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ABSTRACT

We attempt to increase the efficiency of simulations of dynamical fermions on the
lattice by calculating the fermionic determinant just once for all the values of the theory’s
gauge coupling and flavour number. Qur proposal is based on the determination of an
effective fermionic action by the calculation of the fermionic determinant averaged over
configurations at fixed gauge energy. The feasibility of our method is justified by the
observed volume dependence of the fluctuations of the logarithm of the determinant. The
algorithm we have used in order to calculate the fermionic determinant, based on the
determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us
to obtain results at any fermion mass, with a single fermionic simulation. We test the
method by simulating compact lattice QED, finding good agreement with other standard
calculations. New results on the phase transition of compact QED with massless fermions
on 64 and 84 lattices are also presented.



1. INTRODUCTION

The last few years have seen a great refinement in the quality of numerical results
obtained by lattice field theory calculations. Improvements in computer performance,
statistics, numerical techniques and theoretical methods, all converged to a clearer itnde-
standing of abelian and non abelian field theories, provided that a certain simplification
was imposed; namely that of ignoring either the effects of fermions (pure gauge theory) or
the effects of sea fermions (quenched field theory). In the above framework we now have
consistent results for reasonably large lattices and non perturbative valies of the inverse
gauge field couplings §. A problem arises when the effect of sea fermions is included in
the form of the fermionic determinant of the theory. The action then becomes non-local
and its simulation requires exceptional computing resources by today’s standards.

The confrontation of this problem has been the object of considerable research efforts
in the last few years, which followed two main directions: (1) the construction of custom
made computers which are more or less dedicated to lattice field theory (see ref. [1]
and references therein) and (2) the development of faster algofithms (see ref. (2] and
references therein). The results of algorithm development have been positive in that
the earlier proposals involved computational costs of O(V 2) [3,4], whereas now we have
at our disposal algorithms with a theoretical cost of almost O(V), such as the hybrid
algorithm [5] or hybrid Monte Carlo [6] . |

Impressive as this progress may sound, we are still far from resolving the problem.
The costs quoted above are theoretical order of magnitude estimates of the dependence
of the calculation on the lattice volume V. In realistic calculations, the cost is augmented
by several other factors. One is critical slowing down, for which some remedies have
been proposed such as Fourier Acceleration [7] and Lower-Upper decomposition of the
fermion mattix [8]. Another problem is the number of parameters that characterise
a field theory. These are normally the fermion mass m, the inverse gauge coupling
B and the number of flavours N;. In order to tackle a typical lattice problem, the
calculation must be repeated for, say, M mass values, B gauge couplings and sometimes
for F different numbers of flavours. Thius, the real cost of the computation is C1C,V P,
where Cy is a factor that depends on the algorithm and the theory’s parameters, p is
the volume dependence already discussed above (both Cy and p include critical slowing
down effects) and Cy = M X B x F is the repetition factor (i.e. the total number of
the theory’s parameters for which we have to repeat the calculation). The considerable
progress we have sketched above involves a reduction of C'y and p by the development of
fast algorithms and acceleration techniqﬂes.

The object of this paper, which is a more extensive and detailed version of a previous
publication [9], is to propose a method to reduce Cy which will give in addition good
results also for C in that critical slowitig down is controlled. In other words, we seek to
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find ways of not having to repeat the numerical simulation for different values of at least
one of the theory’s parameters.

At this point we wish to stress that in exploring such possibilities we have imple-
mented exact diagonalisation algorithms, which are at least O(V'2). We are fully aware
that this is a weakness that has to be dealt with as we move to larger volumes, but, at
least for the physics explored so far, our method turned out to be much faster than the
fast algorithms.

We have carried out two attempts. The first consists of expressing the determinant
as a power series of the mass. Then the partition function and any observable (we
shall mainly consider ({4/)) may be expressed as a function of a power series in m, the
coefficients of which are quenched averages and depend solely on 8 and the eigenvalues of
the massless fermion matrix. Thus, the simulation is performed once for all masses and
the repetition factor is C; = B x F. This method, although very promising in theory,
turns out to be a disaster in the physically interesting cases. In particular, near the
critical points of the theory, the importance sampling of the pure gauge action misses
the neighbourood of the configuration space that contributes most and the results it the
critical region are wrong.

