
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Sezione di Padova

INFN/TC-09/03
May 05, 2009

DESIGN AND IMPLEMENTATION OF THE GLITE CREAM JOB
MANAGEMENT SERVICE

Cristina Aiftimiei, Paolo Andreetto, Sara Bertocco, Simone Dalla Fina,
Alvise Dorigo, Eric Frizziero, Alessio Gianelle, Moreno Marzolla, Mirco Mazzucato,

Massimo Sgaravatto, Sergio Traldi, Luigi Zangrando
INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy

Abstract

Job execution and management is one of the most important functionality provided by ev-
ery modern Grid middleware. In this paper we describe how theproblem of job manage-
ment has been addressed in the gLite middleware by means of the CREAM and CEMon-
itor services. CREAM (Computing Resource Execution and Management) provides a job
execution and management capability for Grid systems, while CEMonitor is a general-
purpose asynchronous event notification framework. Both services expose a Web Service
interface allowing conforming clients to submit, manage and monitor computational jobs
to a Local Resource Management System.

PACS: 89.20.Ff Computer Science and Technology

Published bySIS-Pubblicazioni
Laboratori Nazionali di Frascati



1 Introduction

Grid middleware distributions are often large software artifacts, which include a set of

components each providing a basic functionality. Such capabilities include (but are not

limited to) data storage, authentication and authorization, resource monitoring, and job

management. The job management component is used to submit,cancel, and monitor jobs

which are executed on a suitable computational resource, usually referred as a Computing

Element (CE). A CE is the interface to a usually large farm of computing hosts managed

by a Local Resource Management System (LRMS), such as LSF or PBS. Moreover, a CE

implements additional features with respect to the ones provided by the underlying batch

system, such as Grid-enabled user authentication and authorization, accounting, fault tol-

erance and improved performance and reliability.

In this paper we describe the architecture of Computing Resource Execution and

Management (CREAM), a system designed to efficiently managea CE in a Grid environ-

ment. CREAM provides a simple, robust and lightweight service for job operations. It

exposes an interface based on Web Services, which enables a high degree of interoper-

ability with clients written in different programming languages: currently Java and C++

clients are provided, but it is possible to use any language with a Web Service framework.

CREAM itself is written in Java, and runs as an extension of a Java-Axis servlet inside

the Apache Tomcat application server [1].

As stated before, it is important for users to be able to monitor the status of their

jobs. This means checking whether the job is queued, running, or finished; moreover,

extended status information (such as exit code, failure reason and so on) must be ob-

tained from the job management service. While CREAM provides an explicit operation

for querying the status of a set of jobs, it is possible to use aseparate notification service

in order to be notified when a job changes its status. This service is provided by CEMoni-

tor, which is a general-purpose asynchronous notification engine. CEMonitor can be used

by CREAM to notify the user about job status changes. This feature is particularly impor-

tant for specialized CREAM clients which need to handle a large amount of jobs. In these

cases, CEMonitor makes the expensive polling operations unnecessary, thus reducing the

load on CREAM and increasing the overall responsiveness.

CREAM and CEMonitor are part of the gLite [2] middleware distribution and cur-

rently in production use within the EGEE Grid infrastructure [3]. Users can install CREAM

in stand-alone mode, and interact directly with it through custom clients or using the pro-

vided C++-based command line tools. Moreover, gLite users can transparently submit

jobs to CREAM through the gLite Workload Management System (WMS). For the latter

case, a special component called Interface to Cream Environment (ICE) has been devel-

2



oped. ICE receives job submission and cancellation requests coming from a gLite WMS,

and forwards these requests to CREAM. ICE then handles the entire lifetime of a job,

including registering each status change to the gLite Logging and Bookkeeping (LB) ser-

vice [4]. Note, however, that CREAM is mostly self-contained, with few dependencies

on the gLite software components.

1.1 Related Works

The problem of job management is addressed by any Grid system. Different job man-

agement services have been developed starting from different requirements; furthermore,

they must take into account the specific features of the middleware they belong to.

The UNICORE (Uniform Interface to Computing Resources) [5]system was ini-

tially developed to allow German supercomputer centers to provide seamless and secure

access to their computational resources. Architecturally, UNICORE is a three-tier sys-

tem. The first tier is made of clients, which submit requests to the second tier (server

level). The server level of UNICORE consists of a Gateway which authenticates requests

from UNICORE clients and forwards them to a Network Job Supervisor (NJS) for fur-

ther processing. The NJS maps the abstract requests into concrete jobs or actions which

are performed by the target system. Sub-jobs that have to be run at a different site are

transferred to this site’s gateway for subsequent processing by the peer NJS. The third

tier of the architecture is the target host which executes the incarnated user jobs or system

functions.

The Advanced Resource Connector (ARC) [6] is a Grid middleware developed by

the NorduGrid collaboration. ARC is based on the Globus Toolkit1, and basically consists

of three fundamental components: theComputing Servicewhich represents the interface

to a computing resource (generally a cluster of computers);theInformation Systemwhich

is a distributed database maintaining a list of know resources; and aBrokering Client

which allows resource discovery and is able to distribute the workload across the Grid.

The Globus Toolkit provides both a suite of services to submit, monitor, and cancel

jobs on Grid computing resources. GRAM4 refers to the Web Service implementation of

such services [7]. GRAM4 includes a set of WSRF-compliant Web Services [8] to locate,

submit, monitor, and cancel jobs on Grid computing resources. GRAM4 is not a job

scheduler, but a set of services and clients for communicating with different batch/cluster

job schedulers using a common protocol. GRAM4 combines job-management services

and local system adapters with other service components of the Globus Toolkit in order

to support job execution with coordinated file staging.

1Globus and Globus Toolkit are trademarks of the University of Chicago

3



Initially, the job management service of the gLite middleware was implemented by

the legacy LGC-CE [9], which is based on the pre-Web Service version of GRAM. The

development of CREAM was motivated by some shortcomings of the existing solutions.

It was necessary to address scalability and performance problems with the existing so-

lutions. Furthermore, with the consolidation of open Web standards it was necessary to

develop a new, cross-platform Web Service-based CE.

1.2 Organization of this paper

This paper is organized as follows. In Section 2 we give a general overview on how

job management is implemented in the gLite middleware. Then, in Section 3 we restrict

our attention on the CREAM and CEMonitor services, which arethe final part of the

job management chain in gLite. Sections 4 and 5 describe the architecture of CREAM

and CEMonitor respectively. In Section 6 we describe the interactions with CREAM and

CEMonitor which are necessary to handle the typical job submission sequence. Section 7

describes how the components are built and deployed in the production infrastructure.

Section 8 describes some performance results. Finally, conclusions and future works are

discussed in Section 9.

2 Job Management in the gLite Middleware

In this section we give a brief introduction to the job management architecture of the gLite

middleware. The interested reader is referred to [2,9] for amore complete description.

Fig. 1 shows the main components involved in the gLite job submission chain. We

will consider job submission to the CREAM CE only. The components shown in gray in

the figure–namely JobController+LogMonitor+CondorG and LCG-CE–are those respon-

sible for job management through the legacy LCG-CE, and willnot be described in this

paper.

