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Abstract

An O(N) non-abelian generalization of Siegel’s action for chiral bosons coupled to
gauge fields is presented. We show that the only consistent gauging of the O(N) symmetry
corresponds to that of N free Majorana-Weyl fermions. The equivalence between the
quantized O(N) chiral model without gauge fields and the free fermion theory is then
established. The theory is treated as a constrained hamiltonian system in which zeromodes
are carefully taken into account. Specializing to the gauged abelian case, the solution to
the chiral Schwinger model is discussed in the framework of chiral bosonization.
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1. Introduction

The covariant Siegel action for describing a chiral boson [1] is particularly suited as a starting point
for defining a theory in which the chiral boson is coupled to other fields. In a previous paper [2] in which
the boson was coupled to two-dimensional gravity, we have shown that this action, when treated according
to Dirac’s quantization procedure for hamiltonian systems in the presence of constraints, leads to a theory
which has no anomaly associated with Siegel symmetry [1], and therefore leads to a consistent bosonization
of chiral fermions coupled to gravity. In the present paper we concentrate on the theory of O(N) non-abelian
chiral bosons coupled to gauge fields. To that end we present rather comiplete results. We first show that
the chiral constraints allow coupling to only O(N); or O(N)x gauge fields but not both. Then we show
that the anomaly structure of the theory is precisely what one would expect from a theory of left-handed or
right-handed fermions coupled to gauge fields. (The anomaly appears already in the classical boson theory
as opposed to the fermion theory in which it only appears when quantum effects are considered.) Next we
treat the quantum theory where we first derive the quantum hamiltonian explicitly, and then show that in
the absence of gauge fields the physical currents of the theory satisfy the same Kac-Moody algebra as those
for the corresponding free fermion theory. An essential aspect of this result is that when all constraints are
resolved (including the first class constraints which vanish on physical states of the theory), the resulting
hamiltonian is just what one would obtain from a gauged version of the action of Floreanini and Jackiw [3].
Thus a quantum theory defined through this latter action is equivalent to the theory which follows from the
gauged Siegel action. Of course the advantage in Siegel’s approach is that Lorents covariance is maintained
from the beginning, iti contrast to the latter whete only a restricted Loreéntz invaridnce exists.

An important aspect of our presentation is that throughout the discussion, the presence of zero modes
is allowed for explicitly, so that the derivation is of quite general validity. The significance of this is that
although the chiral constraints arising in the theoty are second class in general, if zero modes exist as part
of the set of the constraints, these are first class. Hence the latter cannot be imposed in the ¢lassical theory,
but must be kept as constraints to be imposed on the Hilbert space of the quantum theory. This derivation
generalizes Witten’s prescription for non-abelian bosonization [4] to cases in which zero modes are present,
and carries over without modification to the gauged chiral theory. Finally, to complete the discussion of
the non-abelian theory, we examine the renormalization structure. A one loop calcilation leads us to the
conclusion that for values of the coupling f2? other than #47/n, in the absence of gauge fields, the model is
not free, but nevertheless the chiral structure of the theory i3 preserved under renormalization.

Next we specialize to the abelian theory which we solve explicitly by a diagonalization of the lagrangian.
This result makes contact with an earlier solution [5,6] to the chiral Schwinger model [7] in which bosonization
was also employed. The difference is that in the latter case, in order to use the standard bosonization
procedure, a free right-handed Weyl fermion was added to the theory, whereas using chiral bosonization this
extra field is avoided. Otherwise the results coincide.

Some other work that overlaps to some extent with the present paper should be mentioned. For the
free theory, the non-abelian Kac-Moody algebra has been obtained by Salomonson et. al. (8] using a
non-abelian generalization [9] of the action of Floreanini and Jackiw, and independently by Bastianelli and
van Nieuwenhuizen [10] using a first order formalism. These results are consistent with ours, but neither
takes into account the presence of zero modes in the quantization procedure, the coupling to gauge fields, or
the relation to Siegel’s approach. In a previous attempt to incorporate gauge fields in the classical theory,
Frishman and Sonnenschein [11] considered both a vector and a left-right coupling of gauge fields to chiral
bosons, and found the anomaly structure to be that of the fermion theoty. However, the inconsistency of
both an O(N)p and an O(N)g coupling simultaneously renders some of their results superfluous. Another
attempt to couple gauge fields to chiral bosons in the abelian case has been presented by Labastida and
Ramallo {12]. Under the misconception that one must add further fields to the theory to cancel a “Siegel”
anomaly [13], these authors work in an unnecessarily complicated theory and restrict themselves to theories
with an even number of chiral bosons.

