D. Bollini, F. Fossati, A.M. Paolillo and S. Rovera: ENERGY SPECTRUM OF PROTONS FROM Cs AND I WITH 17.6 MeV INCIDENT γ-RAYS.
D. Bollini, F. Fossati, A. M. Paolillo and S. Rovera: ENERGY SPECTRUM OF PROTONS FROM Cs AND I WITH 17.6 MeV INCIDENT \(\gamma \)-RAYS\(^{(x)} \).

Abstract.

Energy spectra of protons from the \(^{127}(\gamma, p)\)Te\(^{126}\) and \(^{133}(\gamma, p)\)Xe\(^{132}\) reactions were measured at 17.6 and 14.8 MeV \(\gamma \)-rays energy. Pulse-shape discrimination has been used. The cross-sections for these reactions were estimated to be \(2.5 \pm 0.3 \) mbarn. The spectra are consistent with the statistical theory for \(E_p < 4.75 \) MeV and present in the high region, effects of direct interactions.

This paper presents experimental results on the energy spectrum of protons emitted by Cs\(^{133}\) and \(^{127}\) of a CsI(Tl)-crystal, irradiated with 17.6 and 14.8 MeV \(\gamma \)-rays. The \(\gamma \)-rays are produced in the \(\text{Li}^7(p, \gamma) \) reaction at the 440 KeV resonance.

The crystal acts both as target and as detector for \(p \) and \(e^- \) particles; moreover, exploiting the property of the crystal to present a fluorescence decay time which depends on the particular particle detected, it is possible to discriminate between \(p \), \(e^- \) and electrons produced by \(\gamma \)-rays.

The use of pulse shape analysis allows one to increase the \(\gamma \)-flux, to use relatively thick crystals, and therefore to reduce corrections not easy to estimate, for protons escaping from the crystal.

Although it is impossible to separate the Cs\(^{133}\) and \(^{127}\) contributions to the observed reaction, it is reasonable to assume that both elements will behave similarly. In fact, the two nuclides are close together in \(Z \) and \(A \) values (\(^{127}Z=53; \) Cs\(^{133}Z=55\)) and both contain an odd number of \(p \) and an even number of \(n \). The \((\gamma, p) \) reaction \(Q \)-values are practically equal (-6.25 MeV and -6.37 MeV for \(^{127}\) and Cs\(^{133}\)). Besides, the \(4\pi \)-geometry of the target detector system, does not allow angular distribution measurements.

The work was carried out with a 560 KeV Cockroft-Walton accelerator with the radio-frequency source in a fixed magnetic field. The \(\gamma \) activity was monitored continuously during the irradiation with a Geiger-Müller counter.

\(^{(x)}\) - This work has been carried out under contract EURATOM-CNEN.
(20th Century Electronics G. 5H) calibrated with the β^+ activity induced in a copper foil by the reaction Cu$^{63}(\gamma, n)$Cu62. With an ion current of 70 μA the γ-rays intensity was $1.2 \times 10^6 \gamma x sec^{-1}$ over the whole solid angle.

The experimental arrangement is shown in fig. 1. The CsI(Tl) crystal (a) has a diameter of 40 mm and a thickness of 3 mm. It is mounted, with a 10 mm high perspex light pipe (b), on a Dumont 6292 photomultiplier (c). An aluminium sheet of 0.18 mgr/cm2 (d) covers the crystal and the light-pipe.

To avoid the counting of protons from (γ, p) reactions in the surrounding metallic structures, a foil of polythene (e) of 2 mm thickness is placed over the crystal and absorbs protons with an energy up to 15 MeV.

The detector is screened by a 80 mm thick cylinder of Pb (f) with a 20 mm collimation hole (g) coaxial with the crystal (a).

The signals from the photomultiplier were sent to a discriminator circuit and analysed by a 100 channel pulse height analyser. The block diagram of the electronic apparatus is outlined in fig. 2; it is similar to that used by Marczan and al. (1).