The second method consists of re-expressing the theory in terms of an ” averaged”
determinant, which is a function of the system’s energy and the mass (all other depen-
dences are averaged out). This ”averaged” determinant is then calculated numerically
for a wide energy range, either at a fixed mass or by means of the determination of all
the zero mass eigenvalues of the fermionic matrix. As the determinant does not depend
on B, this calculation, which is the costliest, is performed only once in the second case
or once for each mass in the first case.

We then use this result in a standard simulation of the re-expressed theory; the
determinant is now a known function of the energy and the pure gauge part is not
costly to simulate. The repetition factor is essentially reduced to Cy = 1 or C3 = M.
The number of flavours enters trivially in this formulation and does not increase the
computational cost significantly. This method has given results in agreement to more
traditional approaches.

In order to test our proposals, we have used our methods in order to study the
compact unquenched U(1) lattice theory and in particular its chiral phase transition
already studied with the pseudofermion method by Azcoiti et al. [10], and in more deta‘:ijl
by Dagotto and Kogut (D-K) [11,12]. D-K have used both deterministic and stochastic
algorithms and comparison of their results to ours will give evidence of the accuracy and
efficiency of the method we propose.

The paper is divided into five sections. Sections 2 and 3 are a presentation of the
two methods we propose for the inclusion of dynamical fermions in the theory. We also
speculate on whether these are going to work in practice, and discuss their advantages
and disadvantages. In Section 2 we present the results obtained with the first method
(henceforth termed naive) on the chiral condensate. On the face of discrepancy between
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our results and those of ref. [11] we discuss in Section 3 the reasons for which the naive
method fails. In Sectiofi 4 we present otir results obtained with the second method on
the chiral condensate, the plaquette energy and the specific heat for the case Ny =4 and
m = 0.1, m = 0.0. These are found in excellent agreement with the results of ref. {11,12]
in the m = 0.1 case. Section 4 contains also resilts on the same physical observables for
different number of flavoirs. We have performed all the above simulations on 64 lattices,
and present some reults for the 84 case. Finally, Section 5 contains our conclusions.

2. THE NAIVE METHOD

We consider, for simplicity, the partition function of the abelian case; what follows
can be easily generalised to any unitary gatige group.

7= / (d][d][dU]e—52¢PS = / (dU] det A (U, m)efS (2.1)

where S is the Kogut-Susskind fermionic action:

Sf——me Y(z) + = Zw (@ {Uu(2)(z + 1) = Uz — w)(z — p)}  (2.2)

1ale) = (1)t

and S is the pure-gauge Wilson action:

S= " ReUy. (2.3)
pl
A(U,m) is the lattice Dirac operator whose determinant appears when we integrate out
the fermionic Grassmann variables.

The form of Z suggests its calculation by Monte-Carlo methods by measuring the
average of det A(U,m) ih pure gauge configirations generated according to the pure
gauge probability distribution [dU]e?S. We will refer to this method as the "naive” one:
we will show in the following that, although in the strong and weak coupling regimes
it gives correct results, it is bound to give wrong results in the physically interesting
intermediate coipling region. k

The method consists in computing the partition function Z at some fixed value of
the bare coupling constant 8; thermodynamic functions such as the chiral condensate

(1)) and the specific heat C,, = E‘—};(«M) are then obtained as derivatives of log Z. To
this effect we can define:

R N A (24
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It is obvious from expression (2.4) that the logarithmic derivatives of Z with respect to
m are just the same as those of 2. Then our program is to compute numerically the
vacuum expectation value of the fermionic determinant with the probability distribution
of the pure gauge theory and subsequently to obtain the chiral condensate and specific
heat by differentiating 2. '

In order to have a better understanding of what we are really computing when we
calculate expression (2.4) let us remember the properties of the lattice Dirac operator.
The fermionic determinant is a gauge-invariant operator which has only even powers
of m because of the symmetries of the A matrix. The gauge invariance properties of
det A allow us to construct in a simple way the coefficients of the polynomial given by
expression (2.4) [13,14]. Indeed we can write:

(det A(U,m))p.c. =m” +aym¥ =2+ . +ayjy_1m? +ay), (2.5)

where a; is proportional to the pure gauge vacuum expectation value of the sum of
all gauge invariant loops of perimeter 2, that is to say the number of lattice links. In
general the coefficient a; will be proportional to the vacuum expectation valiie of the
sum of all combinations of ghuge invariant loops with total perimeter 2¢ which do not
touch (otherwise their contribution to the determinant is zero). The sign of these sums
is always positive if we take the Kogut-Susskind phases in the correct way. We note in
passing that similar expansion of the determinant have been used, for istance, in QCD
finite density simulations {15].