In the next section we present the classical theory of chiral bosons coupled to gauge fields, derive the
consistency conditions, and present the Noether cutrent which has divergence equal to that of a left-handed
chiral fermion current. The third section is taken up with quantizing the theory according to the Dirac
procedure. This section contains a careful treatment of the zero modes of the chiral constraints. The
following section presents the arguments concerning the renormalization structure of the theory, and the



calculation of the one-loop A-function. The fifth section contains the solution of the abelian model, and we

close with some concluding remarks. An appendix shows that no operator ordering ambiguities arise in the
quantization procedure.

2. Gauged Non-abelian Chiral Bosons

Defining the light-cone coordinates

zt = —12-(t+a:), (2.1)
z7 = :/%(t-—x).

the lagrangian for the bosonization of a two dimensional theory of N free Majorana fermions with the
non-abelian symmetry group O(N) is given by the action [4]

5 =8 +nSQ, (2.2)
where
S = —;—;—; /d"’z tr[d-gg~ 1849971, (2.3)
and L
Sws= = / i’z /0 dy t2(3,39(0-79 10459 — 3,77 '3-57~1)] (24)

is the Wess-Zumino term. The coupling n in (2.2) can only take integer values [14]. The field g(z) is an
element of O(N) and g(z,y) is an extension of g(z) such that §(z,0) = 1 and F(z,1) = g(z). This action
posseses the global O(N)p x O(N)g symmetry

g— hi'ghg,

which can be gauged by introducing left and right handed gauge fields L, and R,. For the gauged action,
the derivatives in S{ are replaced by covariant derivatives:

S, = —-;i—;/d’z tr{D_gg~'D.,.g9™ 1, (2.5)

where
D,g=08,9+ Lug—gR,, (2.6)

and to the Wess-Zumino term a second term depending on the gauge fields is added [15]:
Sua = 8571+, 2.7
S = 8—1” /d% Aldytr[ayﬁ‘l(a_ﬁ‘18+ﬁ“l ~ 84951933~}
St = ;1; /dzz te[d_gg~ Ly — 34997 L_
+97'0_gR, —g¢7'04gR_+ g 'L_gRy —g¢"'L4gR_].
Under an infinitesimal gauge transformation

69 = gér — €Ly, (2.8)
6Lu = au‘EL + [Lpu EL],
5R,‘ = a”f}z + [R,,,ER]



the term S, is invariant, and the Wess-Zumino term gives the standard left-right anomaly:

1 .
Swe=2 [@stlea(0-Ly - 0202) - €nl0-Rs ~0.R-)] (29)
We may also add a kinetic term for the gauge fields so the final Lagrangian is given by

S=8,+nS,;+ Syn (2.10)
with
1 , )
Svw= = / d?g br(FL FLwv 4 FR PRRV, (2.11)
where
F‘fu = 3“L,_, i 3,5» + [Lu’ Lp])
and likewise for FR. The action (2.10) leads to a quantum theory equivalent to a theory of fermions coupled
to non-abelian gauge fields. Varying with respect to the field g; we find the equation of motion
1 _ gy, M - - ~ -
;;D—(D+99 ")+ D4(D-gg™") + —(D-997" Drgg™] = FLy - gFF g1 =0 (2.12)

When the gauge fields are set to zero, this equation becomes

RN T 7 PV L . -1y —
(f,+4”)3—(3+99 )+(,, 4”)5+(3—9£J ) =0. (2.13)

For equivalence to the free fermion theory we need f2 = 4r and n = +1 [4].
In order to describe a theory of chiral bosons, following Siegel [1], we add a term

—;% d?z A tr[D.gg~'D_gg~"}, (2.14)

to the action where A is a Lagrange multiplier to énforce the constraint
tr[D_gg~'D_gg~'| =0
Because D_gg—! is a positive definite matrix, this can only be satisfied if
D_gg~t=8_g9" '+ L.—gR_ g '=0. (2.15)

