
<td>SrSO₄ = 60</td>
<td>Hg=10cc</td>
<td>(90;105)</td>
<td>LOW/HIGH/LOW</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>H₂O=1200cc +HCl=20</td>
<td>SrCl₂ = 30</td>
<td>very low (<< 0.1)</td>
<td>(140;133)</td>
<td>OFF/ON</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>H₂O=1200cc +HCl=20</td>
<td>SrCl₂ = 30</td>
<td>very low (<< 0.1)</td>
<td>(6.5;4.4)</td>
<td>HIGH/LOW</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>Ethyl=395cc +H₂O=20cc H₂SO₄ = 25 +HCl=210</td>
<td>SrCO₃ =17mg (powder)</td>
<td>Hg = 5</td>
<td>(11;2)</td>
<td>Start and Load</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>Ethyl=395cc H₂SO₄ = 25 +HCl=210</td>
<td>SrCO₃ =17mg (powder)</td>
<td>Hg = 2.5</td>
<td>(11;2.5)</td>
<td>Start OFF/H/L</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>Ethyl=395cc +H₂O=20cc H₂SO₄ = 10 +HCl=200</td>
<td>SrCO₃ =30mg (powder)</td>
<td>Hg = 8</td>
<td>(12;3.7)</td>
<td>Start and Load</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>H₂O=400cc +HCl=200</td>
<td>SrCO₃ =85mg (powder)</td>
<td>Hg = 5</td>
<td>(45;60)</td>
<td>Start in L/M/H</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>H₂O=400cc +HCl=200</td>
<td>SrCl₂(6H₂O)= 53mg</td>
<td>Hg = 2.5</td>
<td>(6;7)</td>
<td>Start and Load</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>H₂O=420cc +HCl=70</td>
<td>SrCO₃ =7mg (powder)</td>
<td>Hg = 0.5</td>
<td>(10;6)</td>
<td>Start in L/H</td>
</tr>
</tbody>
</table>
6. DISCUSSION

Taking into account also previous studies (particularly performed during last 2 years), we can confirm that our procedure for the Pd-H overloading up to 1:1 loading ratio is effective using both aqueous and alcoholic solutions. This method is based on a proper deposition of a alkaline+mercury containing thin film onto the Pd cathode surface (independent of the wire section). Particular current cycles can improve the loading.

The complexity of these tests and the large spread of the process parameters distribution, can be tracked down to a peculiar deposition layer (ranging from 20 to 200 nm) onto the Pd cathode. We conjecture the formation of a sort of nano-structure on the surface which can give rise to relevant electro-chemical potentials and locally high current densities [Ref.12].

During the performance of a test consisting of a dozen of high current loadings (120 V; 60 mA) at high Hg concentration (about 10 µMoles) it was observed that after each loading/de-loading cycle the Ro value increased of some percent. At the end of the test we measured the Pd wire thickness and it was found a decrease in diameter from the original 50 to 46 µm. These values are consistent with the increase of Ro with respect to the one at the beginning of the test. It is reasonable to assume that the alkaline+Hg+Pd layer formed during the loading (cathodic) cycle issued in the removal of about a 200 nm Pd layer during each de-loading (anodic) cycle.

A further structural analysis of this deposition is required to confirm the rightness of our conjecture.

It was shown [Ref.9] that the achievement of high loadings with D\textsubscript{2}O instead of H\textsubscript{2}O is much more difficult. Nevertheless we think that our method could be transferred to heavy water solutions. New tests are in progress showing encouraging preliminary results (R/Ro= 1.55 at low regime of 5 mA). The obstacles limiting the over-loading of Pd-D systems are mainly due to impurities present in the commercial D\textsubscript{2}O.
Fig. 1 – Normalized Resistance R/R_0 vs $H(D)/Pd$.

Fig. 2 – Electrolytic cell: a schematic view.

Fig. 3 – Test “Start and Load” with Ca ions and high Hg concentration (Tab.1,1).

Fig. 4 – Test “Start and Load” with Sr + Hg (10µM), ending with a H/Pd “lock” (Tab.1,2).
Fig. 5 – Test of OFF/ON procedure with Sr (+ very low Hg concentration) (Tab.1,3).

Fig. 6 – Test OFF/ON with Sr (+ very low Hg) and de-loading run in OFF (Tab.1,4).

Fig. 7 – Test with Sr and Hg addition during the run with a L/H operation (Tab.1,7).

Fig. 8 – Test with Sr+Hg in an Ethyllic solution; Start-OFF/H/L procedure (Tab.1,11).
Fig. 9 – Test with Sr + Hg (0.5µM); Start-L/H/M procedure (Tab.1,15).

Fig. 10 – Test with Li+Hg (1µM); Start-L and Start-H procedures comparison (Tab.1,20).
ACKNOWLEDGEMENTS

We are indebted to Eng. Alfredo Mancini for his precious support.
We are grateful to Dr. Daniele Garbelli and Dr Luca Gamberale for their important help and we want to thank Dr Mike McKubre for his useful suggestions.
Regarding the last tests, it has been crucial the expertness of Mr Vincenzo Andreassi, our skill technician.

REFERENCES

“HIGH HYDROGEN LOADING INTO THIN PALLADIUM WIRES THROUGH PRECIPITATE OF ALKALINE-EARTH CARBONATE ON THE SURFACE OF CATHODE: EVIDENCE OF NEW PHASES IN THE Pd-H SYSTEM AND UNEXPECTED PROBLEMS DUE TO BACTERIA CONTAMINATION IN THE HEAVY WATER.”
“NEW ELECTROLYTIC PROCEDURE FOR THE OBTAINMENT OF VERY HIGH H/Pd LOADING RATIOS. PRELIMINARY ATTEMPTS FOR ITS APPLICATION TO THE D-Pd SYSTEM.”
[8] F.Celani, A.Spallone et al.
“ELECTROCHEMICAL D LOADING OF PALLADIUM WIRES BY HEAVY ETHYL-ALCOHOL AND WATER ELECTROLYTE, RELATED TO RALSTONIA BACTERIA PROBLEMATICS.”
“EXPERIMENTAL STUDIES TO ACHIEVE H/Pd LOADING RATIO CLOSE TO 1 IN THIN WIRES, USING DIFFERENT ELECTROLYTIC SOLUTIONS.”
Proceedings of the 9th International Conference on Cold Fusion, “Condensed Matter Nuclear Science” pg 319-322, Beijing (China), 19-24 May 2002; Edited by Xing Z. Li.
10] A. Spallone, F. Celani, P. Marini and V. di Stefano.
“A reproducible method to achieve very high (over 1:1) H/Pd loading ratio using thin wires in acidic solution with addition of very low concentration impurities.”

"THE EFFECT OF GAMMA-BETA PHASE ON H(D)/Pd OVERLOADING."

“THE FORMATION OF "SOLID DEUTERIUM" SOLIDIFIED INSIDE CRYSTAL LATTICE AND INTENSE SOLID-STATE NUCLEAR FUSION ("COLD FUSION")”.
Il Nuovo Saggiatore (Bollettino SIF) Vol.20, No.5-6, pg.56-61 (2004).