Thus the numerical evaluation of expression (2.4) amounts to computing the vaucum
expectation values of all loops of perimeter less than or equal to the lattice volume V.
It is clear that the computation of a; will suffer, near the transition point, from large
statistical errors for large values of ¢, since in this case we are dealing with large loops.

The B = 0 case can in principle be solved analytically [14] since the vacuum expec-
tation values of loops of non zero area is zero. Then we get:

ai(B) |g=0= (%)2‘ X (# of combinations of ¢ disconnected links on the lattice)

In the following we describe in more detail how we perform the numerical computa-~
tion of (2.4). We generate equilibrium configurations at some fixed value of 8 with the
probability distribution of the pure gauge theory, separated by 1000 M.C. gauge sweeps.
We compute for these configurations all the eigenvalues of the fermionic matrix A at
m = 0. All the coefficients of the fermionic determinant are then in principle known and,
in fact, they can be computed iteratively from the eigenvalues; averaging them over the
configurations we get the numerical valite of expression (2.4).

The first niimerical results we report concern the § = 0 case. This particular value
of B is interesting because we can compare with analytic calculations. In fact, as we
mentioned before the # = 0 case can be reduced to the combinatorial problem of finding
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the number of disconnected link configurations we can construct in a hypercubic lattice
of volume V. This problem can be easily solved in the smallest lattice ( 24 ). In Table I
we compare the rigorous results for the coefficients of the partition function ( 24 lattice )
to the numerical results obtained applying the "naive” method to the evaluation of
expression (2.4). The agreement is excellent.

TABLE I Coefficients of the partition function Z at # = 0 in the 24 lattice.

¢ a; rigurous a; Monte Carlo
1 16 16.03(6)

2 100 100.4(8)

3 312 314(4)

4 516 521(8)

5 444 450(10)

6 182 185(5)

7 29 30(1)

8 1.0625 1.08(11)

In Fig. 1 we plot our results for the chiral condensate at § = 0 and 24, 44, 64
and 84 lattices. The top (straight) line in Fig. 1 is an analytic prediction {16,10]. The
agreement between the analytic and numerical calculations is good and gets better for
lower values of the fermion mass, at larger lattice volumes.

We have further compared our results in the deep strong coupling region with those
obtained in ref. [17] with the pseudo-fermion method. The authors of ref. [17] measured
the fluctuations of the trace of the inverse fermionic matrix by the P.F. method and
found a peak around m = 0.11 for this quantity in the confining phase, the heigth of the
peak being independent of the lattice size. We have done the same calculation using our
method and we have found that in the 24 lattice there is a peak around m = 0.1 in the
strong coupling phase but it moves quickly to the left and its heigth increases rapidly
with increasing lattice size.

‘In Fig. 2 we compare the results for the normalized fluctuations of the trace of
the inverse fermionic matrix obtained with the pseiido-fermion method [17] with those
obtained with our method ( solid line in the figure ); the peak in this quantity is localized
around m = 0.002, § = 0.1 in the 44 lattice in contrast to the value (m = 0.11) obtained
with the P.F. algorithm. This disagreement can probably be attributed to convergence
problems of the pseudo-fermion method at small masses.

We have also done a simulation in the large 8 region checking that the chiral con-



e e o B AT AT i < ———

7

densate approximates the free case when 8 increases. Having checked that this mettiod
is in good agreement with the analytical predictions in the # — 0 as well as 8 — oo
limits, we have performed simulations at several valies of 4 ifi ordet to compare with
existing standard calculations. In Fig. 3 we plot out results for the chiral condensate as
a function of § at two representative values of the fermionic mass (m = 0.05, m = 0.1)
for a 64 lattice. At these intermediate couplings, our results start differing from those
in the litertaure: for instance, the critical valiie 8, for the chiral transition seems to be
independent from the fermion mass and approaches the critical value of the quenched
theory B2 when the lattice size increases. The independence of 8, from theé fermionic
mass has also been observed by plotting the specific heat C,, as a function of m and
checking that this quantity shows a single maximum at m = 0.