When the chiral constraint (2.15) is imposed, equation (2.12) becomes

1 n 7 1
(- _)Ff++(;;+

i JgFE g~ =o0. (2.16)

hidl
4
Thus in the chiral theory, the consistency condition tells ug that for f2 = :tﬁf, a chiral boson can only
couple to either L or R, but not both. This consistericy condition can be understood as a consequence of
the fact that the left handed part of a Dirac fermion couples only to the V — A gauge combination. This is
unlike the case of an ordinary scalar where both left-handed and right-handed currents can be coupled to
gauge fields. We should also remark at this point that although we have added a kinetic term for the gauge
fields (2.11) which breaks conformal symmetry, this térm in no way contributes to equation (2.16). Thus
(2.16) is also valid in'a case such as in applications to string theory for which no kinetic term arises.



. In order to recover the correct Kac-Moody algebra for the case in which no gauge fields are present, we
wxl! eventually need n = 1 and f2 = 47. From now on let us make that assumption, and also set R,=0to
satisfy the consistency condition. Substituting these conditions back into the action leads to

S=/d2z£

L=- ftr{a-gg“awg“ +A8-99713_gg™!

b
1 — I — ——— —
+;;fo dytr(3,5971(8-397 19,397 — 84991955 1)]
~ bl (34097t +A0-gg™Y)] = ZtrL_(Ly +AL_))

1 yy  1m?
+ [, P - ;%—tr[L.,.L_}, (2.17)

where we have renamed FL to F, and a mass term for the gauge fields has been added. The addition of a
mass term is probably necessary in general, as it has been shown to be essential in the abelian case [7]. Note
that only the L_ component of the gauge field couples to the matter fields. This is as expected, reflecting
the correspondence with the fermion theory in which this is the case.

The Noether current associated with a global gauge transformation can be calculated by varying the
matter part of the action with respect to the gauge field. The variation of the faull action is

§8 = /d% tr[sL-(z—i—,D+F+_ - ;1:(3+gg"1 +28_gg~t+AL_), (2.18)
1 1m?
= (- + o))
1 1 1m?
+ /d2x tr[6L+(-;;D..F.+ - (; + ;%)L-)],
so with the convention
DHF,, = e2J,,
we have
1 -1 ~1 1 m?
Jp=——(04997" +A9_gg7 +AL_) = (—+ =)Ly, (2.19)
r 4r ¢
1 m?
A R
This current has divergence
1 - 2 1 \ -
DBJ, = *;‘D—(awg P Z)O-Ly+04L)~ —D_[\9-g9~t + L_)]. (2.20)
" 4ir [ 4r

When the chiral constraint (2.15) is imposed (and m = 0) the divergence of the current (2.20) becomes
D#J, = :1—(3+L_ ~3_L,). (2.21)
”

Thus J, has precisely the same anomalous divergence as the fermion current in a quantum theory of chiral
fermions coupled to gauge fields.

To close this section we would like to make a few comments about related work. In ref. 16, “Siegel
symmetry” (1] was employed to construct the interaction of the chiral boson ¢ with an external field L_ (eq.
(2.5) of ref. 16). Their lagrangian £* can be obtained from the abelian version of (2.7) by subtracting the
quadratic term L_ L, which is independent of ¢ and X:

ﬂ* = ﬁ - L-L+.



Thus L* also describes a consistent model in the sense that the consistency condition (2.16) between the A
and the ¢ equations of motion is satisfied. This lagrangian corresponds to employing a different regularization
scheme in the equivalent fermionic theory.

From our analysis it also follows that the action for chiral bosons coupled to abelian gauge fields in a
“vector conserving” regularization scheme as discussed in ref. 11 is inconsistent. There the action in the
“left-right symmetric scheme” was analyzed as well, where terms quadratic in the gauge vector field coupled
to A were introduced in order to recover a correct {i.e. A independent) expression for the divergence of the
left handed current. Such terms are present automatically in our analysis.

