
ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Padova

INFN/TC–08/6
October 9, 2008

STANDARDS-BASED JOB MANAGEMENT IN GRID SYSTEMS

Paolo Andreetto1, Sergio Andreozzi2, Antonia Ghiselli2,
Moreno Marzolla1, Valerio Venturi2, Luigi Zangrando1

1) INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
2) INFN-CNAF, viale Berti Pichat 6/2, I-40127 Bologna, Italy

Abstract
The Grid paradigm of accessing heterogeneous distributed resources proved to be ex-
tremely effective, as many organizations are relying on Grid middlewares for their com-
putational needs. Many of such middlewares exist, the result being a proliferation of self-
contained, non-interoperable “grid-islands”. This meansthat different Grids, based on
different middlewares, cannot share resources, e.g. jobs submitted on one Grid cannot be
forwarded for execution on another one. To address this concern, standard interfaces are
being proposed for some of the important functionalities provided by most Grids, namely
job submission and management, authorization and authentication, resource modeling,
and others.

In this paper we review some recent standards which address interoperability for
three important Grid services: the BES/JSDL specificationsfor job submission and man-
agement, the SAML notation for authorization and authentication, and the GLUE spec-
ification for resource modeling. We describe how standards-enhanced Grid components
can be used to form interoperable building blocks for a Grid architecture, and describe
how existing Grid software components have actually been re-engineered to support these
specifications. From this experience we draw some conclusions on the strengths and
weaknesses of the standards, and how they can be improved to address some of the issues
we encountered.

PACS: 89.20.Ff; Computer Science and Technology

Published bySIS-Pubblicazioni
Laboratori Nazionali di Frascati

1 Introduction

Many large-scale organizations are currently managing their resources using some kind

of Grid middleware or Grid infrastructure. The Grid allows seamless access to remote,

distributed resources. In particular, job execution and management is one of the capabili-

ties offered by virtually any Grid middleware, as it enablesusers to harness the power of

large CPU pools for computationally intensive applications.

Unfortunately, transparent and uniform access to resources is guaranteedwithin a

middleware, but is not generally availableacrossdifferent middlewares. This means, for

example, that job management subsystems have different incompatible interfaces, so that

jobs originating on a Grid can not be forwarded to another Grid based on a different

middleware, even if the owner is authorized to access resources on both.

Two specific problems of Grids areaccessibilityandapplication portability. Acces-

sibility includes resource access and portability: currently multiple Grid infrastructures

are deployed with little if no interoperability between these infrastructures. Hence a de-

cision to use one particular Grid infrastructure, and henceuse one Grid distribution, will

curtail the resources available to the user to those devicesrunning that Grid distribution.

This has implications for all forms of collaborative science and commerce where multiple

Grid distributions exist. A related aspect to this problem is that of application portability.

Each Grid distribution currently specifies its own unique interface to each service. The

implication of this is that user applications are Grid distribution specific. An application

written for the gLite middleware [9] will not be compatible with the same application

written to use a UNICORE Grid [17].

Resource sharing across multiple middlewares is motivatedby the increasing de-

mand of scientific applications. As an example [30], the WideIn Silico Docking On

Malaria (WISDOM) Project1 aims at developing new drugs for Malaria. In silico dock-

ing enables researchers to compute the probability that potential drugs will dock with a

target protein–in this particular case that potential drugs will dock on the active site of

one of the malaria parasite proteins. This step of carried out on resources provided by the

gLite middleware and the output of these applications is a list of chemical compounds that

may become potentially drugs. This list is not the final compound list, because it must

be refined using molecular dynamics. These molecular dynamics computations use the

highly scalable assisted model building with energy refinement (AMBER) [12] code that

could run on HPC resources within DEISA2. Hence, cross-Grid usage lead to the benefit

of significantly accelerating the drug discovery step.

1http://wisdom.eu-egee.fr/
2http://www.deisa.org/

2

The problem of sharing resources among heterogeneous Grid middlewares has tra-

ditionally been addressed by means of ad-hoc components calledbridgesor adapters. An

adapter is a component which connects two specific kind of middlewares, sayX andY .

The adapter translates messages originating from middlewareX in the format understood

by Y ; the same is done for all messages originating fromY and directed toX. As such,

adapters can be seen as point-to-point solutions, which achieve interoperationbetween

two incompatible systems. Solutions base on adapters have limited scalability: in order to

achieve interoperation amongN different kind of middlewares, one has to developO(N2)

different adapters (one for each pair of systems).

Job Manager
Globus

Client
Globus

Client
gLite

Globus
Interface Interface

UNICORE gLite
Interface

Globus Globus
Interface Interface

Interface
gLitegLite

Interface

UNICORE
Job Manager

gLite
Job Manager

Adapter
gLite−to−UNICORE

Adapter
gLite−to−Globus

Globus−to−UNICORE
Adapter

Globus−to−gLite
Adapter

(a) Interoperation

Client
Globus

Client
gLite

Client
OGSA−BES

UNICORE
Job Manager

gLite
Job ManagerJob Manager

Globus
gLiteUNICOREGlobus

Interface

Interface Interface Interface

Interface Interface
OGSA−BESOGSA−BES OGSA−BES

(b) Interoperability

Figure 1: Interoperation vs Interoperability. (a) shows the interoperationscenario, using
adapters to convert incompatible interfaces. (b) shows theinteroperationscenario, in
which components are enhanced with standards-compliant interfaces that can be accessed
by any standard client.

On the other hand, fullinteroperabilitycan be achieved with the adoption of com-

mon, standardized and possibly open (i.e., non proprietary) interfaces and protocols. Such

protocols are usually defined by established organizationsand communities, like the Open

3

Grid Forum (OGF)3 or the Organization for the Advancement of Structured Information

Standards (OASIS)4. The OGF is a community of users, developers, and vendors lead-

ing the global standardization effort for Grid computing. The work of OGF is carried

out through community-initiated working groups, which develop standards and specifi-

cations in cooperation with other leading standards organizations, software vendors, and

users. The Open Grid Service Architecture (OGSA) [22] describes an architecture for

a service-oriented Grid environment for business and scientific use, developed within

the OGF.

The approach based on open standards is more scalable than the adapter-based one:

implementing the same interface onN different middlewares requires effort proportional

to O(N), as each one of theN middlewares must be enhanced by implementing the

standard interface.

The interoperation and interoperability scenarios are depicted in Figure 1. We con-

sider three different Grid job management components, based on the Globus [23], UNI-

CORE [17] and gLite [9] middlewares respectively. Each component exposes its legacy

interface. In 1(a) adapters are used to translate the interfaces and allow clients designed

for other middlewares to access each service. In 1(b), each service is enhanced with an ad-

ditional standards-compliant interface; or job management services, the currently defined

standard in based on the OGSA–Basic Execution Service (BES)and Job Submission De-

scription Language (JSDL) specifications, which will be described in detail later in this

paper. Existing platform-specific clients access the services using the legacy interface; on

the other hand, every BES-compliant client can access the BES interface of any service.

Note that the “client” mentioned so far might be a complex service as well. Fig-

ure 2 shows how standards-compliant job management services could be used by so-called

“Grid Metaschedulers”. A Metascheduler can dispatch jobs to multiple job execution

services, according to appropriate scheduling decisions.Taking advantage of standard

interfaces, a Grid Metascheduler can expose a standard BES interface to clients, and can

dispatch jobs to other BES compliant execution services (including other metaschedulers).

The main problem with the interoperability approach is thatdefining common in-

terfaces for the major Grid services (e.g., job submission,information modelling, autho-

rization and authentication, resource monitoring and so forth) is a difficult and lengthy

process. Given that these standards are developed as a cooperation of the major Grid mid-

dleware developers, the resulting standards are often madeof the (very small) common

subset of features offered by each Grid.