There are two entry points for job management requests: the gLite WMS User

Interface (UI) and the CREAM UI. Both include a set of commandline tools which can

be used to submit, cancel and query the status of jobs. In gLite, jobs are described using

the Job Description Language (JDL) notation, which is a textual notation based on Condor

classads [10].

The CREAM UI is used to interact directly with a specific CREAMCE. It is a set

of command line tools, written in C++ using the gSoap engine [11]. The CREAM CLI

provides a set of commands to invoke the Web Services operations exposed by CREAM

(see Table 1 on Section 4 for the list of available operations). The user can submit, cancel,

and query the status of a job on a CREAM server.

4



gLite UI host

gLite WMS host

CREAM host

LB Server host

WMS UI

LB

CREAM

WMS

WMWMProxy

ICE

CREAM CLI

LGC CE Host

LGC CE

JC+LM+CondorG

0..* 1..*

1..*

0..* 1..*

Figure 1: Job submission chain (simplified) in the gLite middleware

On the other hand, the gLite WMS UI allows the user to submit and monitor jobs

through the gLite Workload Management System (WMS) [12]. The WMS is responsible

for the distribution and management of tasks across Grid resources (in particular Comput-

ing Elements), in such a way that applications are efficiently executed. Job management

through the WMS provides many benefits compared to direct jobsubmission to the CE:

• The WMS can manage multiple CEs, and is able to forward jobs tothe one which

better satisfies a set of requirements which can be specified as part of the job de-

scription;

• The WMS can be instructed to handle job failures: if a job aborts due to problems

related with the execution host (e.g. host misconfiguration) the WMS can automat-

ically resubmit it to a different CE;

• The WMS provides a global job tracking facility using the LB service;

• The WMS supports complex job types (job collections, job with dependencies)

which can not be handled directly by the CEs.

Note that there is a many to many relationship between the gLite WMS UI and

the WMS, that is, multiple User Interfaces can submit to the same WMS, and multi-

ple WMS can be associated to the same WMS UI.

The WMS exposes a Web Service interface which is implementedby the WMProxy

component. The core of the WMS is the Workload Manager (WM), whose purpose is to

5



accept and satisfy requests for job management. For job submission requests, the WM

tries to locate an appropriate resource (CE) where the job can be executed. The decision

of which resources should be used is the outcome of the matchmaking process between

the requests and the available resources. The user can specify a set ofrequirementsin the

job description. These requirements represent a set of constraints which the WM tries to

satisfy when selecting the CE where the job will be executed.

Currently, the gLite WMS can submit jobs to CREAM as well as tothe legacy LCG-

CE. Each CE is uniquely identified by a URI calledce-id. Interaction with the LCG-CE is

handled by the Job Controller/Log Monitor/CondorG (JC/LM/CondorG) modules within

the WMS. In the case of submission to CREAM-based CEs, jobs are managed by a

different module, called ICE. ICE receives job submissionsand other job management

requests from the WM component of the WMS through a simple messaging system based

on local files. ICE then uses the operations of the CREAM interface to perform the

requested operation. Moreover, it is responsible for monitoring the state of submitted

jobs and for taking the appropriate actions when job status changes are detected (e.g. to

trigger a possible resubmission if a Grid failure is detected).

ICE can obtain the state of a job in two different ways. The first one is by subscrib-

ing to a job status change notification service implemented by a separate component called

CEMonitor (more details in Section 5). CEMonitor [13] is a general purpose event noti-

fication framework. CREAM notifies the CEMonitor component about job state changes

by using the shared, persistent CREAM backend. ICE subscribes to CEMonitor notifi-

cations, so it receives all status changes whenever they occur. As a fallback mechanism,

ICE can also poll the CREAM service to check the status of “active” jobs for which it did

not receive any notification for a configurable period of time. This mechanism guarantees

that ICE knows the state of jobs even if the CEMonitor servicebecomes unavailable or

has not been installed.

The LB service [4] is used by the WMS to store various information on running jobs,

and provide the user with an overall view on the job state. Theservice collects events in

a non blocking asynchronous way, and this information can beused to compute the job

state. LB is also used to store events such as the transfer of jobs from one component to

another one (e.g., from the WMproxy to the WM): in this way, the user knows the location

of each job. The job status information gathered by the LB is made available through the

gLite UI commands. Note that in case of direct submissions through the CREAM UI,

the LB service is not used; however, CREAM itself provides the JobInfooperation for

reporting detailed job status information.

6



3 CREAM and CEMonitor

CREAM and CEMonitor are both available through Web Service interfaces. CREAM is

intended to offer job management facilities to the widest possible range of consumers.

This includes not only other components of the same middleware stack, but also single

users and other heterogeneous services. Thus, we need a mechanism that lets poten-

tial users to be as free as possible in using their own tools and languages to interface

to CREAM and CEMonitor. The Web Services technology offers all the interoperability

characteristics that are needed to fulfill the above requirements.

3.1 Deployment

Fig. 2 shows the typical deployment of a Computing Element based on CREAM and CE-

Monitor. Both applications run as Java-Axis servlets [14] in the Tomcat application

server [1]. Requests to CREAM and CEMonitor traverse a pipeline of additional compo-

nents which take care of authorization issues; one of these component is theAuthorization

Framework, which is an Axis plugin for validating and authorizing the requests received

by the services (more details on the security infrastructure will be given shortly).

CREAM uses an external relational database server to store its internal state. This

improves fault-tolerance as it guarantees that this information is preserved across restarts

of CREAM. Moreover, the use of a SQL database improves responsiveness of the service

while performing complex queries which are needed by the normal CREAM operations,

such as getting the list of jobs associated with a specific user. The database is accessed

through the JDBC interface; in the gLite deployment we are using MySQL [15], but any

database accessible through JDBC is supported. Note that the database server can be in-

stalled on a dedicated host, as shown in Fig. 2, or can share the same machine as CREAM

and CEMonitor.

CREAM interacts with CEMonitor [13] to provide an asynchronous job status no-

tification service. For each job status change, CREAM notifies CEMonitor, which in turn

check whether there are subscriptions registered for that notification. If so, the notification

is sent to the user which requested that (more details will begiven in Section 5).

CREAM can be associated to multiple batch queues (note the one-to-many asso-

ciation shown in Fig. 2). CREAM submits requests to the LRMS through Batch-system

Local ASCII Helper (BLAH) [16], an abstraction layer for theunderlying LRMS. BLAH,

in turn, interacts with the client-side LRMS environment, which might consist of a set of

command line tools which interact with the server-side LRMS.

7



CREAM CE

CREAM DB Host

SQL DB Server

Tomcat

Axis

Axis

Delegation

CREAM

CEMon

Trust Manager

Authz Fwk

Authz Fwk

Authz Fwk

LRMS head node

Server-side LRMS 1..*

Figure 2: Typical deployment of a CREAM service

3.2 Security

The Grid is a large collaborative resource-sharing environment. Users and services cross

the boundaries of their respective organizations and thus resources can be accessed by

entities belonging to several different institutions. In such a scenario, security issues are

of particular relevance. There exists a wide range of authentication and authorization

mechanisms, but Grid security requires some extra features: access policies are defined

both at the level of Virtual Organizations (VOs) and at the level of single resource owners.

Both these aspects must be taken into account. Moreover, as we will see in the following,

Grid services have to face the problem of dealing with the delegation of certificates and

the mapping of Grid credentials into local batch system credentials.