These results are in disagreement with those of Dagotto and Kogut in the sense
that our B, in the 64 lattice at m = 0.1 is 4, = 0.993(3) to be cotnpared to the values
Be = 0.890 ( stochastic method ) and B. = 0.873 ( deterministic method ) reported in
ref. [11].

In conclusion, the situation of the method exposed above is the following:

i) In the weak and strong coupling limits, the numerical results show a good igree-
ment with analitical predictions,

i) At intermediate values of the couplinig constant we find significant differerices
between our results on the chiral condensate and those obtained with the use of stan-
dard methods. The possible origin of these discrepancies will be discussed ifi the next
paragraph.

3. DESCRIPTION OF OUR PROPOSAL

In the previous section we have presented a detailed exposition of a way for includ-
ing dynamical fermions, based on the computation of the mean value of the fermiohic
determinant averaged over gauge configurations generated with the pure gatige proba-
bility distribution. As it was pointed out, proceeding in this way one can introduce a
strong bias in the determination of the full partition function because of the very large
fluctuations of the fermionic determinant, especially near the transition point.

In this section, we propose a (possibly) better method which is a higly modified -
version of the previous one. Our new proposal [9] tries to overcome the problem of the -
large fluctuations of the fermionic determinant, which are directly connected with the
importance sampling problem. It comsists of the determination of an effective fermionic
action as a function of the plaquette energy and fermion mass which can subsequently be
used to perform numerical simulations of an equivalent pure gauge theory, measuring the
various physical quantities for every value of the coupling constant 8 and Jor for arbitrary
number of flavours.

To illustrate the method, let us consider the partition function of compact QED.
From the discussion in the previous paragraph, the determinant of the lattice Dirac



operator can be written as

det A(m,U) = det A(m,S(U), S;(U)) (3.1)

where S(U) is the pure gauge action and S;(U) is the collection of all other gauge invariant
operators necessary to build up the coefficients C\,(U) of the fermionic determinant with
n > 2. Using relation (3.1), the partition function (2.1) can be written as

Z= / 4016(S(U) — B){[[ 6(5:(U) — E:)}eP® det A(m, E, B)dE [ dE: =

- / ([[4E34EN (B, E:)eP® det A(m, B, E:) (3.2)

with N(E, E;) = [[dU|6(S(U) — E) [1,6(S:(U) — E;) the density of states of fixed ”ener-
gies® E, E;. Defining then the average value of the fermionic determinant at fixed energy
FE as

M(E,m) : f{H;dEt}N(E7Et) detA(m’E,Et) (33)

J{Il;dE:}N(E, E)

one gets, for the partition function

Z= / dEN(E)ePEdet A(E,m) = / [dUje~Sess (3.4)

where N(E) is the density of states at energy E.

N(E) = / (T[eman(E,5) = / [dU)6(S(U) — E) (3.5)
Equations (3.4),(3.5) define an effective action

Sejs = —BS(U) — log det A(m, S(U)). (3.6)

The method we propose consists in determining log M(m,E) numerically, as a
function of the energy E, and then in performing a numerical simulation of the equivalent
pure gauge model (3.6) in order to measure thermodynamical quantities. The first step
consists in the generation of gauge configurations at fixed energy F with a microcanonical
process and in the determination of the average fermionic determinant over the different
configurations generated. By repeating the procedure for different values of E one finally
gets an expression for log det A(m, E ) by means of an interpolation of the points obtained.