In this paper we consider three recently defined standards for Grid middlewares,

3http://www.ogf.org
4http://www.oasis-open.org

4

UNICORE
Interface

Globus
Interface

gLite
Interface

Interface
OGSA−BES

Interface
OGSA−BES

Interface
OGSA−BES

Interface
OGSA−BES

Interface
OGSA−BES

Job Manager
Globus

UNICORE
Job Manager

gLite
Job Manager

Metascheduler

Client

Metascheduler

Figure 2: Standards-based job management with Grid metaschedulers

which are related to three major services provided by almostevery middleware:

• the BES specification [19], an OGF standard which addresses job submission and

management. The implementation of the BES specification in the gLite Computing

Resource Execution And Management (CREAM) Computing Element [1] will be

discussed in Section 2.

• the Security Assertion Markup Language (SAML) [11], an OASIS-standardized

XML language for releasing assertions regarding authentication, attributes and au-

thorization. The implementation of the SAML notation within the gLite Virtual

Organization Membership Service (VOMS) service will be discussed in Section 4.

• GLUE [5,4], a conceptual model and reference realizations to concrete data models

for describing advertisable capabilities of Grid servicesand resources. The GLUE

specification together with an implementation will be discussed in Section 3.

We discuss in Section 5 a complete architecture for job management based on the

standards-compliant components introduced in this paper.Finally, conclusions and future

works will be analyzed in Section 6.

2 Job Management

One of the most important functionalities offered by any Grid system is the possibility

of submitting and managing jobs, which will then be executedon suitable computational

resources. While the exact notion ofjob varies from Grid to Grid, there are many com-

mon features which can be isolated. For example, a job usually consists of executing

5

some executable program on a given processor; the program may operate on one or more

input data files, and produce one or more output data files. Moreover, job requirements

(minimum available memory, disk space, CPU speed) may be part of the job description.

The existence of those common job features across differentGrid infrastructures

was the motivation of the development of standards for job descriptions and job manage-

ment. In this way users have a single notation for describingjobs, regardless of the system

where they will be executed.

2.1 The JSDL Specification

The JSDL [6] is an XML-based notation for describing the requirements of computational

jobs for submission to Grid environments. The JSDL notationis defined by means of a

normative XML Schema that facilitates the expression of those requirements as a set of

XML elements.

The aim of JSDL is to provide a notation for describing the structure and require-

ments of individual jobs. Other, equally important, aspects of job submission and man-

agement are outside the scope of JSDL. For example, many Gridsystems provide the

notion of structured job collections; as an example, in the gLite framework, a Directed

Acyclic Graph (DAG) can be used to represent workflows where multiple, independent

jobs can be scheduled according to a set of user-defined inter-job dependencies. Most

Grid systems have similar features; however, these are outside the scope of the JSDL

specification.

A JSDL document has this general structure:

<J o b D e f i n i t i o n>
<J o b D e s c r i p t i o n>

<J o b I d e n t i f i c a t i o n . . . />?
<A p p l i c a t i o n . . . />?
<Resources . . . />?
<D a t aS t ag i n g . . . />∗

</ J o b D e s c r i p t i o n>
<xsd : any ## o t h e r />

</ J o b D e f i n i t i o n>

Where:

<JobIdentification> contains an optional human-readable description of the job. It is

a complex element which contains sub-elements for specifying informations such

as the job name, a (textual) job description, the name of the project the job belongs

to, and so on.

6

<Application> contains a machine-readable description of the job. It includes the ex-

ecutable name and any parameter needed to run the job. It is used as a high level

generic container holding more specific application definitions. Note that the Ap-

plication element is optional; if missing the JSDL documentdescribes a null job.

<Resources> contains a description of the resource requirements for thejob. Additional

sub-elements can be used to specify bounds on, e.g., the required number of CPUs,

free disk space, specific filesystem layout, available system memory and so on.

Furthermore, the CPU architecture, operations system nameand version for the

execution host can be specified.

<DataStaging> defines the files that should be moved to the execution host (stage in)

and from the execution host (stage out). Files are staged in before the job starts

executing, and are staged out after the job terminates. The files which are staged

out usually are meant to contain the result of the job execution.

While the JSDL specification is general enough to encompass the basic features

of most Grids, there are many other specific features which are not present. The JSDL

specification has an extension mechanism by means of which itis possible to add spe-

cific additional information:. The JSDL extension mechanism is implemented by allow-

ing arbitrary XML elements (<xsd:any##other/>) to be added in specific position of

the JSDL XML data structures, provided that the new XML elements have a different

namespace than the JSDL ones.

2.2 The BES Specification

The BES specification [19] describes a Web Service interfacefor creation, monitoring and

control of computational jobs. In the BES terminology, jobsare calledactivities, and are

described using the JSDL notation. While JSDL is used to describe the static structure of

an activity, BES specifies a set of operations which can be executed on activities: creation,

termination, obtaining the current status of an activity ora set of activities and so on.

In general, a BES service acts as a frontend to one or moreresources, where a

resource is a generic term to denote anything from a supercomputer, to a pool of work-

stations managed through a batch system such as LSF, PBS or Torque, or individual com-

puters. Multiple resources can be managed by one BES service; the submitted JSDL may

contain a<Resources> element describing the requirements of the job. Those require-

ments are matched against the capabilities provided by the available resources, and one

of those matching the requirements is selected for the execution of the activity. Note that

7

Table 1: BES Port-Types and Operations
BES-Management Port-type

StartAcceptingNewActivities Administrative operation: Request that the BES ser-
vice starts accepting new activities

StopAcceptingNewActivities Administrative operation: Request that the BES ser-
vice stops accepting new activities

BES-Factory Port-type

CreateActivity Request the creation of a new activity; in general, this
operation performs the submission of a new compu-
tational job, which is immediately started

GetActivityStatuses Request the status of a set of activities

TerminateActivities Request that a set of activities be terminated

GetActivityDocuments Request the JSDL document for a set of activities

GetFactoryAttributesDocumentRequest the XML document containing the properties
of this BES service

the current BES specification does not include any specific way for accessing and manag-

ing individual (contained) resources, so that different implementations provide different

access mechanisms.

Technically speaking, the BES Web Services Description Language (WSDL) doc-

ument defines two Web Service (WS) port-types, which are shown in Table 1 with their

corresponding operations.

The BES-Management port-type is used to control the BES service itself. This port-

type contains two operations which are used to start the service and to stop it respectively.

This port-type should normally be used by the system administrators.

The BES specification mandates that the activities must be described using the JSDL

specification. Activities are uniquely identified using WS-Addressing End Point Refer-

ence (EPR) [26]. The BESCreateActivityoperation returns an EPR, which can be used

by clients to refer to this activity. During execution, activities traverse a number of states.

The basic state model comprises the following states: (1)pending, the service has created

the activity, but the latter is not yet running on any computational resource: (2)running,

the activity is executing on some computational resource; (3) finished, the activity suc-

cessfully completed execution; this is a terminal state, (4) terminated, the activity has

been terminated by calling theTerminateActivitiesBES operation; (5)failed, the activity

has failed due to some error or failure (terminated and failed are terminal states). The

state model can be extended to consider new states.

The BES-Factory port-type defines operations for the creation and manipulation of

8

activities and set of activities. Moreover, it contains an operation (GetFactoryAttributes-

Document) for retrieving attribute information about the BES service itself. Such in-

formation contains, among others, the human-readable service name, the total number

of activities currently active in the service, the EPR to activities currently active in the

service, and the number of contained resources accessible by the BES. TheGetFactory-

AttributesDocumentoperation only returns a very simple description of the capabilities

of the BES service. However, the BES specification (as well asJSDL) provide standard

extension mechanisms so that additional XML elements can beinserted in the norma-

tive BES/JSDL data structures, provided that the new elements have a different XML

namespace than the normative ones. Using this extension mechanism it is possible to

encode a more complete description of the BES endpoint, using the emerging GLUE2

specification, as will be described in Section 3.

2.3 Implementing BES/JSDL in CREAM

We implemented the BES specification in the CREAM Service. CREAM [1] is a Web

Service-based job submission and management service beingdeveloped for the gLite mid-

dleware [9]. We show in Figure 3 a high-level view of the main architectural components

of CREAM.

