P. D'Agostino, G. Fazio, G. Giardina, A. Italiano:

THE $J^p=1/2^+$, T=1/2 LEVEL IN THE ^5He AND ^5Li MIRROR NUCLEI
THE $J^\pi=1/2^+$, $T=1/2$ LEVEL IN THE 5He AND 5Li MIRROR NUCLEI

P. D'Agostino, G. Fasio, G. Giardina and A. Italiano

Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina and Dipartimento di Fisica dell'Universita', Salita Sperone 31, Vill. S.Agata 98166 Messina, Italy

ABSTRACT - Despite the fact that the shell-model predicts a $J^\pi=1/2^+$, $T=1/2$ state for both 5Li and 5He there is no experimental evidence for this last nucleus. All this is probably due to a very low formation cross-section and to a large width of the above state. Since the analogous in the 5Li mirror nucleus is a broad level the 5He$(1/2^+,1/2)$ state should decay through $\alpha + n$ or $t + d$ in the relative S state.
The knowledge of the low-lying level spectroscopic parameters in light nuclei constitutes the most remarkable test for the validity of the nuclear model. Therefore a precise determination of the excitation energy and width of the above states from the experimental data is very important.

Actually the shell-model calculation, in the case of the A=5 systems, predicts a J^\pi=1/2^+, T=1/2 state for both ^5He and ^5Li nuclei at an excitation energy of about 18 MeV\(^1\). On the contrary all scattering or reaction experiments performed to populate the ^5He nucleus show no evidence for the above state\(^2\).

The existence of the (1/2^+,1/2) ^5Li level is instead invoked to interpret the results of α-p scattering\(^3\), ^3He(d,p)^4He, ^2H(^3He,γ)^5Li and ^6Li(^3He,αp)^4He reactions\(^4\text{-}^6\). The present situation is summarized in Table I: the experimental data coming from the α-p, ^3He+d and ^2H+^3He reactions show a certain evidence of the (1/2^+,1/2) ^5Li level but no measure of the \(E_x\) and \(\Gamma\) spectroscopic parameters of the above state was furnished\(^3\text{-}^5\). The αα spectra

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Reaction or scattering & \(E_{\text{inc}}\) (MeV) & Results & Ref. \\
\hline
\(\alpha-p\) & 25 ± 29 & Evidence of \(1/2^+\) & 3 \\
^3He(d,p)^4He & 2.8 ± 11.5 & \(E_x=(17.9 ± 0.4)\text{ MeV}\) & 4 \\
^2H(^3He,γ)^5Li & 2 ± 26 & \(\Gamma=(3.5 ± 0.8)\text{ MeV}\) & 5 \\
\hline
^6Li(^3He,αp)^4He & 11, 13, 14 & & 6 \\
\hline
\end{tabular}
\caption{Evidence of the \(J^\pi=1/2^+, T=1/2\) ^5Li level: experimental results and shell model prediction.}
\end{table}
Fig. 1 — Distribution of the $\alpha\alpha$ coincidences along the rectified central kinematical curve versus arclength s for the 6Li(3He,$\alpha\alpha$)4He reaction at $\theta_2=90^\circ$ and (a) $E(^3$He$)=13$ MeV, $\theta_1=20^\circ$; (b) $E(^3$He$)=13$ MeV, $\theta_1=30^\circ$; (a') $E(^3$He$)=14$ MeV, $\theta_1=30^\circ$; (b') $E(^3$He$)=14$ MeV, $\theta_1=50^\circ$. The E_{1-2} curve refers to the relative energy of the $\alpha\alpha$ system while the E_{1-3} and E_{2-3} ones refer to the $\alpha\alpha$ system. The dotted line represents the 5Li contribution, the dashed-dotted line represent the contribution of the 16.66 MeV 5Li state, the dashed one is the sum of these contributions.
(Fig.1) coming from the $^6\text{Li}^{(3}\text{He,}\alpha)p^4\text{He}$ experiment, performed by some of us and others at various incident energies and detector geometries, provides for the above level the excitation energy and the first quantitative estimate of the width6.

As one can observe, the E_x values, as predicted by Bevelacqua1 and deduced by us6, are in line with the one adopted by Ajzenberg-Selove2.