Since the numerical determination of the expression (3.3) is the crucial step of our
method, some discussion about the feasibility of this computation is in order. The
non local character of the fermionic determinant implies that, computing the fermionic
determinant on configurations generated with the pure gauge probability distribution at
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a fixed 8, one has large fluctuations that make its compttation, from a finite sample of
points, very difficult. On the other hand, by fixing the energy of the configurations over
which the determinant is computed, a large part of thé Auctuations disappear. This can
be explained by considering that all the coefficients of the fermioric determinasit contain
a term proportional to the pure gauge action, with in general large coefficients; moreover,
fixing the energy prevents the system, near the phase transition, from fluctiating between
different vacua, reducing the fluctuations of larger loops. The remaining fluctuations
are associated to changes in the gauge configuration that leave the average energy per
plaquette (but not more complicated loops) constant. In these circumstances the quantity:
of importance is the amount of computer time needed to measure log det A(m, E) with:
the precision necessary for the method to lead to reasonable results. The answer to
this question is in general far from trivial: however a simple analysis of the feasibility
of the method can be carried on under some general assuniptions. Fig. 4 shows the
probability distribution of the logarithm of the fermionic determinant at m = 0.1 and
E/(6V) = 0.5103 for a 4* lattice. As can be seen, the histogram can be very well
approximated by a gaussian (continuous line).

Based on this result, let us consider a toy model in which the probability distribution

Pg(z) of the logarithm of the fermionic determinant at energy E is described by a
gaussian function

Pg(z) = C - e~(z=%0)° (3.7)

where C is a normalisation constant and a and z, are parameters which depend on the
volume V', the energy E and fermion mass m. From the above distribution one can
obtain through an elementary calculation

. 1
log detA(m,E‘) = rqg+ Z& (38)

Since z is essentially the average value of the logarithm of the determinant at ehergy
E, zo = logdet A(m, E), it will in general be a linear function of the volume V', thus
giving a contribution to the effective action (3.6) of the same order as the pure gauge
term. The crucial point is the dependence of a, i.e. of the width of the gaussian (3.7) on
V. Let us assume that a — 0 as V=* when V — oco. There are three possibilities:

i) ¥ > 1. Then 1/4a diverges as V¥ and in the thermodynamical limit this will be
the dominant contribution to the effective action (8).

ii) ¥ = 1. Then 1/4a is comparable to z, as well as to the pure gauge term.

iii) ¥ < 1. Then the contribution of 1/4« disappears in the thermodynamical limit.

Case i) will be certainly surprising, since it will imply that, in the thermodynamical
limit the physical results do not depend on the gauge coupling constant. Case i) is the
most probable from a statistical point of view, but even iii) is not absurd, since it implies
that the fluctuations of the logarithm of the determinant are damped as a consequence
of the fixing of the energy of the configurations.
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In Fig. 5 we show the behaviour of the fluctuations of the logarithm of the fermionic
determinant for m = 0.1 (a) and m = 0.0 (a) as a function of E/6V in 4%, 64 and 8*
lattices. The weak dependetice of the fluctuations on the volume which one observes, even
at m = 0, seem to favour the behaviour described in iii); in which case the contribution
of 1/4a to the effective action is a pure volume effect, in the sense that it will disappear
in the large volume limit. This result provides a justification of the feasibility of the
numerical computation of logdet A(m, E). The interpretation of the results shown in
Fig. 5 in the light of the gaussian model, though not providing a rigorous proof, suggests
that the method proposed can be applied, with reasonable amount of computer time, to
realistic models and larger lattices.

Before going on, let us discuss in the light of our numerical results for the effective
fermionic action, the feasibility of the method reported in the previous paragraph. Fig.
6 shows the numerical results obtained for log det A(m, E) in 64 lattices as a function of
the normalized plaquette energy at typical values of the fermion mass (m=0.1, m=0.0).
The details of the numerical simulation can be found in the next paragraph.

From the results plotted in Fig. 6, it follows that the effective fermioni¢ action is a
smooth function of the plaquette energy for E < 0.5 or E > 0.68, and shows an inflection
in the intermediate energy region which is deeper when the fermion mass decreases.
From this discussion it follows that in the strong and weak coupling tegimes, the effect
of dynamical fermions can be described in a first approximation as a renormalization
of the coupling constant @, the shift in B being just the slope of the curve of Fig. 6
in the relevant energy interval. However, when we approach the critical point from the
confining or Coulomb phases, the intermediate ehergy region becomes the relevant one
and just in this region, the slope of the curve of Fig. 6 changes rapidly. This effect
becomes stronger for decreasing fermion mass. Then we expect that the naive method
developped in section II will give good results, as it was checked, in the strong and
weak coupling regions, but it can be affected by strong systématic errors near the phase
transition point.