Figure 3: High level structure of the CREAM service enhancedwith BES interface

9

CREAM runs as a Java-Axis servlet5 in the Tomcat application server6. Requests

to CREAM traverse a pipeline of additional components, collectively called Trust Man-

ager. The Trust Manager is responsible for carrying out authentication operations. It

is external to CREAM, and is an implementation of the J2EE security specifications.

CREAM can be logically split in two main parts: the interface(s) and the CREAM core.

Note that CREAM was developed before standards such as BES/JSDL were available.

For this reason, its legacy interface, while based on Web services, is not BES compli-

ant. However, given that the service interface is decoupledfrom the core, it was possible

to support the BES interface together with the legacy one. allowing BES and non-BES

(legacy) clients to access the service at the same time. The CREAM core is responsible

for the actual processing of the requests, and for keeping the internal state up-to-date. The

core interacts with the client-side Local Resource Management System (LRMS), which

might consist of a set of command line tools which interact with the server-side LRMS.

Thus, it is possible to have the CREAM service running on one host, and the batch system

head node running on a separate host.

In general the CREAM service can be connected to one or more batch systems

such as Torque of LSF, thus it is easy to identify a BES resource with a specific queue

of the batch systems. More complex configuration are possible, for example defining

someshares[4] over a LRMS, where a share is an abstraction of the resource partitioning

among user. CREAM handles this kind of internal resource structure as a BES con-

tained resource. Each contained resource publishes its ownset of information and access

policies; this information is a subset of the data stored into the information system of

the Computing Element (CE). CREAM may allow the user to submit activities to the CE

as a whole; in this case an internal mechanism, or selector, is used to forward the request

to one suitable queue or share. The core of the service does not provide a single built-in

selector, but can be instrumented with a customized module which obtains user credentials

and resource information from the core and schedule the correct internal resource. More-

over, users can access the individual resources (batch queues) as follows. In CREAM

a batch queue is uniquely identified by a pair of strings(batch system, queue name),

hence, if the service URL for the BES interface ishttps://my.host/path, then each

batch system/queue name will be made available as standard BES services with URL

https://my.example/path?b=<batch_system>&q=<queue_name> (note that the CREAM

administrator can restrict or forbid access to individual batch queues). Other approaches

for accessing contained resources exist, for example usingthe WS-Resource specifica-

tion [25]. However, the one adopted in CREAM has the advantage of being far simpler to

5Apache Software Foundation, Axis SOAP Container: http://ws.apache.org/axis/
6Apache Software Foundation Jakarta Tomcat Servlet Container, http://tomcat.apache.org/

10

implement, and allows access to contained resources also tonon-WSRF compliant clients.

Authentication in CREAM is based on a Public Key Infrastructure (PKI). Each user

(and Grid service) wishing to access CREAM is required to present an X.509 format

certificate [27]. These certificates are issued by trusted entities, the Certificate Authorities

(CA). The role of a CA is to guarantee the identity of a user. This is achieved by issuing

an electronic document (the certificate) that contains the information about the user and

is digitally signed by the CA with its private key. An authentication manager, such as the

Trust Manager, can verify the user identity by decrypting the hash of the certificate with

the CA public key. This ensures that the certificate was issued by that specific CA. The

Trust Manager can then access the user data contained in the certificate and verify the user

identity.

Note that the security mechanism used by the BES interface isslightly different than

the one used by the legacy interface. Specifically, a BES client needs to insert a SAML

assertion inside each request. To do so, it must contact an appropriate service capable of

releasing SAML (signed) assertions for each request. One ofsuch components is VOMS-

SAML, which will be described in detail in Section 4.

3 Information Modelling

An important aspect to realize the discoverability of resources is sharing a common char-

acterization of what the resources are, their properties and relationships. The character-

ization of these aspects are typically captured in information models, that are abstrac-

tions of real world entities into constructs that can be represented in computer systems.

Different Grid middlewares are provided with their own information models to describe

the properties of the exposed resources that should be advertised in order to enable re-

source selection (e.g., GLUE 1.3 schema [5], NorduGrid schema [29]). As specified in

the OGSA [22], this information is made available via a Grid information service [15]

and is therefore accessible by potential consumers. Accessing resource descriptions via

the information service enables to achieve the resource awareness, that is, a state whereby

one party has knowledge of the existence of the other part.

The plurality of information models are a barrier to interoperable Grid systems. In

particular, we refer to the information interoperability,that is the ability to meaningfully

exchange information among separately developed systems,including the understand-

ing of the information format, meaning, and quality. For this reason, within the OGF, a

Working Group started to work on the unification of the various information models into a

community standard specification called GLUE 2.0 [35]. Two documents from this group

completed the public comment phase and are close to become OGF proposed recommen-

11

dations. They cover a conceptual model [4] and reference realizations [3] to concrete data

models for Grid resource descriptions.

The GLUE 2.0 conceptual model is described in terms of UML class diagrams en-

riched with descriptive tables providing extra information about the UML elements (e.g.,

class name definition, properties definition and unit of measure). Three sub-models are

present: the main entities sub-model which captures concepts such as AdminDomain,

UserDomain, Service, Resource, and Endpoint; the computing entities sub-model which

is a specialization of the main entities in the context of computing resources (typically

batch systems or super computers); the storage entities sub-model which is a special-

ization of the main entities in the context of storage systems, ranging from simple disk

servers to complex hierarchical storage systems.

3.1 The Main Entities

The main entities that are central to the GLUE Information model are the concepts of

UserDomain, AdminDomain, Service, Endpoint, Resource, Managerand Activity (see

Figure 4). AUserDomainis defined as a collection of actors that can be assigned with

user roles and privileges to services or shares via policies. It is the concept used to model

groups of users or entire virtual organizations having access to Grid services. On the

other side, anAdminDomainis used to identify atomic management units responsible for

a set of services. Services part of an administrative domaincan span different physical

locations. AServiceis defined as an abstracted, logical view of actual software compo-

nents that participate in the creation of an entity providing one or more functionalities

useful in a Grid environment. The service is a concept introduced to identify the whole

set of entities providing the functionality with a persistent name. A service aggregates the

following entities: Endpoint, that is a network location having a well-defined interface

and exposing the service functionalities,Manager, that is a software component locally

managing one or more resources,Resourcethat is an entity providing a capability or ca-

pacity and managed by a local software component (i.e., the manager) andSharethat is

a utilization target for a set of resources managed by a localmanager and offered via re-

lated endpoints. Finally, anActivity is a unit of work managed by a service. An activity

can have relationships to other activities being managed bydifferent services, therefore it

shares a common context.

3.2 The Computing Entities

An important type of resources available in a Grid environment is related to the provi-

sion of a storage functionality (see Figure 5). The following entities have been identi-

12

Main Entities - Relationships

<<abstract>>

Policy

MappingPolicy

AdminDomain

Service
AccessPolicy

Endpoint <<abstract>>

Share

UserDomain
<<abstract>>

Domain

<<abstract>>

Resource

Activity

<<abstract>>

Manager

Location

Contact

runs

*

*

creates

0..1

*

can be mapped into

*

mapped into

0..1

*

can access

*

exposes

*

has

*

*

offers

*

offers *1..*

offers

*

has **

submitted via

*

0..1

primary located at

0..1

*

defined on

1..**

has policies

*

1..*

primary located at

0..1

*

manages

*
relates to

*
*

manages*

participates in

*
0..1

participates in

*

0..1

*

*

Figure 4: GLUE 2.0 Information Model - Main Entities

13

Computing Entities - Relationships

ApplicationEnvironment

ExecutionEnvironment ComputingManagerComputingEndpoint

ComputingActivity

ComputingService

ApplicationHandle

ComputingShare

Benchmark

runs on

0..1

*

*

mapped into

0..1

*

can send jobs to

1..***

can use

*

offers **

can use

*

*

1..*

has

*

0..1

has

*

0..1

submitted via

0..1

*

*

handled by
*

Figure 5: GLUE 2.0 Information Model - Computing Entities

fied as useful to be described: computing service, computingmanager, computing share,

execution environment, application environment and computing activity. TheComput-

ing Serviceis a specialization of a service focused on the computing functionality. The

Computing Endpointis a specialized endpoint for creating, monitoring, and controlling

computational activities called jobs or computing activities. TheExecution Environment

provides a description of hardware and software characteristics that define a type of envi-

ronment available to and requestable by a Grid job when submitted to a Computing Ser-

vice via the Computing Endpoint. Such a description also includes information about the

total/available/used instances of the execution environment. An Execution Environment

may also contain one or more Application Environments. TheComputing Manageris a

grouping concept for a set of different types of execution environments; the aggregation

is defined by the common management scope (e.g., a local resource management system

like a batch system defines an aggregation scope). An important concept for a Comput-

ing Service is theComputing Share, which is a utilization target for a set of computing

resources defined by policies and characterized by status information.