3. The Quantization of Non-abelian Chiral Bosons

The quantization is best performed by introducing local coordinates ¢g*(z) on the group manifold. To
this end we define

g = g(¢*(=)),
and introduce the generators T, of the group G satisfying

tr[ Ty, Th) = 26ap, (3.1)
[Ta)Tb] = fapeTe.

The vielbein e is then defined through the equation
8,99~ = iT,e 34" (3.2)

Defining the interpolating field § = g(yg*(z)) and the gauge fields L, = iL3T, the lagrangian density in
(2.17) becomes

£ ==0:(3:’,07 (1 + ) ~ 2X8,992¢7 ~ 3:0'8.7(1 - 1))
+ Ae,‘('])atqiax‘)’.
b L ((Lo® - Li)er (Gua (1 42) + 0.0(1 - )
+ EE,; (Lo“Lo“(l +2) = 2ALo*Ly* ~ Ly* Ly *(1 — '\))

1 1m? )
tos 01Fo1 + ;:;‘(LoaLoa = L% L;%), (3.3)
where
g,'j = C?C;, (3.4)
and .
1
Aij=~i—~ | dyy? fabeEiEERG", (3.5)

in which we have used
8,57 ! = iT4E23,7,
with
Q’(z, y) = yq(z).
From this lagrangian density we find that the momenta conjugate to the fields ¢*, L$, Lg and X are
pi = ;‘-g;, (e (1 +2) = A3aq?) + 420" + 31+ N)(Lo® = L1, (3.6)
” ”~

1
a¢._ - e
T = C,Foxa

T =



respectively. Thé last two must be treated as constraints so we introduce two Lagrange multipliers vd and
v) to impose them [17]. This leads to the hamiltonian

H=H'+H,= /dz()(’ +H,), (3.7)

‘ 3 3
q = ‘;wgwg + 799, L0® = i fapetLo®L1° ~ éi(LO“LO“ - Li*L,%)

e?

+ %(—Lo“Lﬁ' + L1?L1%) + n§vg + mavs,
”
2r s s _ L an iy2 ‘
}(q = m(cam - caA.'jazq - ;caazq ) + pidzq
. . X i .
-+ (Loa - Ll")(-e:lp,- + e;A,','aqu - ;e?azq‘).

By demanding that the constraints are stationary (their Poisson bracket with the hamiltonian density van-
ishes) we arrive at two further constraints on the system

. . , 1 .
Xa=e€\pi— et Ai;0.q9° — ;ega,q‘ =0 (3.8)

and
. . . i 2 .
Wy = C;p; - e;A,'jaqu + fjc;‘a,,q' + ;l;L 1“ + azﬂtf - t'fd_bcﬂ’ngc -+ m—’Loa =, (3.9)
" e

The Poisson brackets of the constraints (3.8) with H vanish when the constraints are subsequently imposed
and the Poisson bracket of the constraints (3.9) with H only lead to the determination of the Lagrange
multipliers v§ which are irrelevant for our purposes, since they multiply the constraints 7¢ which are second
class as long as m? # 0. Thus no further constraints need be introdiuced. The next step is to determine
the algebra structure of these constraints in terms of their Poisson brackets so as to isolate the second class
constraints which are to be eliminated.

First it is obvious that 7, is first class: its Poisson bracket with all others vanishes. Next, both w, and
n$ are second class, as

{wa(z), ”8(3/)} #0, m?#£0.
Further
{wa(3)9 Xb(y)} =0,

so we are left to consider the Poisson bracket {xa(z), xs(y)}. Here we niust be more careful. First note that
one can write

5, = [ daFipdgio.iset, (3.10)
where

7

Fuk = 3q’°

+ terms cyclic in 1,7,k

%
a,b,c
T e elerer.
47‘_fabc 19
Then using

. b
de% _ _ 9% (3.11)

3q* bgqk ¢
the Maurer-Cartan equation
?_e_?_ ac? : N i
- — _a.:]—-; = ‘lfabce,;ej, (312)
and the basic Poisson bracket relation

{d*(2),p;(y)} = 6}6(z — ), (3.13)



we find .
{xalz), xs(y)} = - - (Eabaz + 1 fabee2q' (z) — 21rifabcxc(z)>5(z - y). (3.14)

The matrix {xa(z), x»(¥)} is not invertible when the constraints are imposed, which means there are still
first class constraints in the game {17]. To isolate the first class constraints let us define

X = deXa (3.15)

and introduce the field
D = iT%p,.