Fig. 1

Fig. 2 - Pulse shape discriminator circuit.
The calibration of the proton energy scale was made with 3.9 and 8.77 MeV α-particles from a natural Th source. The energy calibration curves given by Dixon\(^{(2)}\) for α and p in a CsI crystal were used.

Experimental results and discussion.

The experimental spectrum of protons, representing a total of 22700 counts, is shown in fig. 3. This spectrum was obtained in a series of successive runs for a total irradiation time of 260 hours.

Fig. 3 - Experimental spectrum of protons.
4.

The following corrections were applied to the spectrum:

a) correction for protons escaping from the crystal, due to its particular geometry;

b) correction for the protons due to \((n,p)\) reactions in Cs and I and the recoil protons in polythene. Neutrons are produced by a \(\text{Li}^7(d,n)\) reaction, with deuterons from our unanalysed proton beam.

The correction (a) was calculated assuming an isotropic angular distribution of protons; and was found to change from 5\% for 6 MeV protons to 10\% for 10 MeV protons.

For correction (b), the number of protons due to neutrons from \(\text{Li}^7(d,n)\) was determined from the yield of the reaction and the \((n,p)\) cross-section in CsI. They do not alter substantially the spectrum shape.

The corrected spectrum seems to be in agreement with that of Sébaoun\(^{(3)}\) and Bormann-Neuert\(^{(4)}\).

Fig. 4 shows an analysis of the spectrum made according to the statistical theory. We plotted \(N(\varepsilon)/\varepsilon \times \sigma_c(\varepsilon)\) versus \(\varepsilon\), where \(N(\varepsilon)\) is the number of protons of energy \(\varepsilon\), and \(\sigma_c(\varepsilon)\) is the cross-section for the reverse process. Values of \(\sigma_c(\varepsilon)\) were taken from Shapiro\(^{(5)}\)'s work, assuming \(r_0 = 1.5 \times 10^{-13} \text{ cm}\). The plot shows that the spectrum in the lower energy region corresponds to a nuclear evaporation process of the form:

\[N_p(\varepsilon) = \text{cost} \cdot \sigma_c(\varepsilon) e^{-\varepsilon/\varepsilon_0}\]

with a nuclear temperature \(\varepsilon_0 = 0.23 \text{ MeV}\).

The high energy part of the spectrum, can be attributed to direct interactions, possibly two peaks are separable, one at 7 MeV and one at 9 MeV, in spite of the poor resolving power of the apparatus.

The analysis of the experimental spectrum shows that the protons emitted from the statistical process are about 21\% of those produced by the resonance direct mechanism.

According to Wilkinson\(^{(6)}\)'s theory for elements with \(Z=53-55\), the ratio of proton emission to total absorption is 0.85\% in the case of a bremsstrahlung beam with 23 MeV maximum energy. The same ratio, calculated by Weinstock\(^{(7)}\) with the statistical theory for bremsstrahlung of 22 MeV maximum energy is 0.2\%. Therefore the ratio between the evaporative process and the Wilkinson theory should be about 23\%. This value is in good agreement with our experimental value of 21\%.

To calculate the \(\sigma(\gamma,p)\), it was assumed that Cs\(^{133}\) and I\(^{127}\) were identical in behaviour, and that the cross-sections with 14.8 MeV incident \(\gamma\)-rays was equal to that with 17.6 MeV \(\gamma\)-ray. The last assumption is reasonable because the maximum of the giant resonance is at 15.2 MeV for Iodine and at 16.0 MeV for Cesium.

We estimated that the cross-sections for Cs\(^{133}(\gamma,p)\) and I\(^{127}(\gamma,p)\) reactions were: 2.5 ± 0.8 mbarn.

This value is to be compared with 1.5 mbarn obtained by Sébaoun\(^{(3)}\) and Kestelyi-Ero\(^{(8)}\) for the same reactions.
6.

Bibliography. -