3.3 The Storage Entities

Another important type of resources available in a Grid environment is related to the pro-

vision of storage functionality (see Figure 6). The following entities have been identified

as useful to be described: storage service, storage manager, storage share, storage re-

source and storage access protocol. TheStorage Serviceis a specialization of a service

focused on the storage functionality. TheStorage Endpointis a specialized endpoint for

14

Storage Entities - Relationships

StorageServiceCapacity

StorageAccessProtocol

StorageShareCapacity

StorageManager

StorageResource

StorageEndpoint

StorageService

StorageShare

ToComputingService

provides
*

offers access to
*

*

provides
*

organizes
**

serves

*

offers

*

manages

*

*

has *

Figure 6: GLUE 2.0 Information Model - Storage Entities

managing storage shares or for accessing them. TheStorage Resourceis a description of

sufficiently homogeneous storage device providing a storage capacity. TheStorage Man-

ager is the primary software component locally managing one or more storage resources.

TheStorage Shareis a specialization of a share used to describe utilization target on stor-

age resources. TheStorage Access Protocolis useful to describe the type of protocol

available to access the available storage capacities.

3.4 GLUE Realization

The GLUE realizations document [3] describes the mapping ofthe conceptual model

into three different concrete data models: XML Schema, LDAPand SQL. Such concrete

data models are selected based on community requirements. The main motivation for

the various mapping is that Grid information services relying on different concrete data

models exist (e.g., the gLite information service is based on LDAP, while the Globus

MDS information service is based on XML).

With the availability of the final GLUE specification and the related realizations, the

various middleware developers aiming at its adoption need to instrument their software

components with information providers that measure the properties defined in the schema

and present the measured information according to the conceptual model definition and

the related concrete data models realizations. The information from various sources need

also to be aggregated. Information providers perform the measurement either automat-

ically by interacting with other software components or by accessing configuration data

which was written by system administrators.

15

As an example, this is a very simplified fragment of GLUEL2 representation of

a BES computing endpoint:

<g l u e : Domains>
<AdminDomain>

<ID>urn : admindomain : i n f n : t 1</ ID>

<Name>INFN−T1</Name>
<D e s c r i p t i o n>Th is i s t h e I t a l i a n T1 of EGEE Grid</ D e s c r i p t i o n>
<WWW>h t t p : / / www. cn a f . i n f n . i t</WWW>

<Owner>INFN</Owner>
<L o ca t i o n>

. . .
</ L o ca t i o n>
<Co n t ac t>

<Local ID>m a i l t o : t 1−admin@cnaf . i n f n . i t</ Local ID>

<URL>m a i l t o : t 1−admin@cnaf . i n f n . i t</URL>
<Type>g e n e r a l</Type>
<O t h e r I n f o>work ing hours : 8−18</ O t h e r I n f o>

</ Co n t ac t>
<S e r v i c e s>

<Comput ingServ ice>
<ID>urn : i n f n : cn a f : bes</ ID>

<Name>CNAF Computing BES Endpo in t</Name>
<C a p a b i l i t y>execut ionmanagement . j o b e x e c u t i o n</ C a p a b i l i t y>
<Type>org . g l i t e . cream . bes</Type>
<Q u a l i t y L e v e l> t e s t i n g</ Q u a l i t y L e v e l>
. . .

<Comput ingEndpoint>
<ID>urn : i n f n : cn a f : cs : bes</ ID>

<Name>CREAM−BES</Name>
<URL>

h t t p s : / / egee−cream−bes . cn a f . i n f n . i t : 8 4 4 3 / ce−cream / s e r v i c e s
</URL>
<Technology>w eb s e rv i ce</ Technology>
<I n te r faceName>OGSA−BES</ I n te r faceName>
< I n t e r f a c e V e r s i o n>1.0</ I n t e r f a c e V e r s i o n>
<WSDL>h t t p : / / someur l / ogsa−bes . wsdl</WSDL>
<S u p p o r t e d P r o f i l e>WS−I 1 .0< / S u p p o r t e d P r o f i l e>
<Seman t i cs>

h t t p : / / www. og f . o rg / documents /GFD. 1 0 8 . pd f
</ Seman t i cs>
. . .

<A cces s Po l i c y>

16

<Local ID>urn : i n f n : cream : bes : p o l i c y</ Local ID>

<Scheme>b a s i c</Scheme>
<Rule>VO:CMS</ Rule>
<Rule>VO:ATLAS</ Rule>

</ A cces s Po l i c y>
<St ag i n g> . . . </ S t ag i n g>

</ Comput ingEndpoint>
</ Comput ingServ ice>

</ S e r v i c e s>
</AdminDomain>

</ g l u e : Domains>

3.5 GLUEMan

We now describe the design and implementation of GLUEMan7, a framework based

on Web-Based Enterprise Management (WBEM)8 technologies aimed at simplifying the

adoption process of the GLUE information model in existing Grid middlewares. GLUE-

Man enables the middleware developers to concentrate only on their essential role in the

process, that is producing the information according to theschema in a simple and unique

format. The framework takes care of aggregating the information, validating it against

the normative specification, generating the realization inthe various concrete data models

and exposing it via a network accessible endpoint using WBEMstandards.

Figure 7: GLUEMan: Simplified Functional View

In Figure 7, we can see a simplified view of the GLUEMan components: a proxy

7http://glueman.sf.net/
8http://www.dmtf.org/standards/wbem/

17

provider and a client. The proxy provider is a component added to decouple the inter-

action of Open Pegasus9 from the real provider while the client is added to decouple the

interaction of the information consumer from the Open Pegasus server. Open Pegasus

is an open-source implementation of the Distributed Management Task Force Common

Information Model (CIM) [13] and WBEM standard designed to be portable and highly

modular. It is coded in C++ so that it effectively translatesthe object concepts of the CIM

objects into a programming model but still retains the speedand efficiency of a compiled

language.

3.6 Proxy Providers Module

In Open Pegasus, each provider is related to a class or association, therefore it is respon-

sible for generating a number of instances for a certain class/association definition. Open

Pegasus offers a native API in C++, nevertheless it also supports the CMPI standard bi-

nary interface (Common Manageability Programming Interface) [14]. Writing a provider

for a single class or association requires implementing several methods.

The main design pattern used to address the provider requirements is the proxy

design pattern. For each provider related to the GLUE information model, we define a

proxy provider decoupling the interaction between the OpenPegasus server and the real

provider. The proxy provider offers three main extra-functionalities: 1) invocation and

interaction with the real provider written in any language;2) caching of the result (the

expiration time can be configured for each individual provider); 3) conformance check to

the GLUE 2.0 specification.

The communication between the real provider and the proxy provider is performed

via the standard output. The selected format for exchangingdata is the INI format [28].

The motivations for this choice are: 1) the INI format is simple; 2) there are many parsers

in all relevant languages to handle this format (if no existing parser can be reused, it is

simple to write a new one); 3) the complexity of the output is suitable for the INI format

(list of instances of classes/associations); 4) the validation of the data is performed by the

proxy provider.