Trust Manager The Trust Manager is the component responsible for carryingout au-

thentication operations. It is external to CREAM and CEMonitor, and is an implemen-

tation of the J2EE security specifications [17]. Authentication is based on Public Key

Infrastructure (PKI). Each user (and Grid service) wishingto access CREAM or CEMon-

itor is required to present an X.509 format certificate [18].These certificates are issued

by trusted entities, the Certificate Authorities (CA). The role of a CA is to guarantee the

identity of a user. This is achieved by issuing an electronicdocument (the certificate) that

contains the information about the user and is digitally signed by the CA with its private

key. An authentication manager, such as the Trust Manager, can verify the user identity

by decrypting the hash of the certificate with the CA public key. This ensures that the

certificate was issued by that specific CA. The Trust Manager can then access the user

8



data contained in the certificate and verify the user identity. One interesting challenge in a

Grid environment is the so-calledproxy delegation. It may be necessary for a job running

on a CE to perform some operations on behalf of the user owningthe job. Those oper-

ations might require proper authentication and authorization support. For example, we

may consider the case where a job running on a CE has to access aStorage Element (SE)

to retrieve or upload some data. This aim is achieved in the Trust Manager usingproxy

certificates. RFC3820 proxy certificates are an extension of X.509 certificates [19]. The

generation of a proxy certificate is as follows. If a user wants to delegate her credential

to CREAM, she has to contact thedelegation Port-typeof the service. CREAM creates a

public-private key pair and uses it to generate a CertificateSign Request (CSR). This is a

certificate that has to be signed by the user with her private key. The signed certificate is

then sent back to CREAM. This procedure is similar to the generation of a valid certifi-

cate by a CA and, in fact, in this context the user acts like a CA. The certificate generated

so far is then combined with the user certificate, thus forming a chain of certificates. The

service that examines the proxy certificate can then verify the identity of the user that del-

egated its credentials by unfolding this chain of certificates. Every certificate in the chain

is used to verify the authenticity of the certificate at the previous level in the chain. At

the last step, a CA certificate states the identity of the userthat first issues the delegated

proxy.

Authorization Framework The aim of the authorization process is to check whether

an authenticated user has the rights to access services and resources and to perform cer-

tain tasks. The decision is taken on the basis of policies that can be either local or de-

cided at the VO level. Administrators need a tool that allowsthem to easily configure the

authorization system in order to combine and integrate boththese policies. For this rea-

son, CREAM adopts a framework that provides a light-weight,configurable, and easily

deployable policy-engine-chaining infrastructure for enforcing, retrieving, evaluating and

combining policies locally at the individual resource sites. The framework provides a way

to invoke a chain of policy engines and get a decision result about the authorization of a

user. The policy engines are divided in two types, dependingon their functionality. They

can be plugged into the framework in order to form a chain of policy engines as selected

by the administrator in order to let him set up a complete authorization system. A policy

engine may be either a Policy Information Point (PIP) or a Policy Decision Point (PDP).

PIPs collect and verify assertions and capabilities associated with the user, checking her

role, group and VO attributes. PDPs may use the information retrieved by a PIP to decide

whether the user is allowed to perform the requested action,whether further evaluation

is needed, or whether the evaluation should be interrupted and the user access denied.

9



In CREAM both VO and “ban/allow” based authorizations are supported. In the former

scenario, implemented via the VOMS PDP, the administrator can specify authorization

policies based on the VOs the jobs’ owners belong to (or on particular VO attributes). In

the latter case the administrator of the CREAM-based CE can explicitly list all the Grid

users (identified by their X.509 Distinguished Names) authorized to access CREAM ser-

vices. For what concerns authorization on job operations, by default each user can manage

(e.g. cancel, suspend, etc.) only her own jobs. However, theCREAM administrator can

define specific “super-users” who are empowered to manage also jobs submitted by other

users.

Credential Mapping The execution of user jobs in a Grid environment requires iso-

lation mechanisms for both applications (to protect these applications from each other)

and resource owners (to control the behavior of these arbitrary applications). In the ab-

sence of solutions based on the virtualization of resources(VM), CREAM implements

isolation via local credential mapping, exploiting traditional Unix-level security mecha-

nisms like a separate user account per Grid user or per job. This Unix domain isolation

is implemented in the form of thegLExec system [20], a sudo-style program which al-

lows the execution of the user’s job with local credentials derived from the user’s iden-

tity and any accompanying authorization assertions. This relation between the Grid cre-

dentials and the local Unix accounts and groups is determined by the Local Credential

MAPping Service (LCMAPS) [21].gLExec also uses the Local Centre Authorization

Service (LCAS) to verify the user proxy, to check if the user has the proper authoriza-

tion to use thegLExec service, and to check if the target executable has been properly

“enabled” by the resource owner.

4 The CREAM service

The main functionality of CREAM is job management. Users submit jobs described

as a JDL expression [22] representing a job, and CREAM executes it on an underlying

LRMS (batch system). The JDL is a high-level, user-orientednotation based on Con-

dor classified advertisements (classads) [10] for describing jobs and their requirements.

CREAM uses a JDL dialect which is very similar to the one used to describe jobs in the

gLite WMS. There are however some differences between the CREAM and WMS JDL,

which are motivated by the different role of the job execution and workload management

services. As described in Section 2, the gLite WMS receives job submission requests

which possibly include a set of user-defined requirements, which are used by the WM to

select the CE where the job is executed. Of course, once the selection is done, there

10



is no need for the CE to further process the job requirements as they are no longer

relevant. Similarly, there are other kind of information which only make sense for the

CREAM JDL, and not for the WMS JDL.

CREAM supports the execution of batch (normal) and parallel(MPI) jobs. Normal

jobs are single or multithreaded applications requiring one CPU to be executed; MPI jobs

are parallel applications which usually require a larger number of CPUs to be executed,

and which make use of the MPI library for interprocess communication.

Applications executed by CREAM might need a set of input datafiles to process,

and might produce a set of output data files. The set of input files is called the InputSandBox

(ISB), while the set of files produced by the application is called the OutputSandBox

(OSB). CREAM transfers the ISB to the executing node from theclient node and/or from

Grid storage servers to the execution node. The ISB is stagedin before the job is allowed

to start. Similarly, files belonging to the OSB are automatically transferred out of the

execution node when the job terminates.

As an example, consider the following JDL processed by CREAM:

[

Type = "job";

JobType = "normal";

Executable = "/sw/command";

Arguments = "60";

StdOutput = "sim.out";

StdError = "sim.err";

OutputSandbox = {

"sim.err",

"sim.out"

};

OutputSandboxBaseDestURI = "gsiftp://se1.pd.infn.it:5432/tmp";

InputSandbox = {

"file:///home/user/file1",

"gsiftp://se1.pd.infn.it:1234/data/file2",

"/home/user/file3",

"file4"

};

InputSandboxBaseURI = "gsiftp://se2.cern.ch:5678/tmp";

]

With this JDL anormal (batch) job will be submitted. Besides the specification of

the executable/sw/command (which must already be available in the file system of the

executing node, since it is not listed in the ISB), and of the standard output/error files,

it is specified that the filesfile1, file2, file3, file4 will have to be staged on the

executing node as follows:

• file1 andfile3 will be copied from the client UI file system

• file2 will be copied from the specified GridFTP server

(gsiftp://se1.pd.infn.it:1234/data/file2)

11



• file4 will be copied from the GridFTP server specified asInputSandboxBaseURI

(gsiftp://se2.cern.ch:5678/tmp)

It is also specified that the filessim.err andsim.out (specified asOutputSandbox)

must be automatically uploaded intogsiftp://se1.pd.infn.it:5432/tmp when the

job completes its execution.