To ilustrate these concepts in a clearer way we plot in Fig. 7 the mean plaquette
probability distribution at three 8 values both in thie quenched and unquenched cases.
At 8 = 0.7 ( Fig. 7-a) the distributions have an overlap region showing that.the fermionic
determinant shifts sligthly the probability distribution function. This shift is expected to
be smaller when 3 decreases since the slope of the curves in Fig.6 seems to be a decreasing
function of the energy E (a similar argument applies also in the large § region). However,
in the intermediate 8 region the situation changes drastically as can be seen in Fig. 7-
b,c, where essentially no overlap between the two distributions is observed at g = 0.885,
B = 0.95. Therefore and on the light of these results we can understand the succes of
the "naive” method in the strong and weak coupling regimes as well as its failure in the
intermediate coupling region.
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4. NUMERICAL RESULTS

We now discuss the numerical results, and give some details on the simulations. As
stated above, our simulation is divided into two parts: first, we compute the average de-
terminant as a function of the energy, by means of a microcanonical procedure; secondly,
the average determinant gives rise to an effective action which is used in a canonical
simulation.

We have used a standard overrelaxation procedure [18] to implement the micro-
canonical simulation; energy values have been chosen in such a way as to sample uni-
formly the energy interval relevant to the canonical simulation. For the 64 (84) lattice
the determinant is computed for configurations separated by 500 (1000) overrelaxation
iterations, in order to guarantee the complete decorrelation between stccessive config="
urations. In measuring the fermionic determinant we used the complete U(1) group,”
while in the canonical simulation the group used is the discrete subgroup Z(256). The
continuous group has been implemented in the exact microcanonical algorithm, which
is in general inapplicable to discrete subgroups. The determinant has been computed
by exactly diagonalising the fermionic matrix at zero mass on the chosen configuration.
The diagonalisation is performed either by means of a standard library routine (64), or
using a modified Lanczos algorithm ( 64, 84 ). In both cases we keep all the eigenvalues
of all configurations used.

This method has thie obvious advantage of allowing the computation of the average
determinant and of its derivatives with respect to the mass, for every value of the fermion
mass: it is only necessary to perform the microcanonical simulation once in order to
perform the ensuing canonical simulation for every value of gauge coupling constant,
number of flavours, fermion mass. The disadvantage of this method is the inctease in
computer time with respect to the time needed to compute the average determinant at
fixed mass; this is compensated by the accuracy with which the determinant is measured.
Having all the eigenvalues at our disposal, it is possible to check to which accuracy the
relation!

v/2

=Y A=V (4.1)
=1

is satisfied. All results from both algorithms are in excellent agreement with eq.(4.1). A
further check on the precision of the algorithms has been performed by comparing the.
eigenvalues obtained from both algorithms on the zero mass matrix; also in this case the
agreement is excellent.

Having the eigenvalues for each configuration, it is possible to compute the deter-
minant as: '

v/2
det A(m) = [] (=A% + m?) (4.2)

=1
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from which we compute the effective fermionic action for the canonical simulation (see

Fig. 6). In the determination of the effective action as well as in the canonical simulations,

statistical errors have been computed in a standard way by means of the Jacknife method.
As for the chiral condensate, it can be written as;

() = 10logZ _ lde N(E)eﬁEE%EEEA(E,m)
V. 8m  V  [dE N(E)efEdetA(E,m)

(4.3)

i.e.

() = L LB N(E) ePEdet A(E, m) 52 log detA(E, m)
4 [ dE N(E) ePEdetA(E,m)

It is thus directly calculable using the effective action and fermion matrix eigenvalues

already obtained.

(4.4)

Let us now describe the canonical simulations: it is important to control the re-
llability of the interpolation procedure necessary to compute the effective action for
every energy from the finite number of points on which the average deteminant has been
measured. In the simulations which will be presenited in the following, we have used a
standard polynomial interpolation rotitine which allows the reconstruction of the effec-
tive fermionic action with a little CPU time overhead. To ¢heck that we do not introduce
systematic errors in the canonical simulations with this particular choice of interpolat-
ing function, we have also performed simulations using different interpolation schemes,
or varying the order of the interpolating polynomial. We have further checked whether
the statistical errors of the effective fermiornic action introduce systematic errors in the
canonical simulations. To test this we have shifted the valile of the effective fermionic
action within the range of the statistical errors. All these tests led to results in agreement
within statistical errors. This implies that systematic errors are well under control.

