
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Sezione di Padova

INFN / TC 08 / 4
22 September 2008

A RESTful Approach to the OGSA Basic Execution Service
Specification

Sergio Andreozzi1, Moreno Marzolla2
1) INFN-CNAF, Viale Berti Pichat 6/2, I-40127 Bologna, Italy

2) INFN Padova, Via Marzolo 8, I-35131 Padova, Italy

Abstract

The OGSA–Basic Execution Service (BES) specification has recently been proposed by
the Open Grid Forum (OGF) as the standard job submission and management interface
across different Grid middlewares. This specification defines a Web Services Description
Language (WSDL) interface for creating, monitoring and managing computational jobs
(called activities), and for querying the capabilities of the BES service itself. In this paper,
we propose an alternate incarnation of the BES functionalities according to the Represen-
tational State Transfer (REST) architectural style. We describe the mapping of the BES
operations in terms of HTTP actions on resources. We comparethe REST formulation
of BES with the standard WS-based one. We show that all BES operations can be ex-
pressed in a very natural way using the standard HTTP protocol and following the REST
approach; moreover, we present useful extensions that are expected to appear in the near
future.

PACS:89.20.Ff

Published bySIS-Pubblicazioni
Laboratori Nazionali di Frascati



1 Introduction

The Grid paradigm emerged in the last decade for the integration, utilization and man-

agement of heterogeneous networked resources part of different administrative domains

to be made available to virtual organizations [5]. Different middleware suites have been

developed to support the Grid paradigm. They enable to expose the various resources

using a common abstraction layer offering a uniform access to them.

A job submission and monitoring service is one of the basic functionalities of most

Grid systems available today. This service allows users to submit computational jobs

to a Grid, manage them and monitor their progress. While the exact notion of “job”

usually varies from Grid to Grid, there are many common features which can be isolated.

For example, a “job” usually consists of running some executable program on a given

processor; the program may operate on one or more input data files, and produce one or

more output data files. Moreover, job requirements (minimumavailable memory, disk

space, CPU speed) may be part of the job description.

Job management involves suspending, resuming, or removinga Grid job. Monitor-

ing involves checking the current status of the job. Moreover, job submission services

also provide operations to handle the service itself, e.g.,disabling further job submis-

sions or check the service capabilities. The different Gridmiddleware platforms offer

different interfaces for job submission and monitoring services today. This makes inter-

operability between different Grids extremely difficult: jobs originating on a Grid system

cannot directly be submitted to another Grid system relyingon a different middleware,

both because the job description notation is different and because the interfaces to the job

submission services are incompatible.

The OGF is the standard body which is defining specifications to enable interoper-

ability both at the technological level and at the functional level. The overarching docu-

ment defines the Open Grid Services Architecture (OGSA)1 [5] in terms of a set of capa-

bilities required to realize the Grid paradigm based on the principles of Service Oriented

Architecture (SOA) and incarnated in the Web Services (WS) technologies. Among the

defined capabilities, the Execution Management Services are concerned with the prob-

lems of instantiating and managing to completion units of work. The related core speci-

fications are the BES and the Job Submission Description Language (JSDL). JSDL is an

XML-based notation for describing computational jobs [2],while BES is a WSDL-based

interface for a Job Submission and Monitoring service [4].

The current state of art is characterized by many Grid middleware suites all adopting

the SOA paradigm with particular incarnation in WS technologies. WS technologies

1OGSA, Open Grid Services Architecture, OGF and Open Grid Forum are trademarks of the OGF

2



are widely adopted, nevertheless they introduce an high level of complexity due to the

richness of modeled functionalities and the availability of competing specifications. The

interoperability is therefore still a challenging task because either different middleware

rely on different set of WS specifications or because of incompatibilities about how the

specifications are implemented.

WS technologies are not the only possible incarnation of theSOA paradigm on top

of the Web architecture. Another approach which is gaining popularity is the adoption

of plain HTTP-based applications designed to comply with the REST architectural style.

REST is a coordinated set of architectural constraints thatattempts to minimize latency

and network communication, while at the same time maximizing the independence and

scalability of component implementations [3]. Many distributed applications that suc-

cessfully build on RESTful HTTP technology are today available, thus implying that WS

technologies are not the only solution for Web-based distributed systems.