The pre- and post-staging of data is handled by a shell script, called Job Wrapper

(JW), which is what is actually sent for execution on the LRMS. As the name suggests,

the script “wraps” the executable by taking care of fetchingexternal data, then calling the

executable and finally putting the output data to the correctremote locations. The JW is

assembled by CREAM according to the JDL and sent to the LRMS.

Other typical job management operations (job cancellation, job status with different

levels of verbosity and filtering, job listing, job purging)are supported. Moreover users

are allowed to suspend and resume jobs submitted to CREAM-based CEs, provided that

the underlying LRMS supports this feature.

For what concerns security, authentication (implemented using a GSI based frame-

work [7]) is properly supported in all operations. Authorization on the CREAM service

is also implemented, supporting both VO based policies and policies specified in terms

of individual Grid users. A Virtual Organization is a concept that supplies a context

for operation of the Grid that can be used to associate users,their requests, and a set

of resources. CREAM interacts with the VO Membership Service (VOMS) [23] to man-

age VOs; VOMS is an attribute issuing service which allows high-level group and capabil-

ity management and extraction of attributes based on the user’s identity. VOMS attributes

are typically embedded in the user’s proxy certificate, enabling the client to authenticate

as well as to provide VO membership and other evidence in a single operation.

Fig. 3 shows the (simplified) internal structure of the CREAMservice. CREAM

exposes two different Web Service interfaces. The operations of the legacy CREAM

interface are listed in Table 1.

The first group of operations (Lease Management) allows the user to define and

manage leases associated with jobs. The lease mechanism hasbeen implemented to en-

sure that all jobs get eventually managed, even if the CREAM service loses connection

with the client application due to network partitioning. Each lease defines a time interval,

and can be associated with a set of jobs. A lease can be renewedbefore its expiration; if

a lease expires, all jobs associated with it are terminated and purged by CREAM.

The second group of operations (Job Management) is related with the core func-

tionality of CREAM as a job management service. Operations are provided to create a

new job, start execution of a job, suspend/resume or terminate a job. Moreover, the user

12



Authentication Layer (TLS/SSL)Authorization Layer (VOMS)

CREAM

<<interface>>
BES Interface

<<interface>>
Legacy Interface

CREAM Core

<<realize>> <<realize>>

Client-side LRMS

JobCommand

CommandManager

JobRegisterCmd JobStartCmd OtherCmd

<<interface>>
Command

<<realize>>

0..*

BLAH

Figure 3: CREAM internal architecture

can get the list of all owned jobs, and it is also possible to get the status of a set of jobs.

The CREAM job state model is shown in Fig. 4, and job states aredescribed in Table 2.

Finally, the third group of operations (Service Management) deals with the whole

CREAM service. It consists of two operations, one for enabling/disabling new job sub-

missions, and one for accessing general information about the service itself. Note that

only users with administration privileges are allowed to enable/disable job submissions.

Recently we implemented an additional interface to the CREAM service, compli-

ant with the Basic Execution Service (BES) specification. BES [24] defines a standard

interface for execution services provided by different Grid systems. The aim of BES is

to favor interoperability of computing elements between different Grids: the same BES-

enabled CE can be “plugged” into any compliant infrastructure; moreover, sharing of re-

sources between different Grids is possible. BES defines basic operations for job submis-

sion and management. More specifically, the BES specification defines two Web Services

port-types: BES-Factory, containing operations for creating, monitoring and controlling

sets of jobs, andBES-Management, which allows clients to monitor the details of and

control the BES itself. The Port-types and associated operations are shown in Table 3.

BES uses the Job Submission Description Language (JSDL) [25] as the notation

for describing computational jobs. The legacy CREAM interface was defined before BES

was available, and also provides additional methods which are not provided by BES (no-

tably, the possibility to renew a user proxy certificate, which is useful to avoid user proxy

13



Lease Management Operations

SetLease Creates a new lease, or renews an existing lease

GetLease Gets information on a lease with given ID

JobSetLeaseId Associates a lease with a job

GetLeaseList Gets the list of all active leases

DeleteLease Deletes a lease, and purge all associated jobs

Job Management Operations

JobRegister Registers a new job for future execution

JobStart Starts execution of a registered job

JobCancel Terminates a job

JobPurge Purges all information of a job

JobSuspend Suspends execution of a running job

JobResume Resumes execution of a suspended job

JobStatus Gets the status of a job

JobInfo Gets detailed information about a job

JobList Gets the list of all active jobs

Service Management Operations

acceptNewJobSubmissionsEnables/disables new job submissions

getServiceInfo Gets general information about the service

Table 1: CREAM interface operations

expiration while a job is running).

CREAM has been developed around an internal core, which is a generic command

executor. The core accepts abstract commands which are enqueued and executed by a

pool of threads. It is possible to customize the core by defining concrete implementations

of the abstract command interface. Two kind of commands can be defined:synchronous

andasynchronous. Synchronous commands must be executed immediately upon receipt,

while asynchronous command execution can be deferred at a later time. Moreover, it is

possible to definesequentialor parallel commands. When a parallel command is being

executed, other commands (parallel or sequential) can be concurrently executed by other

threads in the pool. When a sequential command is being executed, no other commands

operating on the same job are executed by any other thread, until the sequential command

terminates execution. The job management interfaces (boththe BES and the legacy one)

instantiate the correct command type to execute the operations requested by the users.

When job submissions arrive through the gLite WMS, it is essential that all jobs

submitted to CREAM eventually reach a terminal state (and thus eventually get purged

from the CREAM server). The gLite WMS has been augmented withan additional com-

14



Registered

JobRegister

Pending

JobStart

Aborted

Done-OKDone-FailedCancelled
LRMS Submission Failed

Idle Really-RunningRunning LRMS Executes the JobLRMS executes JW

Held

JobResume

JobResume

JobSuspend

JobSuspend

JobSuspend

JobCancel
Job Terminates with errors

Job Terminates Succesfully

LRMS assigns ID

JobResume

Job Terminates with errors

Figure 4: CREAM job states

ponent, ICE, which is responsible for interacting with CREAM. ICE and CREAM use a

lease-based protocol to ensure that all jobs get eventuallypurged by CREAM even if it

loses contact with the ICE client, e.g. due to network partitioning. Basically, each job

submitted through ICE has an associatedlease time, which must be periodically renewed

using theJobLeaseCREAM operation. ICE is responsible for periodically renewing the

leases associated to active jobs, i.e. jobs which are not terminated yet. Should a lease

expire before the actual termination of a job, CREAM will purge all jobs associated with

that lease and free all the CE resources used by them.