Then (3.14) when acting on the field ® can be rewritten

/ d?y {X(z), tr (X(y)‘b(y))} = "'i (azq’ - [a,:gg—l, ¢] + ZK[Xa Q]) . (3'16)

Aside from the last term (which vanishes when the constraints are imposed) the right hand side is just the
covariant derivative of ¢ in a background ‘pure gauge’ field 9,99~ !. The zero modes of this operator are the
fields which satisfy g®g—! = constant, which means there are as many zero modes as there are generators
of the group. Since under global gauge transformations

8u99™t — h7'3,997  hy

and the gauged version of this, D,gg~!, has the covariant derivative
D,(Dygg~*) = 8,(Dvgg™) + |Ly, Dugg™?).

we can refer to these quantities as ‘right invariant’. We could have equally started with the left invariant
expressions g~ 19,9 and g~ 1D ,g which have the global and local properties respectively

97849 — hz'9 ™ dughr
Du(gnlDug) = au(gthug) + (Rm g‘lD,,g].
Because R, = 0 in our case, these turn out to be more convenient in isolating the zero modes. First let

us rename X to Xy. Because g~1D,g = g~}(D,gg9~!)g, the constraint we would have derived using the
right-handed formalism is

Xg = g‘leg = 0. (3;17)
Thus defining x 4 through
Xgr =1T%XRa
we have ’ )
{xra(z), xRo(¥)} = —;;5ob3z5(1’ —y) — $fapeX RS (z ~ ¥)- (3.18)

Now we can isolate the zero modes by defining

L

= . 1 [
=R = ‘ERaTa = ""/ d.‘tXR(-'t) (319)

L-g

(we have introduced a finite spatial volume L) from which it follows that
{&ras Ers} = ifabebrer (3.20)

Hence with

- - 1 1% _
Xpg=Xp—EBr= -E/ dexR(:t), (3.21)



we have .
{Xra(z): Xroly)} = ";;sabazs(x = y) + i fabeX peb (2 — ¥) (3.22)

Since the right hand side of (3.20) only involves constraints, we have isolated the first class constraints:
€Ra = 0. The remaining constraints

Xpa = XRa = §Ra =0 (3.23)
are second class. For convenience let us also define
, 1 %
Qr=1tQprsla= I / . dzg~18.g, (3.24)

7=9"'9.9-Qr.

In terms of these variables, if we impose the second class constraints ¥z, = 0 in the hamiltonian (3.7), we
obtain

H,= -(/ da - : A)cr[ERER] - iLtr{ERQR] ~ 2 LtrQeQx] - si”/tr[iiRin] (3.25)
+otr [(/dzg—l(Lo - L)o)Er+ -Qa)| + ;‘;/dm o7 (Zo - L1)ga),

with H' unchanged.

In order to impose the first class constraints 25 = 0 in the quantum theory, we must construct a Hilbert
space for H such that on physical states |phys) we have

Ep|phys) = 0.
On such states
H,|phys) = ;1-; /dx tr((=82997" + 2Lo — 2L;)3.99~ | |phys). (3.26)

The hamiltonian (3.26) is precisely that which would follow from the action (2.17) if we set A = —1. This
hamiltonian has been shown to lead to a consistent quantization in the abelian case without gauge fields
[3,9,18]. Note that if we would have set A = —1 from the beginning, theri the chiral constraint (3.28) would
have been a primary constraint. This value of A can be found by requiring terms quadratic in the time
derivative of g to be absent. The same holds for the case of chiral bosons coupled to gravity, although in
that case the value obtained for A is more complicated [2].