In this paper, we describe how the BES functionalities can bemapped into a REST-

ful HTTP-based approach. The goal is to show that this solution is viable and reduces the

complexity of the considered service, while bringing in allthe benefits of the REST-based

approach.

The paper is organized as follows: in Section 2, we describe the BES specification;

in Section 3, we present our mapping of the BES functionalities following the REST

architectural style into the HTTP context; finally, in Section 4, we draw up the conclusions

and plan for future work.

2 The OGSA-BES Specification

The BES specification describes a Web Service interface for creation, monitoring and con-

trol of computational jobs. The meaning of “computational job” is quite broad: it could

be a UNIX or Windows processe, a Web Service or a parallel program [4]. In the BES

terminology, such a computational job is called activity. Activities can be described using

the JSDL [2] notation.

The BES WSDL document defines three WS port-types, which are shown in Ta-

ble 1 with their corresponding operations. The specification requires that all BES im-

plementations must support a simple operation for retrieving all service attributes in a

single document (theGetFactoryAttributeDocumentoperation). However, the specifica-

tion allows that a specific BES implementation may support other access mechanisms. In

particular, an implementation may compose appropriate port-types, e.g., those defined in

the WS-RF [8], WS-Transfer [10] specifications with the port-types defined in the BES

specification.

3



Table 1: BES Port-Types and Operations
BES-Management Port-type

StartAcceptingNewActivities Administrative operation: Request that the
BES service starts accepting new activities

StopAcceptingNewActivities Administrative operation: Request that the
BES service stops accepting new activities

BES-Factory Port-type

CreateActivity Request the creation of a new activity; in
general, this operation performs the submis-
sion of a new computational job, which is
immediately started

GetActivityStatuses Request the status of a set of activities

TerminateActivities Request that a set of activities be terminated

GetActivityDocuments Request the JSDL document for a set of
activities

GetFactoryAttributeDocumentRequest the XML document containing the
properties of this BES service

The BES-Management port-type is used to control the BES service itself. In the

current specification, this port-type contains two operations which are used to start the

service for accepting new requests, and to stop it respectively. This port-type should

normally be used by the system administrators.

The BES-Factory port-type defines operations for creation and manipulation of ac-

tivities and set of activities. Moreover, it contains an operation (GetFactoryAttributeDoc-

ument) for retrieving attribute information about the BES service itself. Such information

contains, among others, the human-readable service name, the total number of activities

currently active in the service, the Endpoint Reference (EPR) to activities currently active

in the service, and the number of contained resources accessible by the BES.

The BES specification mandates that the activities must be described using the JSDL [2]

specification. Attributes are uniquely identified using WS-Addressing Endpoint Refer-

ences [7]. The BESCreateActivityoperation returns an EPR, which can be used by clients

to refer to this activity. During execution, activities traverse a number of states. The ba-

sic state model comprises the following states: (1)pending, the service has created the

activity, but the latter is not yet running on any computational resource: (2)running, the

activity is executing on some computational resource; (3)finished, the activity success-

fully completed execution; this is a terminal state, (4)terminated, the activity has been

terminated by calling theTerminateActivityBES operation; (5)failed, the activity has

4



failed due to some error or failure (terminated and failed are terminal states). The state

model can be extended to consider new states.

3 RESTful BES

The REST architectural style was derived from the Web architecture and can be applied

to different systems to obtain the following benefits: scalability of component interac-

tions, generality of interfaces, independent deployment of components, and intermediary

components to reduce interaction latency, enforce security, and encapsulate legacy sys-

tems [3]. Due to its origins, it is a natural application to distributed systems based on

the HTTP protocol, nevertheless it can be applied also to WS-based distributed systems.

The core architectural elements of REST are: (1)Resource, that is any entity which is

needed to be identified; it is a conceptual mapping to a set of entities, not the entity that

corresponds to the mapping at any particular point in time; (2) Resource Identifier, that is

a Uniform Resource Identifier (URI) identifying a resource;(3) Resource Representation,

that is data and/or metadata describing the current or intended state of a resource.