CREAM can be seen as an abstraction layer on top of an LRMS (batch system),

which extends the LRMS capabilities with an additional level of security, reliability, and

integration with a Grid infrastructure. CREAM supports different batch systems through

the idea ofLRMS connectors. An LRMS connector is an interface for a generic batch

system. Currently, CREAM supports all the batch systems supported by BLAH [16]

through a specific instance of LRMS connector called theBLAH connector module: at

the time of writing BLAH supports LSF, PBS/Torque, and Condor [26]; Sun Grid Engine

(SGE) support is currently being implemented as well. It is also possible to create other,

ad-hoc connectors to interact with other types of batch systems. Note that a single instance

of CREAM can provide access to multiple underlying LRMS.

5 The CEMonitor Service

The purpose of CEMonitor is to provide an asynchronous eventnotification framework,

which can be coupled with CREAM to notify the users when job status changes occur.

15



Registered The job has been submitted to CREAM with theJobRegisteroperation

Pending The user invoked theJobStartoperation to start the job execution

Idle The LRMS (batch system) accepted the job for execution. The job is now
in the LRMS queue

Running The Job Wrapper is being executed

Really-Running The actual user job is being executed

Held The job has been suspended, e.g. because the user issued theJobSuspend
operation. The job can be resumed in its previous state with the JobRe-
sumeoperation

Done-OK The job terminated correctly

Done-Failed The job terminated with errors

Cancelled The job has been cancelled, e.g. because the user invoked theJobCancel
operation to terminate it

Aborted Submission to the LRMS failed

Table 2: Description of the CREAM job states

Figure 5 shows the internal structure of the CEMonitor service. Similarly to CREAM,

CEMonitor is a Java application which runs in an Axis container within the Tomcat

application server. CEMonitor uses the same authentication/authorization mechanisms

as CREAM, which has been already discussed in Section 3.

CEMonitor publishes information asTopics. For each Topic, CEMonitor maintains

the list ofEventsto be notified to users. Topics can have three different levels of Visibil-

ity: public, meaning that everybody can receive events associated withthe topic;group,

meaning that only member of a specific VO can receive notifications; anduser, meaning

that only the user which created the Topic can receive notifications. Users can createSub-

scriptionsfor topics of interest. Each subscription has a unique ID, anexpiration time

and an update frequencyf . CEMonitor checks every1/f seconds whether there are new

events for the topic associated to the subscription; if so, the events are sent to the sub-

scribed users. Unless a subscription is explicitly renewedby its creator, it is removed

after the expiration time and no more events will be notified.

Each Topic is produced by a correspondingSensor. A Sensor is a component which

is responsible for actually generating Events to be notifiedfor a specific Topic. Sensors

can be plugged at runtime: when a new Sensor is added, CEMonitor automatically gener-

ates the corresponding Topic so that users can subscribe. The most important Sensor we

currently use is calledJobSensor, which produces the events corresponding to CREAM

job status changes. When CREAM detects that a job changes itsstatus (for example, an

Idle job starts execution, thus becomingRunning, it notifies the JobSensor by sending a

16



BES-Management Port-type

StartAcceptingNewActivities Administrative operation: requests that the BES ser-
vice start accepting new activities

StopAcceptingNewActivities Administrative operation: requests that the BES ser-
vice stop accepting new activities

BES-Factory Port-type

CreateActivity Requests the creation of a new activity; in general, this
operation performs the submission of a new computa-
tional job, which is immediately started

GetActivityStatuses Requests the status of a set of activities

TerminateActivities Requests termination of a set of activities

GetActivityDocuments Requests the JSDL document for a set of activities

GetFactoryAttributeDocument Requests the XML document containing the proper-
ties of this BES service

Table 3: BES Port-Types and Operations

message on the network socket where the sensor is listening.Then, the JobSensor triggers

a new notification which is eventually sent to all subscribedusers.

Each Sensor can provide either asynchronous notifications to registered listeners,

or can be queried synchronously. In both cases, Sensors support a list of so-calledQuery

Languages. A Query Language is a notation (e.g., XPath, classad expressions and so

on) which can be used to ask a Sensor to provide only Events satisfying a user-provided

condition. When an Event satisfies a condition, CEMonitor triggers anAction on that

event. In most cases, the Action simply instructs CEMonitorto send a notification to

the user for that event. Of course, it is possible to extend CEMonitor with additional

types of user-defined Actions. When registering for asynchronous notifications with the

SubscribeCEMonitor operation (see Table 4), the user passes a query expressed in one

of the supported Query Languages as parameter. So, for that subscription, only events

matching the query are notified.

Sensors support differentDialects. A Dialect is a specific output format which can

be used to render Events. This means that a Sensor can publishinformation in different

formats: for example, job status change information could be made available in Condor

classad format [10], or in XML format. When a user subscribesto a Topic, she can also

specify an appropriate Dialect for rendering the notifications. CEMonitor will then apply

the correct rendering before sending the notifications.

We show in Fig. 6 an example of job status change notification.The notification

is in Condor classad format, and contains several variableswith their associated values.

CREAM_JOB_ID is the ID of the job which changed status;CREAM_URL is the endpoint of

17



Authorization Layer (VOMS) Authentication Layer (TLS/SSL)

CEMonitor

CEMonitorService

Event

QueryLanguage

<<interface>>
CEMonitorPort

<<realize>> Topic

+Visibility : TopicVisibility

Sensor

Subscription

+frequency : Integer

Action

Dialect

0..*

0..*

0..*

JobSensor

0..*

0..*

1

1

Figure 5: Internal structure of CEMonitor

the CREAM service where the job is being executed;JOB_STATUS is the current job status

(in human-readable format);TIMESTAMP represents the time (in seconds since epoch)

when the job status change happened;WORKER_NODE is the name of the execution host

for the job. In this case, the job has not started execution yet, so the information on the

worker node is reported as not available. Figure 7 shows an XML rendering of the same

information.

[

CREAM_JOB_ID = "CREAM986407854";

CREAM_URL = "https://cream-02.pd.infn.it:8443/ce-cream/services/CREAM2";

JOB_STATUS = "REGISTERED";

TIMESTAMP = "1232444196000";

WORKER_NODE = "N/A"

]

Figure 6: Job status change notification in classad Dialect

Table 4 lists all the operations supported by CEMonitor.

It must be stressed that CEMonitor is not strictly coupled with CREAM. It is instead

a generic framework for information gathering and provisioning. For example in the

context of the Open Science Grid (OSG) ReSS project is used tomanage Grid resource

information [27].

18



<status>

<cream_job_id>CREAM986407854</cream_job_id>

<cream_url>

https://cream-02.pd.infn.it:8443/ce-cream/services/CREAM2

</cream_url>

<job_status>REGISTERED</job_status>

<timestamp>1232444196000</timestamp>

<worker_node>N/A</worker_node>

</status>

Figure 7: Job status change notification in XML Dialect

6 Putting the components together

In this section we summarize the submission to CREAM via the ICE enabled WMS with

the UML Sequence Diagram shown in Fig. 8.

The relevant messages shown in the diagram are as follows:

1. ICE invokes thegetProxyReqoperation on the Delegation service. The request

parameter is a string which represents the delegation ID which will be associated to

the delegated credentials.

2. The delegation service replies with a CSR, which is a RFC3280 style proxy certifi-

cate request in PEM format with Base64 encoding [18].

3. ICE signs the CSR on behalf of the user which originally submitted the job. This

is possible because ICE itself is using a user proxy certificate which has been dele-

gated to the WMS. Then, ICE sends back: the ID of the already delegation session

initiated on step 1, the RFC3280 style proxy certificate, signed by ICE on behalf of

the user, in PEM format with Base64 encoding.