The commutators for the quantum theory are now obtained from the Dirac bracket

{(A(2), Bs)} > =(A(z), B(v) (3:21)
= [ a1 [ dzs SHA@), Xnalon)HRralo1) Xralea)} ~(Rle2), B}
ab

through the correspondence principle. Thus to complete the demonstration of the equivalence of the present
theory with a quantized theory of N Majorana-Weyl fermions coupled to gauge fields, we must show that
the Dirac brackets of the physical currents lead to the expected Kac-Moody algebra. Although we cannot
solve the general non-abelian theory, we will give an explicit demonstration of the equivalence of the abelian
theory with the corresponding chiral Schwinger model in section five. Here we proceed by setting the gauge
fields L, to gero and we show that the Kac-Moody algebra for the theory of N free Majorana-Weyl fermions
is reproduced by our non-abelian chiral boson model.
When L, = 0 the Noether current given in (2.19) becomes

1 ) -
Jy= ;(3:99"(1 +A) + 8299711 - X)), (3.28)
. . , . 1 .
= 1Ty(elp;i — e Ai;0.9° + ;e:‘azq‘),

= 1T 490
J_ =0.
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When the second class constraints are imposed, this current becomes
: 1 ag i
Ja = € 84" + &4y
2n

whidh on physical states satisfies
. 1 {
Jalphys) = ;—;ef‘a,q‘lphys). (3.29)

To calculate the Dirac bracket of the currents, first we note that the Poisson bracket {j.(z), s»(y)} vanishes,
so the Dirac bracket is given by

{sal=), 5o(¥)}p = ‘[dzl/dzz > {dal2), Xrel20) HT re(21)) X ral22)} " {X Ral22), 76(¥) }- (3.30)
ed

Now from equation (3.22) we have

{Xral2), Xrp(¥)} = —8ase(z — ). (3.31)

gince the zero modes have been removed. We also find
. — 1 -
{Ja(2), X Ro(¥)} = ;tr[Tag Yz)Tog(2)|826(z — y) (3.32)

and similarly

{X ral2), do(6)} = Ztr(Tag ™" (=) Te(2)] (3.33)
X (6e5028(% — y) + i fepaed 8246 (z — ¥)).

Combining (3.32) and (3.33) leads to

{7a(z), 2(¥)} =f;tr[Tug(z)Tcg"‘(x)ltr[Tcg“‘(z)ng(Z)l
X (645926(z — y) + 1 fupee(2)32¢7(2)6(z - ¥))

and using the identity
Z(TC) uﬁ(Tc)76 = 60!6531 - 50“’/5551

the result .
{7a(2), 5o(¥)} D = —~BabDab (2 — y) + tfabede(2)6(z — ), (3.34)

follows. Choosing periodic boundary conditions for the physical currents (3.29), the Fourier transform of
this expression leads to the required Kac-Moody algebra {19]. One may wonder if some operator ordering
ambiguities may arise in the above derivation. Although we have not discussed operator ordering here, in
fact no problem exists. This is explained in an appendix.

In order to complete the demonstration that the theory is fully equivalent to the theory of chiral
fermions, the Virasoro algebra must also be checked. This insures that the energy momentum tensors are
also equivalent. In a left-right theory, at this stage one arrives at two commuting Kac-Moody algebras,
for left-handed and right-handed modes respectively, and the Sugawara construction leads to the Virasoro
algebras associated with them. In our construction, although we have only one of the two Kac-Moody
algebras present, we expect the construction of the correct Virasoro algebra to proceed as usual [2]. Thus
the present theory is fully equivalent to the theory of N free Majorana-Weyl fermions.

It is worth noting that our formulation here, if one neglects the zero modes, is equivalent to that of
Witten as found in ref. 4. We start by noticing that after setting A = —1, we are left with an action which
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is linear in time derivatives (see discussion after eqn. (3.26)). Such a structure is exactly what leads to the
conjugate momentum to act as a constraint. That is, starting with an action of the form

S = /dt $)é + V(¢)] (3.35)

the canonical momentum is
pi = Ai(4).
Since the right side is not a function of qS this amounts to a constraint

pi — Ai(¢) = 0. (3.36)

Then computing the Poisson bracket with itself, we obtain

dA; O0A;
[pg - A,-,p,‘ - A,‘] —a—¢; -+ %"L F‘J, (3.37)

where Fj; is that given by eq. (25) of ref. 4. Thus the Dirac bracket (3.27) in this case becomes

6X 5Y
where F'7 is the inverse of F;;. This last equation is identical to Witten’s generalized Poisson bracket. Of

course, in the presence. of zero modes, the modifications explained earlier in this section must be taken into
accournt.