The observables we measured are the plaquette energy, the specific heat and the
chiral condensate. In order to determine the height of the peak in the specific heat
and the critical value of the coupling constant we have performed an analysis similar to
the one developed for the quenched case [19,20]. In the numerical simulations we have
used a modified overrelaxation procediire to take into account the use of a discrete U(1)
subgroup [20]. In the canonical simulation, in fact, the use of a discrete subgroup does
not spoil the overrelaxation procedure, which does not need to be exactly microcanonical,
since it is used for a few sweeps (1-5) between Metropolis ones; the acceptance of this
modified procedure is in any case very high (99%).

We will now describe the results obtained in the following cases:

1) 64 lattice with ny = 4;

2) 64 lattice with both ny = 1 and ny = 16;

3) 84 lattice with ny = 4.

1) For the 64 lattice, the effective action has been determined in the energy range
0.32-0.78; 11 values of the energy have been considered, and for each value between
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100 and 500 configurations have been diagonalised with the method described above;
the number of configurations has been chosen in such a way as to keep approximately
constant the relative error on the effective action. In the canohical simulations, the
statistics used away from the transition region is 200 thermalizations (starting from an
equilibrium configuration of the preceding B valde) and 800 meastrements, while in the
critical region we have reached 1000 thermalizations and 36000 measurements, with 3
overrelaxation cycles between Metropolis oties. The results of the longest run have been
used for the compiitation of the specific hieat at the critical coupling.

In Fig. 8-a we present the measured behaviotr of the plaquette energy for two mass
values (m = 0.0 and m = 0.1 ). The latter case is used for comparision with the results
of differenit methods [11]. In fig. 8-b we present the values of the chiral condensate at
m=0.1, as a futiction of 8. The position of the phase transition is cleat, as well as the
progressive shift of the critical coupling to lower values with decreasing fermion mass;
our results at m = 0.1 are in excellent agreement with those of ref. [11], obtained with
standard methods.

From the analysis of the peak of the specific heat we can accurately measure the
critical values: 8. = 0.8854(3) at m = 0.1 and B, = 0.8540(5) at m = 0; the height of
the maximum of the specific heat is h. = 8.9(2) at m = 0.1 and h. = 8.2(3) at m =0 to
be compared with the value k. = 7.57(13) of the quenchied case. From the behaviour of
h. as a function of the mass we can observe that, as noted in ref. [11], the introduction
of light fermions tends to produce 4 stronger transition.

2) As a consequence of the properties of the fermionic action and of the fact that
the determinant is known for all the configurations generated in the microcanonical
simulation, it is possible to simulate any flavour number, without a significant increase
in CPU time, since only the simulations in the effective theory are to be repeated. We
have thus performed simulations in a 64 lattice and ny = 1 and ny = 16, checking with
existing data.

In fig. 9(a-b) and 10(a-b) we present the results for iy = 1 and ny = 16 respectively,
measuring Ep; and (¢). From these figures it is evident that both the shift in 3. and
the sharpness of the transition (evidenced by the wide hysteresis cycle in the ny =
16 case) increase with the number of flavours. In the case ny = 1 there is no real
hysteresis, probably due to the fact that the statistics used allowed to the system to
reach equilibrium. However the transition is well characterized by the huge variation
of the average values and the increase of the statistical errors, which signals violent
fluctuations of the system.

~ Again, our results in the one flavour case are compatible with those obtained by
a stochastic method in ref.[11]. Howevet, in the 16 flavours case we have obtained
results slightly different from those of ref.[11] in the sense that our critical coupling
seems to be somewhat greater. This is not very surprising since systematic errors increase
significantly with the number of flavours both in our method and that of D-K.
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3) Finally, we present some results obtained in the 84 lattice; the statistics used
for the determination of the effective action is in this case much lower than before (4
configurations for each of the 12 energy values in the range 0.40-0.73). However, in
the light of the discussion on the behaviour of the fluctuations of the logarithm of the
determinant as a function of the volume ( see Section 3 ), it is not unconceivable that
these results are significant.