4. The Delegation service transfers the delegation ID/signed proxy to CREAM. Note

that both CREAM and the delegation service execute on the same physical host, so

they can communicate locally.

5. ICE requests the creation of a new lease, with a given leaseID. At the moment,

ICE maintains a single lease for each user submitting jobs, so there are as many

lease IDs as the number of unique users submitting to a specific CREAM CE. Note

that the gLite WMS (and thus ICE) submits jobs on behalf of theuser, using an

X509 proxy certificate which has been delegated from the gLite UI (see Fig. 1) to

the WMS.

19



Service Management Operations

GetInfo Gets information about the CEMonitor service, including the version
and a brief description of the service, plus a list of available Topics and
Actions.

Lease Management Operations

Subscribe Subscribes for notifications. The user specifies the Topic, aQuery to be
executed and a set of Actions to trigger when the Query succeeds. The
notification rate can also be specified as parameter.

Update Updates an existing Subscription: it is possible to modify the Topic,
Query, triggered Actions and/or notification rate.

GetSubscriptionRef Gets the list of all Subscription IDs and associated expiration times be-
longing to the caller.

GetSubscription Gets detailed information on a set of Subscriptions given their unique IDs.

Unsubscribe Removes an existing subscription. Events associated to that Subscription
will no longer be notified.

PauseSubscription Pauses the stream of notifications associated with a given Subscription
ID.

ResumeSubscriptionResumes sending notifications associated with a previouslypaused
Subscription.

GetTopics Gets the list of Topics supported by CEMonitor.

GetTopicEvent Gets the list of events associated with the specified Topic.

Table 4: CEMonitor interface operations

6. ICE is now ready to submit jobs to CREAM using the existing delegation ID and

lease ID. The first step is to invoke theJobRegisteroperation on CREAM: this

operation prepares the job for execution, by first creating some temporary files for

internal use on the CE host.

7. The CREAM service registers the job, creates all the temporary files and returns a

CREAM job ID which can be used from now on to refer to this job.

8. ICE invokes theJobStartoperation, using the CREAM job ID as parameter, to re-

quest that the job is actually transferred to the LRMS, and torequest that execution

begins.

9. CREAM forwards the job to the LRMS; the job is added to the LRMS batch queue,

and will eventually be executed.

10. ICE subscribes to CEMonitor to receive job status changenotifications. This is

done only if there are no active subscriptions on that specific CREAM CE; if so,

20



Figure 8: Overall job submission sequence diagram

there is no need to create a new subscription, as it is possible to use the existing

one.

11. CEMonitor returns a Subscription ID, which can be used later on to renew, modify

or cancel the subscription.

12. The LRMS, through the BLAH component (see Section 4), notifies CREAM about

each job status change. CREAM in turn informs CEMonitor.

13. CEMonitor sends an appropriate notification to ICE; in order to reduce round-trip

times, CEMonitor batches multiple related notifications which are sent together to

subscribed clients.

14. ICE also periodically queries the job states directly tothe CREAM service using

theJobStatusoperation.

21



15. When the job terminates, ICE invokes aJobPurgeoperation to remove all tempo-

rary files which have been created on the CE node.

We remark that it is necessary to perform a single delegationoperation and to create

a single lease for each user. So, after the first job has been submitted, all subsequent

submissions for the same user will require the interactionsshown in box (a) only. The

interactions in box (b) are executed whenever CEMonitor hasnew job status changes to

notify. We recall that, in order to improve efficiency, CEMonitor batches multiple status

change events for the same user into a single notification which is sent to the clients each

1/f seconds,f being the user-defined notification frequency (in seconds).Finally, the

interactions shown in box (c) are executed only when ICE doesnot receive status change

notifications for some jobs for longer than a configurable threshold.

Finally, note that we omitted from Fig. 8 the operations required to renew the del-

egations when they are about to expire, and the operations required to renew the leases

when they are about to expire. Delegation renewal involves exactly the same operations

required for delegating credentials for the first time (operations 1 through 4 in the se-

quence diagram); lease renewal is performed by callingSetLeasewith an existing lease

ID, as in operation 5 in the diagram.

7 Build, Installation and Usage

All the components of the gLite middleware (including CREAMand CEMonitor) are

built using the ETICS Build and Test facility [28]. ETICS is an integrated system for

the automated build, configuration, integration and testing of software. Using ETICS it is

possible to integrate existing procedures, tools and resources in a coherent infrastructure,

additionally providing an intuitive access point through aWeb portal. The ETICS system

allows developers to assemble multiple components, each one being developed indepen-

dently, into a coherent software release. Each software component can use its own build

method (e.g., Make for C/C++ code, Ant for Java code and so on), and ETICS provides a

wrapper around that so that components or subsystems can be checked out and built using

a common set of commands. The ETICS system can automaticallyproduce and publish

installation packages for the components it builds; multiple target platforms can also be

handled.

CREAM and CEMonitor are included in the gLite 3.1 software distribution, which

is provided as a set of different deployment modules (also called node types) that can be

installed separately. CREAM and CEMonitor are installed and configured together as one

of these modules, calledcreamCE. For what concerns the installation, the main supported

22



platform, at present, is CERN Scientific Linux 4 (SLC4), 32-bit flavor; porting of gLite to

CERN Scientific Linux 5 (64 bit) is underway. For the SLC4 platform, the gLitecreamCE

is available in RPM [29] format and the recommended installation method is via the gLite

yum repository. For what concerns the configuration, there exists a manual configura-

tion procedure but a gLite compliant configuration tool alsoexists. The tool adopted

to configure gLite Grid Services is YAIM (YAIM Ain’t an Installation Manager) [30].

YAIM provides simple configuration methods that can be used to set up uniform Grid

sites. YAIM has been implemented as a set of bash scripts: it supports a component based

model with a modularized structure including a YAIM core component, common to all the

gLite middleware software, supplemented by component specific modules, all distributed

as RPMs. For CREAM and CEMonitor appropriate plugins for YAIM were implemented

in order to get a fully automated configuration procedure.

8 Performance Considerations

We evaluate the performance of the CREAM service in term of throughput (number of

submitted jobs/s), comparing CREAM with the LCG-CE currently used in the gLite mid-

dleware, considering the submission through the WMS. To do so, we submit 1000 identi-

cal jobs to an idle CE, using an otherwise identical infrastructure. The jobs are submitted

using the credentials of four different users (each user submits 250 jobs).

The layout of the testbed is shown in Fig. 9. All jobs are submitted using a WMS UI

installed on the hostcream-15.pd.infn.it located at INFN Padova. We always use the

gLite WMS UI (see Fig. 1) for submissions to both CREAM and theLCG-CE (that is,

we do not use direct CREAM submission). The UI transfers the jobs to the WMS host

devel19.cnaf.infn.it located at INFN CNAF in Bologna. The WMS submits jobs

through ICE to the CREAM service running oncream-21.pd.infn.it located at INFN

Padova. The JobController+CondorG+LogMonitor components of the WMS submit jobs

to a LCG-CE running oncert-12.pd.infn.it, also located at INFN Padova. Both

CREAM and the LCG-CE are connected to the same (local) batch system running the

LSF batch scheduler.