All the proxy providers are packaged in a single software component written in

C++ and compiled as a shared library which exposes a CMPI (Common Manageability

Programming Interface) interface to the Open Pegasus server. This library contains as

many providers as there are classes and associations definedin GLUE 2.0.

When a query for a certain class is sent to the Open Pegasus server, this invokes the

related proxy provider. The proxy provider reads a configuration file where the relevant

9http://openpegasus.org

18

parameters describing the real provider are stored. Among these parameters, the full path

name of the real provider and the expiration time for the cache are available. If a previous

output was created in the cache validity timeframe, then thereal provider is not invoked

and the previous output is used to create the instances of GLUE 2.0 information within the

Open Pegasus server. On the other side, if no valid output waspresent, the real provider

is invoked and the output is consumed. A configurable time outper each provider is

available in order to deal with real providers who get stuck.

3.7 Client

The client design is based on two main design patterns: the Model-View-Controller pat-

tern and the Strategy pattern. As regards the Model-View-Controller: the Model compo-

nent is represented by CIM Classes and Instances rendered inthe Managed Object Format

(MOF) (a textual representation of UML class diagrams), theView component is repre-

sented by the GLUE 2.0 realizations (XML Schema, LDAP and SQL), and the Controller

component is represented by the navigation strategy through the GLUE instances. The

Strategy design pattern is used in order to handle the different realizations of the data

acquired by the Open Pegasus server. This pattern enables toisolate them and to easy the

addition of new realizations.

The client is provided as a command line tool and not in the form of an API library

for specific programming language. Programs which want to use it, have to invoke the

client via a system call and, depending on the command line arguments, can direct the

information in a file or to the standard output.

The main goal of the client is to provide a simple way to accessthe GLUE-based

representation of the services provided by a certain computing environment without re-

quiring knowledge of the CIM over HTTP protocol. With this solution, we can satisfy two

categories of information consumers: those interested in the GLUE-based information of

Grid resources regardless how this is produced and aggregated and the management tools

based on WBEM standards which want to access the same information using the CIM

over HTTP protocol.

3.8 Integration of GLUEMan in Grid Middleware

Given a Grid middleware, GLUEMan can be adopted as a back-endfor managing in-

formation providers and expose the measured data in different formats to the interested

consumers in a certain execution environment. In Figure 8, we exemplify a general de-

ployment strategy where a number of information providers (IP) have been written to

interact either with the Grid middleware or with the underlying resource in order to ex-

19

Figure 8: Integration of GLUEMan in Grid Middleware

tract the properties captured in the GLUE information model. The proxy provider (PP)

decouples the interaction of the Open Pegasus server with the real providers.

The GLUEMan client can be used by different consumers to gather the information

in different formats in order to be exposed to the higher level services. In the given

figure, three different consumers use the client: a WS interface which exposes the Grid

functionality prefers the XML realization since this is theubiquitous data format in the

WS-* technology stack; the LDAP-based information servicerequires the information in

the LDAP Interchange Data Format (LDIF) [24], finally, the R-GMA service (Relational

Grid Monitoring Architecture) [18] requires the information as SQL statements. To be

noticed that by this solution, we add a native management interface based on standard to

access the GLUE-based information by management clients.

4 Authentication and Authorization

The core problem in Grids is enabling coordinated resource sharing among dynamic col-

lections of individuals, institutions, and resources, what are referred to as Virtual Orga-

nizations (VOs) [21]. In a VO, a varying number of participants with various degrees

of prior relationships, join in order to share resources. Resource sharing is conditional:

Resource Providers (RPs) make resources available subjectto a number of constraints on

who can use them, when, and for what reasons. Such constraints are agreed between RPs

and VOs. Authorization plays thus a central role in enablingVirtual Organizations.

Essential in VOs is the ability to establish sharing relationships amonganypoten-

tial participants, independent of the nature of the resources and middlewares. Ensur-

20

ing integrity, confidentiality and interoperability between heterogeneous systems can be

achieved using a Web Service Architecture (WSA), which is anincarnation of a Service

Oriented Architecture (SOA) in the context of the World WideWeb. SOA is the lead-

ing architectural style of the newly developed Grid technologies. Therefore, in order

to achieve cross-Grid interoperability, the scientific community defines and implements

standard interfaces for common services in the light of a SOAcontext.

Using an estabilished set of standard interfaces, RPs should be able to share their re-

sources between different VOs, even when running differentmiddlewares from different

vendors. For that to be possible, however, it is necessary that resources, besides com-

mon interfaces, implements common authorization mechanisms. In fig. 9 we provide an

overview of the theoretical relationships that take place inside a VO between users, RPs,

resources and middlewares.

Figure 9: Relationships in a Virtual Organization

In order to achieve interoperability among different middlewares, we must use a VO

management tool, capable of arranging users in a VO and therefore simplifying the au-

thorization procedures. The tool we are envisioning is the VOMS [2].

On one side, VOMS has been in use for several years in production Grids and is

well integrated with gLite [9] and Globus10. We consider VOMS as a de-facto standard

service for Grid authorization systems, but in order to reach complete interoperability it

must expose a standardized WS interface.

On the other side, the SAML [11] is an OASIS-standardized XMLlanguage capable

to release assertions regarding authentication, attributes and authorization. The empha-

sis is therefore on the re-engineering of VOMS, in order for it to be capable to expose

10http://www.globus.org/

21

a SAML interface. To reach our scope, we adapted the way SAML releases assertions to

comply with the VOMS way of releasing attributes to Grid users.

4.1 The OASIS Security Assertion Markup Language

The aim of the OGSA authorization working group11 is to define the specifications needed

to allow for interoperability and pluggability of authorization components from multi-

ple authorization domains in the OGSA framework. The group leverages authorization

work that is ongoing in the WS community (e.g. SAML, XACML [31], and the WS-

Security [34] set of specifications) and defines profiles on how these should be used by

Grid services. The group has identified three functional components to be used in Grid

authorization and it’s currently working on defining profiles for them:

• the Attribute Authority is a service that releases assertions regarding users’ at-

tributes. The protocol being defined uses SAML;

• the Authorization Service releases authorization decisions based on users’ and

resources’ attributes. The protocol being defined uses XACML and the SAML

profile for eXtensible Access Control Markup Language (XACML);

• theCredential Validation Service validates users’ credentials (digitally signed at-

tributes assertions) to be used by an authorization service. The protocol being de-

fined uses SAML and WS-Trust [32].

The interactions between the functional components of OGSAAuthorization are

shown in Figure 10. In such a vision, an Attribute Authority (AA) (like VOMS) should

be able to release SAML assertions. Such assertions could bevalidated by an external

Credential Validation Service, and then used as input by an Authorization Service.

The SAML is developed by the Security Services Technical Committee of OASIS.

It is an XML-based framework that allows business entities to make assertions regarding

the identity, attributes, and entitlements of a subject (anentity that is often a human user)

to other entities, such as a partner company or another enterprise application.

SAML definesAssertions, packages of information that supply one or more state-

ments by a SAML authority, among which areAttribute Assertions. It also defines pro-

tocols to requestAssertionsfrom SAML authorities [11], and bindings into standards

messaging or communication protocols [10].

11https://forge.gridforum.org/sf/projects/ogsa-authz

22

Figure 10: Functional components for a Grid authorization service

4.2 The OASIS Web Service Security

The Web Services Security (WSS) specification [34] defines a set of SOAP extensions

that can be used when building secure WSs to implement message content integrity and

confidentiality. It also provides a mechanism to send security tokens as part of a SOAP

message. Additional profiles define the usage of this mechanism with different security

tokens, including SAML [33].