The main constraints posed by this architectural style are (see [3] for a complete

list): stateless, each request from client to server must contain all of the information

necessary to understand the request, and cannot take advantage of any stored context on

the server;cachethe data within a response to a request be implicitly or explicitly labeled

as cacheable or non-cacheable; if a response is cacheable, then a client cache is given

the right to reuse that response data for later, equivalent request;uniform interfacethe

operations identify only actions with a well-defined semantics and properties of safety and

idempotency; no scoping information is provided in the operation name. In the remaining

part of this section, we propose the mapping of the BES specification into the RESTful

HTTP protocol, that is using the HTTP protocol with respect to the REST architectural

style.

The methodology adopted to achieve this mapping consists ofthe following steps:

(1) identify the interesting resources; (2) name the resources with URIs; (3) define the

operations on the resources; (4) design the representations accepted from the clients; (5)

design the representations served to the client; (6) define error conditions to be handled.

3.1 Modeling Resources and Resource Identifiers

In this section, we present the definition of the resources that we consider useful in the

RESTful BES; we also propose the URI structure for them.

/activities the list of all activities present in the service

5



/activities/id the current representation of a specific activity (id is the local identifier

of the activity)

/activities/id/submitted the JSDL document which has been used to instantiate the

activity

/activities/id/status the current status of the activity

/ representation of the service capabilities (BES factory attributes document)

/status current status of the BES service

/activities/id1[;idj]* the current representation of the activities identified by idx

/activities/id1/status[;idj/status]∗ the current representation of the activity sta-

tuses identified by idx

In the last two cases, a resource overlaps other resources, in the sense that it maps

into a set of entities captured by other resources. In REST, this is permitted since entities

may map into different resources.

3.2 Modeling Operations

In this section, we describe how the BES operations can be mapped into standard HTTP/1.1

operations (GET, PUT, POST, DELETE) with respect to the RESTconstraints. The map-

ping of the WS-based BES operations onto the RESTful BES operations is summarized

in Table 2.

The BES specification defines operations that act not only on single activities, but

also on set of activities (see Table 1). In particular,GetActivityDocuments, GetActivi-

tyStatusesandTerminateActivitiesoperate on a set of activities at the same time. This

approach enables for instance to terminate multiple activities with a single BES operation

invocation. This feature is particularly desirable as it reduces round-trip delays caused

by multiple individual request/response interactions. Italso allows the BES service to

process operations more efficiently by batching them.

When considering the mapping of the WSDL-based BES operations into HTTP

operations, we need to consider that the HTTP protocol operates on a single resource and

does not support operations on a collection of resources. This issue is typically faced by

defining a resource which maps to a set of entities (see Section 3.1).

6



Table 2: RESTful BES Actions

Resource Operation Description BES counterpart

/activities/
GET List all activities of the re-

quest issuer
none

PUT Create a new activity CreateActivity

/activities/id1[;idj]∗ GET Get the current representa-
tion (JSDL document) of one
or more activities

GetActivityDocuments

DELETE Remove (purges) one of
more activities

none

/activities/id1/status

[;idj/status]∗
GET Current status of a set of

activities
GetActivityStatuses

POST Change the status of a set of
activities (e.g., terminate the
activities)

TerminateActivities

/ GET Get the attributes of the BES
service

GetFactoryAttributesDocument

/status GET Get the status of the BES
service

IsAcceptingNewActivities

POST Change the status of the BES
service (e.g., stop accepting
new activities)

SetAcceptingNewActivities

3.3 Modeling Representations and Status Codes

We now analyze each operation listed in Table 2 and describe the exchanged resource

representations together with the involved status codes.

As regards the HTTP status codes, if not differently specified, we act as follows: for

each operation, the server returns the401 Unauthorized HTTP response code if the user

is unauthorized to access thewholeBES service; this corresponds to theNotAuthorizedFault

BES fault; for each operation involving the client sending an XML document in the

request body (e.g.,PUT /activities/), the server returns a400 Bad Request status

code when the XML document in the request body is invalid.

Another general case to be considered is the one about operations working multiple

entities, for which individual status codes are needed (e.g., a terminate operation on an

activity can be successful while on another can fail). The HTTP protocol does not provide

native support for this case, in fact extensions were proposed to solve this issue (see

WEBDAV specification and the multi-status code [6]). In thiscontext, we prefer to act as

follows: multiple response values are inserted into the HTTP response body. The HTTP

7



202 Accepted status code will be issued by the BES service to denote that the request

has been accepted and processed, and to signal the client that the results are contained in

the response body.

