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Abstract
The PAMELA experiment has shown that a fraction of cosmic rays could be due

to proton fluxes generated by the magnetosphere of the planet Jupiter. Thus, a conjec-
ture that astrophysical objects provided by magnetospheres be sources of the cosmic
radiation is put forward. With simple geometric considerations the energy spectrum
E−2.5 is obtained, independently on the particle species, very close to the experi-
mental CR spectrum, under the hypothesis that particle acceleration mechanisms act
uniformly in the magnetospheric region.
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1 Introduction

Since the discovery of the cosmic radiation, made simultaneously in 1912 by Domenico
Pacini[1] and by Victor Hess [2], the nature of the sources has been debated. After a
century mysteries still remain. The suggestion was made, already in 1934 [3], that cosmic
rays be generated by the explosion of supernovae, be due to acceleration by shocks from
nova and supernova of different types [4], but it is likely that there can be a variety of
sources like, i.e. pulsar [5] and, as suggested by Fermi [6], sources of continuous nature
distributed in the intergalactic space.

Recently the cosmic rays measured by PAMELA1 have been studied in terms of their
space-temporal distribution [7, 8]. The result has been that, during a period of eight
years, the high energy interplanetary proton fluxes detected by PAMELA are larger, by
twelve standard deviations, when the Earth intersects, in its orbit around the Sun, the
interplanetary magnetic field (IMF) lines connecting Earth with Jupiter.

Thus: Jupiter emits 1 GeV protons, about 4% of the cosmic rays detected by PAMELA.
This result draws attention to the idea put forward long ago [10] that magnetospheres

of astrophysical objects could contribute to the sources of cosmic rays, that is: higher
energy particles leak out from the magnetosphere trapped particle regions and then are
ejected into space as cosmic rays.

One important problem for any proposed theory is the derivation of the energy spec-
trum. In proposing the pulsars as sources of cosmic rays Thomas Gold writes [11] One
would like of course that the mechanism proposed should generate the right spectrum;
but there we as yet know too little.

In this paper we wish to study the spectrum of the particles escaping from a magneto-
sphere, according to our conjecture.

2 Conjecture on the spectrum of the magnetospheric es-
caping particles

The basic idea is the following. The source is an astrophysical body surrounded by
charged particles in a strong magnetic field (i.e. pulsars, AGN, magnetospheric objects)
which we assume to have a dipolar nature. The particles are accelerated by electrical
fields acting in the magnetosphere. The accelerated particles follow the magnetic lines
of force towards the equator, with a motion that obeys the laws of the adiabatic invari-
ance [12]. At the equator the magnetic field is weakest and if the particles have reached
sufficient energy they might leave the magneto-spheric region and go in the outer space,

1PAMELA, launched on 15th June 2006, in a 350-600 km heigh orbit, is a space-based experiment
designed for precise measurements of charged cosmic rays - protons, electrons, their antiparticles and light
nuclei in the kinetic energy interval from several tens of MeV up to several hundreds of GeV [9].
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contributing to the cosmic rays2.
This process goes through the following steps: at the equator the field due to a mag-

netic dipole M, at distance r, is

B =
M

r3
(1)

(For a neutron star with a radius ∼ 10 km the magnetic moment is of the order of M =

1021 T ×m3.)
A charged particle with electrical charge q and momentum p can be trapped in a mag-

netic field with Larmor radius
RL =

p

qB
(2)

For a particle to stay trapped it is necessary that the Larmor radius be small enough to
satisfy the Alfven condition [14]

(dB/dr)RL

B
≤ ξ (3)

where the dimensionless quantity ξ is estimated by means of plasma experiments in space
and on the Earth and is of the order of a few per cent [15]. Combining the above equations
we get

3pr2

qM
≤ ξ (4)

An important feature following this conjecture if that the spectrum should terminate
at a maximum momentum value (see also [16]). Using Eq. 4 with equal sign we get

pmax =
ξcqM

3R2
(5)

In the case of cosmic rays from a neutron star with R ∼ 10 km, M = 1021 T ×m3 and
with ξ ∼ 0.15 [17], we calculate

pmax = 1.5 · 1020 V (6)

This value ( 1.5 · 1020 eV in energy) compares with the highest cosmic ray proton energy
detected so far. Higher values can be obtained for larger values of M.

Eq.4 has to be interpreted in the following way: when an electrically charged particle
accelerated by the electrical fields acting in the magnetosphere reaches a momentum p that
violate Eq.4 (or it satisfies with the equal sign) then it escapes from the magnetosphere
and goes into the outer space. This is likely to happen at the equator where the magnetic
field is the weakest.

We try now to make an estimation of the energy spectrum of the escaping equatorial
particles. The equation of a magnetic line of force is

r = Lsin2(θ) (7)
2We are aware that we do not propose an explicit acceleration mechanism acting in the magnetosphere.