The gLite VOMS service is an AA focused on VO Management. It releases signed

assertions containing attributes expressing a user membership and position in a VO. Such

assertions are used by Grid Services to drive authorizationdecisions, thus enabling the

fine grained access control needed in Grids. VOMS has been re-engineered to support

authorization standards emerging from the OGF. VOMS is widely used in the Grid com-

munity, thus the aim of our effort was to retain the functionalities of the current service,

and extend it with a standard WS interface that uses SAML. Besides the protocol, the new

service uses SAML Assertions to contain the subjects’ attributes. The service is not meant

to be a replacement of the legacy one, but aims at making the VOMS framework support-

ing the wider possibile range of use patterns. A driving use case has been those Grid

middlewares not using proxy certificates [38]. The main interactions between a client and

the re-engineered VOMS service are shown in Figure 11.

23

client

WS-CLIENT

target system

Grid

service

server

servlet container

VOMS SAML

authentication

signed SAML assertion

signed SAML

 assertion

Figure 11: Interactions between a client, a re-engineered VOMS service and a target
system

4.3 Service Interface

The VOMS SAML service exposes an interface according to SAMLprotocols [11] and

bindings [10]. The service supports a single operation, whose input is a<samlp:AttributeQuery>

element and the output is a<samlp:Response> element. The<samlp:AttributeQuery>

element contains the subject for which the requestor wants to retrieve attributes, and even-

tually which attributes she is interested in. A successfull<samlp:Response> contains a

<saml:Assertion> element with the requested attributes. The elements<samlp:AttributeQuery>

and<saml:Assertion> are used according to the SAML profile for X.509 subjects [36].

When the service authorizes a request, a<samlp:Response> is used to return a

<saml:Assertion> containing a<saml:AttributeStatement> with the subject’s at-

tributes. In the following, we sketch an example of a SAML assertion (some XML tags

and attributes are omitted for brevity). Following the VOMSlogic, an assertion must

identify the VOMS server that released it, the entity (normally a user) whose assertion is

addressed, and the VOMS attributes.

<saml : A s s e r t i o n . . .>
<saml : I s s u e r

Format =” urn : . . : x509SubjectName ”
CN=omi i002 . cn a f . i n f n . i t , L = . . .

</ saml : I s s u e r>
<saml : S u b j e c t>

<saml : NameID
Format =” urn : . . : x509SubjectName”>

24

CN= V a l e r i o V en t u r i , OU= . . .
</ saml : NameID>

</ saml : S u b j e c t>
<saml : A t t r i b u t e S t a t e m e n t>

. . .
</ saml : A t t r i b u t e S t a t e m e n t>

</ saml : A s s e r t i o n>

4.4 Expressing the VOMS attributes using SAML

The core functionality of VOMS is expressing attributes, but the Fully Qualified Attribute

Name attribute and the Tag attribute don’t map naturally to SAML, thus we need to use

the following <saml:Attribute> elements:vo, group and role for the FQAN, and a

fourth tagattribute.

Concerning the<saml:AttributeVaue> containing the VOMS attributes, we de-

fined a newcomplexType type, theFQANType, in order to carry the priority attribute of

groupandrole. Such a type is simply an extension of the<xs:token> type, which is itself

a built-in type over<xs:string> that represents a tokenized string in the W3C recom-

mendation of XML [37,8]. The following XML schema fragment defines the FQANType

complex type:

<complexType name=”FQANType”>
<s i m p l eCo n t en t>

<e x t e n s i o n base =” xs : t oken”>

<a t t r i b u t e name=” p r i o r i t y ”
t y p e =” xs : p o s i t i v e I n t e g e r ”/>

</ e x t e n s i o n>
</ s i m p l eCo n t en t>

</ complexType>

Similarly, we defined two newcomplexType types to carry atag attribute. The

TAGType type contains a sequence ofTAGValue types, which are extension of the<xs:string>

XML type. Both the XML schema follow:

<complexType name=”TAGType”>
<a t t r i b u t e name=”TAGname”

t y p e =” xs : s t r i n g ” use =” r e q u i r e d ”/>
<a t t r i b u t e name=” TAGdescr i p t i on ”

t y p e =” xs : s t r i n g ” use =” o p t i o n a l ”/>
<sequence>

<e lemen t r e f =”TAGValue”
minoccours =”1”

25

maxoccours=” unbounded”/>

</ sequence>
</ complexType>

<complexType name=”TAGValue”>
<s i m p l eCo n t en t>

<e x t e n s i o n base =” xs : s t r i n g ”>

<a t t r i b u t e name=” q u a l i f i e r ”
t y p e =” xs : n o r m a l i z e d S t r i n g ”
use =” r e q u i r e d ”/>

</ e x t e n s i o n>
</ s i m p l eCo n t en t>

</ complexType>

The qualifier attribute ofTagValue may be empty, indicating that its content should

be assigned directly to the user.

At the moment of writing, we are discussing with other VO management tools im-

plementors a common SAML Attribute profile, that will define aformat for SAML At-

tributes of interest for VOs. Given that, the format described above is likely to change in

the future.

4.5 Sending SAML Assertions to Grid Services

In theAttribute Certificate (AC) based VOMS, there are command line tools that allow

an AC retrieved from a VOMS AA to be embedded in a proxy certificate: over the years,

this has proved a very convenient way of sending AC to Grid Services. Some tools us-

ing SAML Assertions are using the same proxy-based logic. For example, the Globus

Toolkit 412 Community Authorization Service (CAS) [20] binds authorization Assertions

to a proxy. GridShib [7] does the same with authentication Assertions. As described in

section 4.2, the Web Service Security specification defines away to send SAML security

tokens as part of the SOAP Header. We have preferred this solution, being based on an

already consolidated standard and allowing support for services not supporting the use

of proxy certificates for authentication. Following is an example of a SOAP message

carrying a SAML Assertion (omitted for brevity):

<soap : Envelope xmlns : soap = ” . . . ”>

<soap : Header>
<wsse : S e c u r i t y wsse = ” . . . ”>
<saml : A s s e r t i o n xmlns : saml = ” . . . ”>

. . .

12http://www.globus.org/toolkit

26

</ saml : A s s e r t i o n xmlns : saml = ” . . . ”>
</ wsse : S e c u r i t y>

</ soap : Header>
<soap : Body>

. . .
</ soap : Body>

</ soap : Envelope>

5 Putting the Components Together

We now describe how the standards and the components introduced in the previous sec-

tions can be used as standard building blocks for a complete Grid architecture for job

submission and management.

The architecture is shown in Figure 12. We actually implemented the components

shown with a shaded background, and we described them in the previous sections.

Figure 12: Complete architecture for a standards-based jobsubmission and management
service

We start by considering the BES/JSDL compliant job submission services. The

schema contains a CREAM service (only the BES interface is shown). As already de-

scribed in Section 2, CREAM provides the following features:

• it implements the BES interface together with the (mandatory) support for the JSDL

specification;

• it can manage different contained resources (LRMS, i.e. batch queues), as stated

into the BES specification. In Figure 12 we see that the CREAM service is associ-

ated with two batch systems, denoted as “LRMS a” and “LRMS B”.

• a mechanism for retrieving information about the status of the contained resources

by means of an information provider.

27

The status of the BES endpoint and its contained resources isreturned by theGet-

FactoryAttributesDocumentoperation (see Table 1). By default, all BES implementations

must support a simple hierarchical information model. TheGetFactoryAttributesDocu-

mentreturns a<FactoryResourceAttributesDocument XML structure, which repre-

sents the current status of the resource represented by the BES endpoint itself (name,

endpoint, operating system name, number of CPUs and so on):

<Fac t o r y Res o u rceA t t r i b u t es D o cu m en t>

<Bas i cRes o u rceA t t r i b u t es D o cu m en t . . . />∗

<I s A c c e p t i n g N e w A c t i v i t i e s . . . />
<CommonName . . . />?
<L o n g D es c r i p t i o n . . . />?
<T o t a l N u m b erO fA c t i v i t i e s . . . />
<A c t i v i t y R e f e r e n c e . . . />∗

<Tota lNumberOfConta inedResources . . . />

<Con ta inedResource . . . />∗

<NamingPro f i l e . . . />+
<BESExtension . . . />∗

<LocalResourceManagerType . . . />

<xsd : any namespace =”## o t h e r ” . . . />∗

</ Fac t o r y Res o u rceA t t r i b u t es D o c u m en t>

The<ContainedResources> might contain other<FactoryResourceAttributesDocument>

or<BasicResourceAttributesDocument> elements, so that it is possible to recursively

describe each contained resource.