In Fig. 11(a-b) we present the results for the plaquette energy and the chiral con-
densate; the statistics for the canonical simulation of the effective theory amount to a
few thousands of iterations away from the critical region, increasing to 172500 iterations
(with overrelaxationi) around the critical point. Using the data of two long runs in the
vicinity of the critical value we can derive the specific heat at m = 0.1 and m = 0.0.
At m = 0.1 and 8 = 0.8935 we performed 30000 iterations with overrelaxation; the
critical coupling is B, = 0.8937(2) and the height of the maximurm of the specific heat is
he=24.5(6). The histogram of the distribution of the plaquette energy is shown in Fig.
12-a; the two peak structure is evident. The system has fluctuated 30 times between
the two vacua. Again, these results are in good agreement with those of ref. [11]. At
m = 0 and B = 0.864 we have data from a run of 172500 iterations, with overrelaxation;
the system stayed during 30000 1terat10ns in the Coulomb phase and then Jumped to the
confining phase remaning there even after 140000 iterations ( see Fig. 12- b ). Therefore
we cannot give an accurate value of the critical coupling, which is in atiy case in the very
proximity of # = 0.864.

The valte of the peak of the specific hieat is h, = 48.9(5). This can be compared with
the quenched case, which is h, = 13.73(26) [20]; comparing these numbers with those
of the 64 lattice, we note that ‘the transition tends to become stronger at low masses,
although we cannot give reasonable values for the ¢ritical exporents. In fact the effects
of scaling violations die to the finite size ate still important in these lattices. The results
at m = 0 however point in the direction of a strong first order transition.

5. CONCLUSIONS

In this paper we have discussed some possibilities of speeding up Monte Carlo com-
putations with dynamical fermions. The general idea is to factorize out the computation
of the fermionic determinant, which is the most costly in terms of CPU, so as to avoid
repeating it for every value of the parmeters of the theory. Thermodynamical quantities
such as specific heat, chiral condensate etc. are then recovered as appropriate derivatives
of the action.

A first attempt, amounting essentially to compiting the quenched average of the
determinant, turned out to miss the region of important configurations when the sys-
tem approachés the phase transition. The second approach turns out to be much more
promising. We computed the average determinant at fixed (total) energy. The logarithm
of the mean value of the fermionic determinant is then inserted as an effective term in
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the action, which is used in a standard pure gauge simulation. We have used this method
in an investigation of compact QED, although in principle it can be used for other gauge
groups.,

We have checked that, at least in the lattices examined (i.e. up to 84) the fluctuations
of the logarithm of the determinant at fixed energy increase very slowly with the volume.
The fact that these fluctuations increase slowly with the volume, ( i.e. the normalized
fluctuations decrease ), if taken at face value, justifies the feasibility of our method even
for larger lattices. The results obtained are extremely encouraging. We obtain results in
good agreement with those in the literature, using a relatively small amount of computer
time (700 CPU hours for the microcanonical simulations) in a scalar computer (VAX
8650).

Furthermore, the method proposed here (at least in conjuntion with an algorithm
which computes exactly the determinant) allows to perform computations at small values
of the fermionic mass, in particular at m = 0. Moreover, whenever it is possible to
compute exactly the eigenvalues of the fermionic matrix, the mass deperidance becomes
trivial and can be factored out. The results we present are obtained in this way. Another
relevant feature of our method is that correlations between consecutive configirations
can be very well controlled since in the microcanonical procedure, the cost of computer
time in the overrelaxation algorithm is negligible.

We present some intuitive arguments to explain why, computing the fermionic de-
terminant at fixed energy reduces its fluctuations. It is however fair to say that we lack
of a more rigourous proof of the feasibility of the method.

This work has been carried out in the context of a CICYT-INFN collaboration; V.
A. thanks the CICYT institution for financial support. A. V. wishes to thank the EEC
for a Research Grant ( Contract no. SCI*0082 ).
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FIG. 1 - Results at 8 = O for 2* (exact), 44 (467 meas.), 64 (584 meas.) and 84 (8 meas.)
lattices: (P¢) , the top (straight) line is the analytic prediction of ref. [16].
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FIG. 2 - L{{(TrA~Y)2) — (TrA-1)?} vs. m at § = 0.1 and 1 flavour. The solid line
reports our results for a 44 lattice. The circled (crossed) points are the results of ref. [17]
obtained with the P.F. algorithm in 44 (84) lattices repectively.
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