3.3.1 GET /activities/

This operation retrieves the list of all activities submitted by the caller which have not yet

been removed. This operation has no equivalent in the BES specification.

HTTP Response Code

200 OK Denotes that the request completed without errors. The response body contains

an XML document with the (possibly empty) list of URIs each representing an

activity.

HTTP Response BodyThe response body contains the list of URIs corresponding tothe

base path of each activity owned by the caller. The response body contains atext/xml

document with the following structure:

<activities>

<activity>/activity/ID</activity>*

</activities>

3.3.2 PUT /activities/

This operation requests the creation of a new activity. Thisis equivalent to theCreateAc-

tivity BES operation.

HTTP Request BodyThe request body contains a BESActivityDocument XML el-

ement as defined in [4]. This element basically contains ajsdl:JobDefinition sub-

element which describes the structure and requirements of the activity being created [2].

The format of the request body is the following:

<bes:ActivityDocument>

<jsdl:JobDefinition>

...

</jsdl:JobDefinition>

<xsd:any> *

</bes:ActivityDocument>

HTTP Response Code

201 Created Upon successful creation of the activity, this status code is returned (the

HTTPLocation header will contain the URI for the newly created activity)

8



501 Not Implemented This response code corresponds to theUnsupportedFeatureFault

fault returned by the BES when it does not support some of the features requested

by the JSDL. The HTML response body should describe the features which are not

supported

503 Service Unavailable This response code corresponds to theNotAcceptingNewActivities

fault returned by the BES if it is not accepting new activities.

HTTP Response Headers

Location: URI Upon successful creation (HTTP return code201 Created), this header
is used to return to the client the base URI of the newly created activity, as follows:

HTTP/1.1 201 Created

Location: /activities/ACT001

3.3.3 DELETE /activities/id1[;idj]∗

This operation is used to remove (purge) one or more activities from the BES service.

The removal of the activities includes also the removal of all local files and directories

that were generated by the activity itself. Note that the current BES specification does not

provide any operation for purging a terminated activity.

9



HTTP Response Code

202 Accepted The request has been accepted. The response body will contain the de-

tailed status information related to the removal of each individual activity.

HTTP Response BodyThe response body is an XML document containing one<activity>

element for each activity referenced in the request URI. If the<activity> element con-

tains a<UnknownActivityIdentifierFault> element, then the activity was not found.

Other kind of fault elements could be defined to notify the caller of other, implementation-

related errors.

<deleteResponse>

<activity id="id">

<UnknownActivityIdentifierFault.../>?

</activity>

</deleteResponse>

3.3.4 GET /activities/id1[;idj]∗

This operation gets the current representation of an activity, in the form of the JSDL

document which describes the activity. This is equivalent to theGetActivityDocuments

BES operation. Note that the current representation of an activity may be different from

the original one. This is because the BES service might have processed and modified the

original JSDL to reflect the current status of an activity. The original representation for

activity id is thus accessible at the URI/activities/id/submitted.

HTTP Response Code

202 Accepted The request has been accepted. The response body will contain the JSDL

document for each individual activity.

HTTP Response BodyIf the response code is202 Accepted, the response body con-

tains an XML document with the following structure:

<ActivityDocumentResponses>

<ActivityDocumentResponse>

<ActivityIdentifier> uri </ActivityIdentifier>

<ActivityDocument>

{jsdl:JobDefinition}

</ActivityDocuemnt> |

<UnknownActivityIdentifierFault/>

</ActivityDocumentResponse>*

</ActivityDocumentResponses>

10



The response document contains the URI and the JSDL documentwhich was used

to instantiate the activity or the current one (depending onthe request). If the activity does

not exist, the JSDL document is replaced by a<UnknownActivityIdentifierFault>

element.

3.3.5 GET /activities/id1/status[;idj/status]*

This operation retrieves the current status of a set of activities. This is equivalent to the

GetActivityStatusesBES operation.

HTTP Request Headers

Cache-Control: must-revalidate With this directive, the user might request the BES

server to ignore any cached status information, and explicitly check for the job sta-

tus.

HTTP Response Code

202 Accepted The operation has been accepted by the BES service; results are con-

tained in the response body.

412 Precondition Failed TheCache-control: must-revalidate request header

was supplied by the client, but the server does not support the possibility of explic-

itly polling the job status.