As can be seen, a very limited set of informations can be exposed through the

<FactoryResourceAttributesDocument>. Using the BES extension mechanism, it

is possible to enhance the resource description by using theXML rendering of the GLUE

2.0 information model [3]. The resulting XML block can be inserted in the “placeholder”

denoted in the schema fragment above with the<xsd:any ... > element.

CREAM interacts with an external source of information in a pluggable way, al-

lowing the administrator to select the suitable extension for the given information system

(BDII, R-GMA, GLUEMan). In order to expose to the users a GLUE2.0-compliant infor-

mation model, BES services need to interact with a GLUE 2.0 information provider such

as GLUEMan. This association is shown in Figure 12 as a line connecting the CREAM

and GLUEMan services. GLUEMan collects information on the resources available to

the BES service (in this case, the LRMS A and B). The BES service periodically contacts

GLUEMan to get the up-to-date GLUE 2.0 representation of theresources, and provides

this representation to BES clients by means of theGetFactoryAttributesDocumentopera-

tion.

28

The architecture shown in Figure 12 also also contains a BES-compliant Grid metasched-

uler, which is a component which accepts JSDL activities from clients and forwards them

to another BES endpoint for execution (this other endpoint might be another metasched-

uler). Since the metascheduler exposes an ordinary BES interface, it must provide infor-

mations on the contained resources (in our example, the two BES endpoints it forwards

jobs to) via theGetFactoryAttributesDocumentoperation. The standard BES resource de-

scription can be enhanced also in this case with a more complete GLUE 2.0 XML render-

ing, which the metascheduler can obtain by contacting the local GLUEMan component.

This component periodically fetches the GLUE 2.0 information provided by the BES

endpoints by invoking theirGetFactoryAttributesDocumentoperation, and merging the

information returned by them. In this case, the GLUEMan component associated with

the metascheduler acts as a mere aggregator for the data gathered by the information

providers of the other BES endpoints.

We observe that the metascheduler interacts also with the VOMS-SAML service.

Once again, this is due to the particular role of the metascheduler, as it must forward

requests from the user to other job management services; with this respect, it acts as a

client for the destination job management service. So, the metascheduler must obtain

suitable credentials from the VOMS-SAML service, put thosecredentials in the request

header as SAML assertions and send the request to the destination BES service, as every

ordinary BES client would do.

6 Conclusions

In this paper we described three major Grid standards which are relevant to job execu-

tion and management across Grid middlewares: the JSDL/BES specification, the SAML

notation and the GLUE 2.0 information model (note that the GLUE 2.0 specification

has passed is public comment phase and is expected to become an OGF proposed rec-

ommendation in the near future). For each specification, we described how it has been

implemented in an actual software component. Specifically,the CREAM and VOMS

components from the gLite middleware have been reengineered to support BES/JSDL

and SAML respectively, while the GLUEMan information provider supporting the GLUE

2.0 candidate specification has been developed from scratch. We finally described a gen-

eral Grid architecture for job management which makes use ofthese specifications in

general, and the abovementioned components in particular.A prototype implementation

of this architecture has been made, integrating CREAM with VOMS-SAML and GLUE-

Man, in the context of the OMII-Europe project13.

13http://www.omii-europe.org/

29

The adoption of open standard like those described in this paper helps to achieve in-

teroperability between different Grid middlewares; moreover, it also allows middlewares

to be assembled by using basic “building-blocks” which can be easily assembled together

as they only rely on standard interfaces. So, for example, any BES-compliant CE can be

plugged into an existing middleware which supports the BES specification.

However, since these standards are relatively new, there are some shortcomings in

using them in a production environment. Since middleware developers started implement-

ing them, a number of issues appeared. We now describe those which in our opinion are

the most important.

As regards the job description, the JSDL specification only allows the description

of individual jobs. However, most middlewares allow users to submit for execution struc-

tured collections of jobs. For example, in the gLite middleware there is the notion of

DAGs and parametric jobs. A DAG is a set of jobs with dependencies modeled as a Di-

rected Acyclic Graph. The gLite Workload Management Systemtakes care of scheduling

all the individual jobs respecting their dependencies. A parametric job represents a set

of identical jobs which are invoked with different input parameters. Currently the JSDL

specification does not allow the representation of structured jobs; however, JSDL exten-

sions are being worked out to address this limitation.

Concerning the information modeling, as observed in Section 5, the standard BES

specification lacks an adequate model. As GLUE 2.0 is becoming an official OGF stan-

dard, this limitation will hopefully be fixed with the adoption of the GLUE 2.0 XML ren-

dering of resources. This solves the problem ofrepresentinginformation about the BES

service and its contained resources. However, the problem of effectively queryingthe

information model is still open. Letting the server return the whole GLUE 2.0 represen-

tation of all its contained resources can potentially generate a large amount of data which

needs to be transferred over the network to the client for processing. Moreover, client

applications will likely not be interested in the whole GLUE2.0 representation of all the

resources within a BES service, but only in a limited subset of it. This suggests the use

case of letting the client pass to the BES services a query statement written in some ap-

propriate language (XPath or XQuery, for example), so that the query can be processed

server-side and only the result returned to the client. Querying the information service

through the BES interface is still an open issue.

In the resource selection context, a related issue is the specification of JSDL re-

quirements with respect to the GLUE 2.0 model. Currently, activity requirements are

specified using a simple notation involving range predicates over some basic attributes;

all the requirements for an activity are specified inside a<Resources> JSDL element.

For example, an activity can request an execution host with agiven lower bound on the

30

number of processors, a lower bound on the amount of available physical memory, and so

forth. In order to take advantage of the more detailed information model, we need a better

notation for specifying requirements on a GLUE 2.0 resourcerepresentation.

The final considerations are devoted to the security aspects. BES currently lacks a

minimum agreed security profile. Security considerations are outside the BES specifica-

tion, so that one can claim BES compliance without actually being interoperable with a

different producer’s BES client, because they use different security settings. To mitigate

this issue, several so-calledprofileshave been proposed to complement the BES/JSDL

specifications. A profile defines a set of specifications and/or extensions which must be

supported by all conforming implementations. The HPC-Basic Profile [16] defines initial

security based on TLS/SSL using X.509 certificates [38], or TLS/SSL using username/-

password. This security set-up is not realistic for infrastructure integration purposes. Se-

cure data staging probably requires a suitable mechanism for the client to delegate its

credentials to the BES service, so that the BES service can execute operations (e.g., ac-

cess remote files) on behalf of the client. This is heavily used in e.g. the gLite middleware

(the legacy CREAM interface exposes a separate delegation port-type which must be used

by clients to delegate their credentials), but this is not defined by the BES specification.

References

[1] C. Aiftimiei, P. Andreetto, S. Bertocco, D. Cesini, M. Corvo, S. Dalla Fina,

S. Da Ronco, D. Dongiovanni, A. Dorigo, A. Gianelle, C. Grandi, M. Marzolla,

M. Mazzucato, V. Miccio, A. Sciaba’, M. Sgaravatto, M. Verlato, and L. Zangrando.

Job submission and management through web services: the experience with the

CREAM service.Journal of Physics, Conference Series, 119(6), 2008.

[2] Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini,Luca dell’Agnello, Ákos

Frohner, Alberto Gianoli, Károly Lörentey, and Fabio Spataro. VOMS, an autho-

rization system for virtual organizations. InEuropean Across Grids Conference,

pages 33–40, 2003.