The existence of acceleration mechanisms which lead to a breakdown of the adiabatic conditions has been
considered soon after the discovery of the Van Allen belt (see i.e. [13]).
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where θ is the co-latitude. The number of particles escaping from the trapping region at
the equator at distance L is proportional to the volume contained in the magnetic shell
between the lines of force L and L+dL times the density ρ(L).

The volume delimitated by the Earth and the magnetic line of force of Eq.7 is

V = 4π
∫ 90o

θm
sin(θ)dθ

∫ Lsin2θ

R
r2dr (8)

where R is the radius of the solid source and θm = asin(
√

R
L
) is the angle where the line

of force intersect the solid source. Solving the integral we obtain

V =
4π

3
L3{cosθm − cos3θm +

3

5
cos5θm −

1

7
cos7θm −

R3

L3
cosθm} (9)

The volume of the shell included between the lines of force L and L+dl can be easily
calculated and is

dV = 4πL2f(
L

R
)dL (10)

with the function f(L
R
) that tends to the constant value 16

35
for L

R
> 3 as shown in fig.1.

Thus the number of particles contained in this volume is

dN = ρo(L)4πL
2f(

L

R
)dL (11)

where ρo(L) is the particle density that, in the general case, depends on L.
The particles at the shell L which violate the Alfvèn breaking condition (Eq.4 with

equal sign) are a fraction αL(L) of dN and have the momentum

p(L) =
ξcqM

3L2
= pmax

R2

L2
(12)

This equation shows a strict relationship between L and p,

L(p) = R

√
pmax
p

(13)

therefore we also have the inverse function αp(p).
We derive the number of particles which are about to escape from the shell

dn = αL(L)ρo(L)4πL
2f(

L

R
)dL (14)

Limiting ourself to the region where f(L
R
) = 16

35
and using Eq.12 the above equation

becomes

dn = αp(p)ρo[L(p)]2π
16

35
p3/2maxR

3p−1p−3/2dp = (15)

Noαp(p)ρo[L(p)]p
−2.5dp (16)

with No constant and L(p) given by Eq.13.
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Figure 1: The function f(L
R
) × 35

16
calculated versus L

R
. For L/r ≥ 2 ∼ 3 it takes a

constant value equal to 16
35

.

This is the number of particles with momentum between p and p+dp which leave, with
relativistic velocity, the corresponding shell.

We remark that the spectrum of the escaping particles depends on three processes:
a geometrical one expressed by the function p−2.5 (the absolute value of the exponent
increases for particles leaking out from the region with L/r ≤ 2 ∼ 3, at very high
energy), a dynamical one expressed by αp(p) that includes the action of the acceleration
mechanisms and, third one, on the density of the plasma distribution in the magnetosphere
ρo[L(p)].

We find impressive that the geometrical process gives a spectrum very close to the ex-
perimental one. The dynamical process requires a model for the acceleration mechanisms
that bring the particles to the escaping velocity. Such a mechanism might occur trough a
diffusion process, studied extensively in [17, 18].

We note that the dependences of the acceleration rate and the density at a certain
energy on L are opposite to each other, so that their product shows a much weaker depen-
dence on L. Therefore one can set: αp(p)ρo[L(p)] ∝ e−β(p).

Finally we put
dn = Nop

−γdp (17)

where
γ = 2.5 + β(p). (18)
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3 Discussion

At the present stage of our knowledge a complete theory of the cosmic radiation is not pos-
sible yet, since many phenomena are still to be explored, in particular the magneto-spheric
acceleration mechanisms. Much literature have been published on the pulsar magneto-
spheres (see in particular [19, 20]), but all works are concerned primarily with the present
available observations, in the field of electromagnetic emission.

With the present paper we wish to draw the attention on the new experimental obser-
vation: magnetospheres, in addition to emit e.m. radiation, also do emit particles.

In his paper [6] Fermi gives importance to the power law form of his derived spectrum
for CR and he states: One of the features of the theory is that it yields naturally an inverse
power law for the spectral distribution of the cosmic rays, in spite of the fact that ad hoc
values for the parameters involved in the initial acceleration as well in the particle loss in
the interstellar space were necessary.

Following our conjecture the inverse power law spectrum is obtained for a most im-
portant part of the spectrum, that concerned with the geometrical process, and this is
independent of the particle species comparing favorably with the various measured spec-
tra.

Above the energy of about 1014 eV the difference between the E−2.5 spectrum and the
measured one increases. The experimental logarithmic slope ranges roughly from -2.6
at low energy to -3 at higher energies in regions denominated Knee end Ankle. These
regions of the energy spectrum have been studied extensively, i.e [21, 22, 23, 24, 25].

If our conjecture is good, then one expect to find acceleration mechanisms giving
values of the β(p) ranging, roughly, between 0.1 and 0.5.
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