HTTP Response Headers

Expires If the server is employing polling to query the status of the activities, then it

might know the time of the next (possible) status update. TheBES server could

then use theExpires HTTP header to inform the client that the status information

is valid until the next update.

HTTP Response Body
If the response code is202 Accepted, the HTTP response body contains an XML

document with the following structure:

<ActivityStatusResponse>

<ActivityStatus>

<ActivityIdentifier> uri </ActivityIdentifier>

<ActivityStatus>

{bes:ActivityStateType}

</ActivityStatus> |

<UnknownActivityIdentifierFault.../>

</ActivityStatus> *

</ActivityStatusRespose>

11



where<ActivityIdentifier> contains the URI of the activity (e.g.,/activities/ACT001).

If the operation was successful, the<ActivityStatus> element contains a child element

of typeActivityStateType. In case of errors, the<ActivityStatus> element is re-

placed by<UnknownActivityIdentifierFault/>, which denotes that the activity ID

does not exist. BothActivityStatus andUnknownActivityIdentifierFault are de-

fined as in the BES specification [4].

3.3.6 POST /activities/id1/status[;idj/status]∗

This operation changes the status of one or more activities.This is similar to theTer-

minateActivitiesBES operation, except that the REST counterpart would allowthe user

to request an arbitrary status change. This is useful in conjunction with specialized BES

state models allowing for example an activity to be suspended/resumed at any time. Cur-

rently the BES specification does not provide operations forchanging an activity status,

except for theTerminateActivities.

HTTP Request Body

<StatusChangeRequest>

<ActivityStatus>

<ActivityIdentifier> uri </ActivityIdentifier>

<ActivityStatus>

{bes:ActivityStateType}

</ActivityStatus>

</ActivityStatus> *

</StatusChangeRequest>

HTTP Response Code

202 Accepted The operation has been accepted by the BES service; results are con-

tained in the response body.

HTTP Response BodyIf the status code is202 Accepted, the response message will

contain an XML document with the following structure:

<StatusChangeResponse>

<ActivityStatus>

<ActivityIdentifier> uri </ActivityIdentifier>

<ActivityStatus>

{bes:ActivityStateType}

</ActivityStatus> |

<UnknownActivityIdentifierFault.../>

</ActivityStatus> *

</StatusChangeResponse>

12



For each successfully applied status change, the response document reports the URI

of the activity with the new (updated) status; in case of failure, the URI is followed by an

<UnknownActivityIdentifierFault> element.

3.3.7 GET /status

This operation is used to check the status of the BES service,that is, whether the server

is accepting new activities. This is equivalent to theIsAcceptingNewActivitiesBES oper-

ation.

HTTP Response BodyIf the response code is200 OK, the HTTP response body will
contain a single XML element as follows:

<ServiceStatus status="open" | "closed"/>

where thestatus="open" attribute denotes that the service is accepting new activities,

while status="closed" denotes that the service does not accept creation of new activi-

ties.

3.3.8 PUT /status

This operation is used to change the status of the BES server.This operation is equivalent

to theStartAcceptingNewActivitiesandStopAcceptingNewActivitiesBES operations.

HTTP Request BodyThe request body contains a single<ServiceStatus> XML ele-
ment, with attributestatus="open" to denote that the service should (re)start accepting
new activities, andstatus="closed" if the service should refuse creation of new activi-
ties.

<ServiceStatus status="open" | "closed"/>

3.3.9 GET /{?schema=<schema>}

This operation is used to request the capabilities of the BESservice. In its simplest

form, (GET /) it returns the capabilities of the BES service as an XML document of

typeBESResourceAttributesDocumentType as described in [4]. This document con-

tains a summary of the capabilities of the BES service (number of contained resources,

operating system name, number of CPUs and so on). If the BES implementation supports

additional resource models (allowed by the specification [4]), the client can access the

alternate resource descriptions by using the?schema=<schema> query string, possibly

combined with theAccept: HTTP header to specify the resource rendering format. For

example, to get an XML rendering of a GLUE resource description [1] the client can issue

this request:

13



GET /?schema=glue HTTP/1.1

Host: bes-service.example.org

Accept: text/xml

3.4 Idempotent Execution

The BES specification allows an optional extension to support idempotent execution se-

mantics. This extension can be used to ensure that issuing aCreateActivityrequest multi-

ple times for the same activity results in the creation of at most one instance of the activity.