We are interested in examining the submission rate from ICE and JC/CondorG/LM

to CREAM and LCG-CE respectively; this is an HB (Higher is Better) metric, as higher

submission rate denotes better performance. To compute thesubmission rate we consider

the time elapsed since the first job is dequeued by ICE or JC from their respective input

queues, to the time the last job has been successfully transferred to the batch system. Note

that we do not take into consideration the time needed to complete execution of the jobs.

In order to ensure that the transfer from the WMS UI to the WMS is not the bottle-

23



cream-15.pd.infn.it devel19.cnaf.infn.it

cream-21.pd.infn.it

cert-12.pd.infn.it

User Interface (UI) gLite WMS host
gLite CREAM CE

LCG-CE

LSF Batch System

Figure 9: Layout of the testbed

neck in our tests, we execute the following steps:

1. We switch off the ICE or JC component of the WMS;

2. We submit 1000 jobs from the WMS UI;

3. When all the jobs have been successfully transferred to the WMS node, we switch

on ICE (or JC, depending on the kind of test we are performing). At this point ICE

(or JC) finds all the jobs in its input queue, so what we measurehere is the actual

transfer rate from the WMS to the CE.

We analyze the impact of two factors on the submission throughput. The factors we

consider are the following:

• Use of anautomatic proxy renewalmechanism vsno proxy renewal. The automatic

proxy renewal mechanism is normally used for long-running jobs, to ensure that

the credentials delegated to the CE are automatically refreshed before expiration.

Automatic proxy renewal works by first having the user register her credentials to

a so-calledMyProxy Server. The gLite WMS receives a “fresh” proxy from the

MyProxy server, and ICE or JC+CondorG are responsible for delegating the new

credentials to the CE. We remark that no proxy is actually refreshed in our tests,

since transfer of all jobs to the CE completes long before theuser credentials expire.

Nevertheless, the proxy renewal mechanism has an impact on the submission rate

to CREAM via ICE, as will be explained later.

• Use ofautomaticvs explicit delegation(see Section 3.2). Whenautomaticdelega-

tion is active, the WMS UI delegates a new proxy certificate tothe WMS, which in

turn delegates the proxy again to the CE,for each job submitted to the CE. Thus,

24



Proxy Delegation Submission Rate (jobs/sec)
Renewal CREAM/ICE LCG-CE/JC+CondorG+LM

Test A Disabled Explicit 0.9624 0.3952
Test B Disabled Automatic 0.1660 0.3633
Test C Enabled Explicit 0.8976 0.3728
Test D Enabled Automatic 0.9191 0.3863

Table 5: Test results; better submission rates are shown underlined

a new delegation operation on the CE is executed before each submitted job. Ifex-

plicit delegation is used, the user explicitly delegates a proxy before the first job is

submitted, and uses the same delegation ID for all subsequent submissions. Thus,

in this case only a single delegation operation is performedon the CE node.

We analyze four different scenarios with a total of 8 independent runs, correspond-

ing to a2
2 factorial design with two replications [31]; each test has been repeated two

times, and the average of the measured submission rates is considered.

Table 5 shows the submission rates for all the experiments. We observe that the

submission rates from JC+CondorG+LM to the LCG-CE remain more or less the same

across the different experiments. On the other hand, submission rates from ICE to the

CREAM CE are higher in three of our experiments, but incur a significant penalty in Test

B.

The reason for this is in the different way in which CREAM/ICEand LCG-

CE/JC+CondorG+LM implement the transfer of user credentials from the WMS to the

CE node. As already described in section 3, CREAM exposes a delegation port-type to

allow clients to securely delegate their credentials to theCE. The delegation operation

(steps 1–4 from Fig. 8) involves the creation on the server side of a public/private key

pair, which takes a considerable amount of time. Explicit delegation (Test A and C)

allows ICE to delegate only once for each user: in our tests, as we are submitting 250

jobs for each of 4 different users, only four delegation operations are performed, and this

causes a significant improvement of the submission rate.

The JC+CondorG+LM does not implement a proper delegation operation, butfor

each jobtransfers the user credentials to the LCG-CE using a more lightweight mech-

anism. This explains why the submission rate achieved by LCG-CE/JC+CondorG+LM

is more or less independent from the delegation mechanism used (automatic or explicit).

The lack of delegation on the LCG-CE was one of the reasons whyCREAM was devel-

oped, as credential transfer without proper delegation is no longer considered acceptable.

In Test D we have automatic delegation together with proxy renewal. This implies

thatall delegated user proxies are automatically renewed. Note that if the same user per-

25



forms two delegations, the delegated credentials will expire on different times, and thus

in general should be treated separately. However, if the proxy renewal mechanism is ac-

tive, all delegations will be renewed before expiration, sofrom the user point of view all

her credentials have duration equal to the duration of the proxy renewal mechanism. For

this reason, in situations like Test D, ICE considers all proxies “equivalent” by perform-

ing a single delegation operation to CREAM for each user which requested automatic

credentials renewal.

The CREAM based CE was also tested and used for real production activities.

To assess the performance and the reliability of CREAM, and in particular to verify

its usability in production environments, the Alice LHC experiment [32] performed some

tests which took place during the summer of 2008. About 55000standard production

Alice jobs, each one lasting about 12 hours, were submitted on a CREAM based CE at

the FZK2 Tier-1 center. The CREAM service showed a remarkable stability: no failures

were seen and no manual interventions were needed during thewhole test period.

After this first successfull assessment, the submission to CREAM based CREAM

CEs has been fully integrated in the Alien Alice software environment. Alice jobs are

currently being submitted in about a dozen of CREAM CEs deployed in several sites of

the EGEE Grid.

9 Conclusions

In this paper we described CREAM and CEMonitor, two softwarecomponents which

are used in the gLite middleware to implement a job executionand management service.

CREAM allows users to submit and manage computational jobs on a LRMS. CREAM

provides additional features on the top of the underlying batch system, such as Grid-

enabled user authentication and authorization, improved reliability, and integration with

the rest of the gLite infrastructure. CEMonitor is a general-purpose event notification ser-

vice, which can be coupled with CREAM to allow authorized users to receive notifications

about job status changes without the need to explicitly pollthe service.

CREAM and CEMonitor have been integrated into the gLite WMS using an ad-

ditional component called ICE. ICE receives requests from the gLite WM, and handles

all interactions with CREAM and CEMonitor. ICE takes care ofdelegating user creden-

tials to the CREAM service, subscribing to CEMonitor for receiving job status change

notifications, and actually submitting jobs to CREAM. ICE then monitors the jobs and

2Forschungszentrum Karlsruhe,http://www.fzk.de/

26



registers to the gLite LB service all status changes, such that Grid users know exactly the

location and the status of their jobs.