For the $(1/2^+,1/2)$ ^5He level, only the shell-model predictions ($E_x=18.0$ MeV) appear in literature. We believe that the production of the above $1/2^+$ state in a three-body reaction might possibly be somewhat favourable than in a two-body process. In this way a kinematically complete, rather than incomplete, experiment can be used in order to reduce the background contributed by:

i) other states of the ^5He nucleus;

ii) particles coming from the decay of other nuclei produced in competing reaction channels;

iii) the statistical three-body break-up.

The analysis of the α-particle spectra obtained by the $^7\text{Li}(d,\alpha)^5\text{He}$ reaction carried out at $E(d)=24$ MeV shows in fact no evidence of the above $1/2^+\ ^5\text{He}$ state. This contribution is probably obscured by the presence of a strong background7.

Recently some of us et al.8 studied the $^7\text{Li}(d,\alpha)n$ reaction, using a 7 MeV deuteron beam coming from the Van de Graaf CN machine of the National Laboratories of Legnaro (Padova). The $\alpha\alpha$ bidimensional spectra, deduced at various θ_1 and θ_2 polar angles, did not provide sure evidence of the above ^5He excited state. This state of affairs can be explained by assuming that
for the $(1/2^+, 1/2)$ 5He state:

a) the formation cross-section is very low;

b) the probable large width makes the experimental investigations relatively difficult.

Now, since the 5He state at $E_x \simeq 18$ MeV has spin $1/2$ and positive parity, we could expect contributions from three possible bifragmented structures: $\alpha+n$ in the relative S state and $t+d$ in the relative S or D state. If the $\Gamma (1/2^+ \ ^5\text{He})$ width is expected to be large, as for the analog state in the ^5Li mirror nucleus\(^6\), the S-state hypothesis could be favoured. On the contrary in the case of the D-state hypothesis the centrifugal barrier should delay the $t+d$ decay with consequent narrowing of the width of our concern.

With this situation it is necessary to carry out new kinematically complete experiments of the $a + A \rightarrow b + \ ^5\text{He}$ kind. In this way the following $\ ^5\text{He} (1/2^+)$ decay in $\alpha+n$ or $t+d$ or both the above channels will allow us to obtain bidimensional spectra between the b spectator particle and another particle coming from the ^5He decay.

In our $^7\text{Li}(d,\alpha)n^4\text{He}$ experiment\(^8\) the spectator is the first emitted α-particle and we studied the $\alpha\alpha$ coincidence spectra between the above α particle and the one coming from the $^5\text{He} (1/2^+) \) decay. If the above decay occurs in the $t+d$ fragments (in the relative S or D state) it is necessary to obtain αt or αd or both coincidence spectra besides to evaluating the angular distribution in order to get information on the l-value in which the resonance mainly occurs. Therefore, in the case of this reaction, it is proper to perform a kinematically complete experiment at an incident energy enough to populate the above ^5He state to obtain $\alpha\alpha$ or αn and αt or αd coincidence spectra.
Other reactions leading to three bodies in the final state ($n+^6Li \rightarrow d+^5He$; $d+^6Li \rightarrow ^3He+^5He$; $\gamma+^7Li \rightarrow d+^5He$; $n+^7Li \rightarrow t+^5He$; $p+^7Li \rightarrow ^3He+^5He$) could be performed to populate the 5He state with an excitation energy of about 18 MeV. Now, while the $d+^7Li \rightarrow \alpha+^5He$ reaction has a Q-value of 14.23 MeV, the above five reactions have Q-values below 1 MeV or quite negative. In these cases, higher incident energies are required and, consequently, processes in competition could arise with the probable result of obscuring the contribution of our interest making the extraction of the spectroscopic parameters more difficult.

* * * * *

Thanks are due both to the Istituto Nazionale di Fisica Nucleare and to the Comitato Regionale per le Ricerche Nucleari e di Struttura della Materia for the financial support. The help in the revision of the English text furnished by Dr. A. Riccardo has been pleasant.
References

2) F. Ajzenberg-Selove: *Nucl. Phys.* A490 (1988) 1 and references therein