It requires that a user-generated request ID should be associated to theCreateActivityre-

quest, so that the BES server can ignore duplicate requests.

Idempotent Execution can be implemented within the standard HTTP protocol in

different ways. The Post Exactly Once (POE) protocol [9] works by having the server

generate a unique URI for a POE resource, which is then used bythe client to perform the

actual POST operation. Should the server receive a duplicate POST for the same URI, it

will return to the client a405 Method Not Allowed. While this approach has the ad-

vantage of being almost completely transparent to client applications (no need to send any

special HTTP header), it requires an additional request-response iteration for the client to

get the unique URI to user for the POST request.

Another solution would be that of inserting a client-generated unique ID in the

HTTP requestPragma header, as follows:

POST /activities/ HTTP/1.1

Host: bes-service.example.org

Pragma: IdempotentActivityID=client_defined_id_01

As in the POE protocol, we let the service return a405 Method Not Allowed if it

receives a duplicate request. The response header will alsocontain aLocation field with

the complete URI of the existing (already created) activity.

3.5 Lifetime Management

TheLifetime Managementextension allows the client to request a specific maximum life-

time for an activity. After the lifetime expires, the serveris allowed to remove the asso-

ciated activity without further notice. Similarly to the Idempotent Execution extension,

the maximum resource lifetime can be defined with an appropriate HTTP header in the

request message, as follows:

POST /activities/ HTTP/1.1

Host: bes-service.example.org

Pragma: InitialTerminationTime=<datetime>

14



If the server, for any reason, is unable to comply with the requested activity lifetime,

it will reply with a 400 Bad Request error code. After the expiration of the activity

lifetime, subsequent attempts to access the resource generate a410 Gone HTTP status

code, denoting that the server permanently removed the requested activity.

4 Conclusions

In this paper we considered the BES specification, which is the standard interface to be

adopted by the different Grid middlewares for achieving interoperability. The specifica-

tion, in its current form, is described using a WSDL grammar.We presented a mapping

of the BES functionalities into a REST-based approach usingthe HTTP protocol. We

showed that both the core BES functionalities and the optional extensions can be imple-

mented in a REST compliant way. The REST approach is generally considered simpler

and easier to implement than the WS-based counterpart; moreover, REST services could

in principle be tested using any HTTP client. Future work will include security consid-

erations (which have been intentionally left out from the BES specification [4], but are

nevertheless fundamental for any real-world implementation), and the development of an

actual RESTful BES prototype.

References

[1] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya, M. Litmaath, P. Mil-

lar, and J. Navarro. GLUE 2.0 Specification.

http://forge.ogf.org/sf/-docman/do/listDocuments/

projects.glue-wg/docman.root.public comment. OGF Proposed Recom-

mendation in Public Comment.

[2] A. Anjomshoaa et al.Job Submission Description Language (JSDL) Specification,

Version 1.0, Nov. 2005.http://www.gridforum.org/documents/GFD.56.pdf.

[3] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture.

ACM Trans. Interet Technol., 2(2):115–150, 2002.

[4] I. Foster et al.OGSA Basic Execution Service, Version 1.0, Aug. 2007.

http://www.ogf.org/documents/GFD.108.pdf.

[5] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A.Grimshaw, B. Horn,

F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, andJ. Von Reich. The Open

Grid Services Architecture (OGSA), version 1.5. OGF GFD.80, Jul 2006.

15



[6] Y. Goland et al.HTTP Extensions for Distributed Authoring–WEBDAV, Feb. 1999.

RFC 2518,http://www.w3.org/Protocols/rfc2518/rfc22518.html.

[7] M. Gudgin, M. Hadley, and T. Rogers.Web Services Addressing 1.0–Core, W3C

Recommendation, May 9 2006.

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509.

[8] OASIS Web Services Resource Framework (WSRF) TC.

http://www.oasis-open.org/committees/wsrf/.

[9] Post Once Exactly (POE).

http://www.mnot.net/ drafts/draft-nottingham-http-poe-00.txt.

[10] Web Services Transfer (WS-Transfer).

http://www.w3.org/Submission/WS-Transfer/.

16