[3] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya, M. Litmaath,

P. Millar, and J.P. Navarro. GLUE 2.0 - Reference Realizations to Concrete Data

Models. http://forge.ogf.org/sf/docman/do/listDocuments/projects.

glue-wg/docman.root.public_comment, 2008. OGF Proposed Recommenda-

tion in Public Comment.

[4] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya, M. Litmaath, P. Mil-

lar, and J.P. Navarro. GLUE 2.0 Specification.

31

http://forge.ogf.org/sf/docman/do/listDocuments/projects.glue-

wg/docman.root.publiccomment, 2008. OGF Proposed Recommendation in Public

Comment.

[5] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M.Mambelli, J.M. Schopf,

M. Viljoen, A. Wilson, and R. Zappi. GLUE Schema Specification - Version 1.3,

Jan 2007.

[6] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen

McGough, Darren Pulsipher, and Adreas Savva.Job Submission Description Lan-

guage (JSDL) Specification, Version 1.0, November 1 2005. OGF Specification

GFD-R.056,http://www.gridforum.org/documents/GFD.56.pdf.

[7] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Ananthakrish-

nan, B. Baker, and K. Keahey. Identity Federation and Attribute-based Authorization

through the Globus Toolkit, Shibboleth, Gridshib, and MyProxy. 5th Annual PKI

R&D Workshop, April 2006.

[8] Paul V. Biron, Kaiser Permanente, and Ashok Malhotra. Xml schema part 2:

Datatypes; second edition. W3C Recommendation,http://www.w3.org/TR/

xmlschema-2/, October 28 2004.

[9] Stephen Burke, Simone Campana, Antonio Delgado Peris, Flavia Donno, Patri-

cia Mendez Lorenzo, Roberto Santinelli, and Andrea Sciabà. gLite 3 user guide–

Manuals Series, January17 2007. Version 1.1, Document identifier CERN-LCG-

GDEIS-722398.https://edms.cern.ch/document/722398/1.1.

[10] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, and E. Maler.Bindings for

the oasis security assertion markup language (SAML) v2.0. OASIS Standard

saml-bindings-2.0-osn,http://docs.oasis-open.org/security/saml/v2.0/

saml-bindings-2.0-os.pdf, 2005.

[11] S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and protocols

for the oasis security assertion markup language (SAML) v2.0. OASIS Stan-

dard saml-core-2.0-os,http://docs.oasis-open.org/security/saml/v2.0/

saml-core-2.0-os.pdf, March 15 2005.

[12] D. A. Case, III T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr.,

A. Onufriev, C. Simmerling, B. Wang, and R. Woods. The amber biomolecular

simulation programs.J. Computat. Chem., 26:1668–1688, 2005.

32

[13] Common Information Model (CIM) Infrastructure, version 2.3 final. DMTF

Document DSP00004,http://docs.oasis-open.org/security/saml/v2.0/

saml-core-2.0-os.pdf, October 4 2005.

[14] Common Management Programming Interface (CMPI). OpenGroup Technical

Standard C051, Dec 2004.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-

vices for Distributed Resource Sharing. InProceedings of the 10th IEEE Interna-

tional Symposium on High-Performance Distributed Computing (HPDC-10), San

Francisco, CA, USA, Aug 2001.

[16] Blair Dillaway, Marty Humphrey, Chris Smith, Marvin Theimer, and Glenn Wasson.

HPC Basic Profile, Version 1.0, August 28 2007. OGF Specification GFD-R-P.114,

http://www.ogf.org/documents/GFD.114.pdf.

[17] Dietmar W. Erwin. UNICORE–a grid computing environment. Concurrency and

Computation: Practice and Experience, 14(13–15), 2002.

[18] S. Fisher et al. R-GMA: An Information Integration System for Grid Monitoring. In

On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,

pages 462–481, 2003.

[19] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pick-

les, D. Pulsipher, C. Smith, and M. Theimer. OGSA Basic Execution Service

Version 1.0, August 2007. OGF Specification GFD.108,http://www.ogf.org/

documents/GFD.108.pdf.

[20] I. Foster, C. Kesselman, L. Pearlman, S. Tuecke, and V. Welch. The community au-

thorization service: Status and future. InProceedings of Computing in High Energy

Physics 03 (CHEP ’03), March 24–28 2003.

[21] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable

virtual organizations.International J. Supercomputer Applications, 15(3):200–222,

2001.

[22] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,

F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, andJ. Von Reich. The Open

Grid Services Architecture (OGSA), version 1.5. OGF Specification GFD-I.080,

http://www.ogf.org/documents/GFD.80.pdf, Jul 2006.

33

[23] The Globus Toolkit. http://www.globus.org/toolkit/, 2008.

[24] G. Good. The LDAP Data Interchange Format (LDIF). IETF RFC 2849, Jun 2000.

[25] Steve Graham, Anish Karmarkar, Jeff Mischkinsky, Ian Robinson, and Igor Se-

dukhin. Web Services Resource 1.2 (WS-Resource), April 1 2006. OASIS Standard

wsrf-ws resource-1.2-spec-os,http://docs.oasis-open.org/wsrf/wsrf-ws\

_resource-1.2-spec-os.pdf.

[26] Martin Gudgin, Marc Hadley, and Tony Rogers.Web Services Addressing 1.0–

Core, W3C Recommendation, May 9 2006. http://www.w3.org/TR/2006/

REC-ws-addr-core-20060509.

[27] R. Housley, W. Polk, W. Ford, and D. Solo. RFC3280: Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List(CRL) Profile. http://

www.ietf.org/rfc/rfc3280.txt, April 2002.

[28] The Unofficial Specification of the INI Format, version 1.3.

http://www.cloanto.com/specs/ini.html, September 4 2003.

[29] B. Kónya. The NorduGrid/ARC Information System - technical description and

reference manual. Technical Report NORDUGRID-TECH-4, May17 2007.http:

//www.nordugrid.org/documents/arc_infosys.pdf.

[30] Moreno Marzolla, Paolo Andreetto, Valerio Venturi, Andrea Ferraro, Shiraz

Memon, Shahbaz Memon, Bastian Twedell, Morris Riedel, Daniel Mallmann,

Achim Streit, Svan van de Berghe, Vivian Li, David Snelling,Katerina Stamou,

Zeeshan Ali Shah, and Fredrik Hedman. Open standards-basedinteroperability of

job submission and management interfaces across the grid middleware platforms

gLite and UNICORE.e-Science and Grid Computing, IEEE International Confer-

ence on, pages 592–601, October 10–13 2007.

[31] T. Moses. Oasis extensible access control markup language (xacml), version

2.0. OASIS Standard oasis-accesscontrol-xacml-2.0-core-spec-os,http://www.

oasis-open.org/committees/xacml, February 2005.

[32] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist. Ws-trust 1.3.

OASIS Standard ws-trust-1.3-spec-os,

http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.pdf,

March 2007.

34

[33] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker.Web service security:

SAML token profile 1.1. OASIS

Standard wss-v1.1-spec-os-SAMLTokenProfile,http://docs.oasis-open.org/

wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf, February 1 2006.

[34] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker.Web service secu-

rity: Soap message security 1.1 (ws-security 2004). OASIS Standard Specifica-

tion wss-v1.1-spec-os-SOAPMessageSecurity,http://docs.oasis-open.org/

wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf, 2006.

[35] OGF GLUE Working Group. http://forge.ogf.org/sf/sfmain/do/

viewProject/projects.glue-wg, 2008.

[36] Tom Scavo. Saml v2.0 deployment profiles for x.509 subjects. Com-

mittee Draft 02, http://docs.oasis-open.org/security/saml/Post2.0/

sstc-saml2-profiles-deploy-x509-cd-02.odt2, August 28 2007.

[37] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML

Schema Part 1: Structures; Second Edition. W3C Recommendation, http://www.

w3.org/TR/xmlschema-1/, October 28 2004.

[38] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509

Public Key Infrastructure (PKI) Proxy Certificate Profile. RFC 3820 (Proposed

Standard), June 2004.

35