CREAM and CEMonitor expose a Web Service interface, which allows easy in-

teroperability with heterogeneous client applications. Recently, the Grid community is

putting considerable effort in defining standard interfaces to Grid services. The reason

for this interest is twofold: from one side, standard interfaces allow different middlewares

to easily share resources and services. Furthermore, standards-compliant components

improve the software development cycle by allowing developers to import software com-

ponents from other middleware stacks. For these reasons, weimplemented a prototype

support for the BES and JSDL specifications in CREAM. Howeverthese specifications,

in their current status, proved to be inappropriate for production use, as they only provide

basic functionality. In particular, the JSDL specificationis severely limited because it only

allows users to describe simple (batch) jobs, while structured jobs such as collections of

tasks with dependencies cannot be represented using the current JSDL standard. Fur-

thermore, security considerations are outside the scope ofthe BES specification, which

results in the possibility for different services to claim standard-compliance without be-

ing interoperable due to the use of mutually incompatible security settings. To address

these problems, the Grid community is currently defining production-quality extensions

of the BES and JSDL interfaces, which will eventually be implemented in CREAM and

will replace the legacy interface.

CREAM and CEMonitor are being actively developed. In futurereleases we plan to

improve the scalability and fault tolerance of these services by implementing appropriate

clustering/failover mechanisms. Clustered configurationallows multiple service instances

to balance their load, and can also be used to tolerate failures. However, as CREAM and

CEMonitor are both stateful services, special care must be taken such that each instance

share the same internal status while avoiding single pointsof failure. We are also in-

vestigating how some ideas from thecloud computingparadigm could be integrated into

CREAM. In particular, we are considering the possibility ofdynamically adjusting the

size (number of hosts) of the underlying LRMS to allow the system to automatically scale

whenever needed. This could be done, for example, by implementing a LRMS based on

Amazon’s EC2 service, such that the batch system pool could be dynamically increased

by instantiating new virtual hosts.

Acknowledgments

EGEE-3 is a project funded by the European Union under contract INFSO-RI-222667.

27



References

[1] Apache Software Foundation. Jakarta Tomcat Servlet Container,http://tomcat.

apache.org/.

[2] E. Laure, S. M. Fisher,́A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,

F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio,

A. Edlund, Programming the Grid with gLite, Computational Methods in Science

and Technology 12 (1) (2006) 33–45.

[3] Enabling Grid for E-sciencE (EGEE) project web site,http://www.eu-egee.

org/.

[4] D. Kour̆il, et al., Distributed tracking, storage, and re-use of job state information on

the grid, in: Proceedings of CHEP’04, Interlaken, Switzerland, 2004.

[5] D. W. Erwin, UNICORE–a grid computing environment, Concurrency and Compu-

tation: Practice and Experience 14 (2002) 1395–1410.

[6] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,

J. Nielsen, M. Niinimäki, O. Smirnova, A. Wäänänen, Advanced resource connec-

tor middleware for lightweight computational grids, Future Generation Computer

Systems 23 (2) (2007) 219–240.

[7] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, in: IFIP

International Conference on Network and Parallel Computing, 2005, pp. 2–13.

[8] I. Foster, et al., Modeling Stateful Resources with Web Services, White paper, ver-

sion 1.1, Available online athttp://www.ibm.com/developerworks/library/

ws-resource/ws-modelingresources.pdf (Mar. 5 2004).

[9] S. Burke, S. Campana, E. Lanciotti, P. M. Lorenzo, V. Miccio, C. Nater, R. San-

tinelli, A. Sciabà, gLite 3.1 User Guide–Manuals Series, Version 1.2, Document

identifier CERN-LCG-GDEIS-722398. Available online athttps://edms.cern.

ch/document/722398/1.2 (Jan.7 2009).

[10] R. Raman, Matchmaking Frameworks for Distributed Resource Management, Ph.D.

thesis, University of Wisconsin-Madison (2001).

[11] R. van Engelen, gSOAP 2.7.11 User Guide (Oct. 2 2008).

28



[12] P. Andreetto, et al., The gLite Workload Management System, Journal of Physics,

Conference Series 119 (6) (2008) 062007 (10pp).

URL http://stacks.iop.org/1742-6596/119/062007

[13] CEMonitor home page,http://grid.pd.infn.it/cemon.

[14] Apache Software Foundation. Axis SOAP Container,http://ws.apache.org/

axis/.

[15] P. DuBois, MySQL, Addison-Wesley Professional, 2008.

[16] E. Molinari, et al., A local Batch System Abstraction Layer for Global Use, in: Proc.

XV International Conference on Computing in High Energy andNuclear Physics

(CHEP’06), Mumbay, India, 2006.

[17] Sun Microsystems, Inc., JavaTMPlatform Enterprise Edition, v5.0, API Specifica-

tions (2007).

[18] R. Housley, W. Polk, W. Ford, D. Solo, RFC3280: InternetX.509 Public Key In-

frastructure Certificate and Certificate Revocation List (CRL) Profile,http://www.

ietf.org/rfc/rfc3280.txt (Apr. 2002).

[19] S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson, RFC3820: Inter-

net X.509 Public Key Infrastructure (PKI) Proxy CertificateProfile,http://www.

ietf.org/rfc/rfc3820.txt (Jun. 2004).

[20] D. Groep, O. Koeroo, G. Venekamp, gLExec: gluing grid computing to the Unix

world, Journal of Physics: Conference Series 119 (6) (2008)062032 (11pp).

URL http://stacks.iop.org/1742-6596/119/062032

[21] Site authorisation and enforcement services: LCAS andLCMAPS, http://www.

nikhef.nl/grid/lcaslcmaps/.

[22] M. Sgaravatto, CREAM Job Description Language Attributes Specification for the

EGEE Middleware, document Identifier EGEE-JRA1-TEC-592336, Available on-

line athttps://edms.cern.ch/document/592336 (Aug. 2005).

[23] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello,́A. Frohner, K. Lőentey,

F. Spataro, From gridmap-file to VOMS: managing authorization in a Grid envi-

ronment, Future Generation Computer Systems 21 (4) (2005) 549–558.

29



[24] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles,

D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execution Service Version 1.0,

OGF Specification GFD.108,http://www.ogf.org/documents/GFD.108.pdf

(Aug. 2007).

[25] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,

D. Pulsipher, A. Savva, Job Submission Description Language (JSDL) Specifica-

tion, Version 1.0, OGF Specification GFD-R.056,http://www.gridforum.org/

documents/GFD.56.pdf (Nov. 2005).

[26] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the Condor

experience, Concurrency–Practice and Experience 17 (2-4)(2005) 323–356.

[27] G. Garzoglio, T. Levshina, P. Mhashilkar, S. Timm, ReSS: A Resource Selection

Service for the Open Science Grid, in: S. C. Lin, E. Yen (Eds.), Grid Computing,

International Symposium on Grid Computing (ISGC 2007), Springer, 2009, pp. 89–

98.

[28] M.-E. Bégin, G. D.-A. Sancho, A. D. Meglio, E. Ferro, E.Ronchieri, M. Selmi,

M. Zurek, Build, configuration, integration and testing tools for large software

projects: Etics, in: N. Guelfi, D. Buchs (Eds.), RISE, Vol. 4401 of Lecture Notes in

Computer Science, Springer, 2006, pp. 81–97.

[29] E. Foster-Johnson, Red Hat RPM Guide, 1st Edition, Red Hat, 2003.

[30] YAIM Home Page,http://yaim.info/.

[31] R. Jain, The Art of Computer System Performance Analysis: Techniques for Exper-

imental Design, Measurement, Simulation, and Modeling, Wiley, 1991.

[32] ALICE–A Large Ion Collider Experiment at CERN LHC,http://aliceinfo.

cern.ch/.

30