4. Renormalization Structure

In this section we continue our analysis of the theory of non-abelian chiral bosons without gauge fields.
First, we show that a non-conventional Lorents invariance [3] restricts the counterterms in such a way that
the chiral structure of the theory is preserved. Then a one-loop computation of the S-funiction tells us that
as in the non-chiral case [4], the equivalence with the theory of N left- (or right-) handed free fermions only
holds for the special values of the coupling f3 = +4r/n which was considered in the preceding sections.
Otherwise the #-function is non-zero so the coupling has a non-trivial renormalization.

We first write the boson field as

g = go exp(i/TI) (4.1),
where g, is an arbitrary solution of the classical equations of motion and If = T,n® represents quantum
fluctuations around this field. Then to second order in the = fields, the action (with A = —1) becomes

1 - - - -
§=- :ZF /d?z tr (a—gogo la+gogo 1o a—gdgo la—gogo 1) (4‘2)

+ /dzz (3+1r°6_1r“-—3_1r“8_1r")
1 2 -1 -1

+ /d a:t:r((g0 8490 — 95 a_go)[n,a_n])

4+ 1 /d’z tr(g;‘la_go[n,3+n - a_n])
4

- 1f21/d2z br (g;1a+go[n,a_n] - ggla_g,,[n,a+n]).
4 dAn

Because A is fixed to —1, the action is no longer invariant under the full Lorentz group, but only-a subgroup
thereof [3]. The transformation law which leaves the action invariant is

§9=ez4 (04 —3-)g. (4.3)
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This invariance limits the possible coutiterterms that can arise in a one loop calculation. First of all, the
Wess-Zumino term doesn’t renormalize because it is a topological invariant [4,14]. Thus the only possible
counterterms that can arise are given by

Scounterterm =a/‘d2$ (go-‘la—go)2 (44)
+b/d2x 95104909, 19 g, + c/dﬁx (9710490)°

where a, b and ¢ are arbitrary coefficients. It is then straightforward to show that under the transformation
(4.3), the variation of (4.4) is

88 ounterterm = — e(a + b) /dzz (go—la—-go)2 (45)

+ee [ #2070, 00(67 4049, ~ 26710 -0.).

From this it follows that in order for the symmetry to be maintained we must have

Thus the only possible counterterm which respects the symmetry (4.3) has the form

Scountesterm = @ / d*z ((9;18—-90)2 - go—Iaﬁ-go gt;_la—go) . (4'7)

This indicates that only a coupling renormalization is needed and the chiral structure is preserved.

The divergent integral at the one-loop level which gives rise to a term of the form of the second term in
(4.7) can easily be shown to have the form (in momentum space)

n d2k ko +p ) {(1+ f28)ky — 2k
I=(1-f%=) =TT ( po)[(1+ 17 L)k ) . (4.8)
an’ ) (@m)2 k(g —k_)(k-+p_)(ks +ps —k_—p_)
With the change of variables,
o=k, ly=ky—k. (4.9)
and using dimensional regularization on the infinite patt, one can show
— __1__~ i (§2 042 ;
=~ 5 2(1 (f M) ) + finite terms. . (4.10)

The only other divergent integral at the one-loop level contributing to the coupling constant renormalization
is of the form of the first term in (4.7). As required by the symmetry arguments, the divergent part of this
term has exactly the same value as I but with opposite sign. Thus the f-function can be written

Blfin) ~ (N =2)(1 = (£7)?)

to one loop order, where N comes from the group matifold O(N). Hence we conclude that the f-function
vanishes only when f2 2 = %1, and for other values of the coupling, the theory is not free.
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5. Solution to the Abelian Theory

In this section we present the solution to the theory of chiral bosons coupled to abelian gauge fields. We
start with the lagrangian (3.3) with g = exp(i¢). Then multiplying by a factor of 4, rescaling the constants
m and e accordingly, and rescaling L, by a factor e we arrive at

L=(84¢p+eLy)(0_¢p+eL )+ A(I-¢+eL_)? (5.1)
—%F,WF“” +m3Ly L —e(L d-¢—L_0,4).

We could of course proceed along the lines of section 3, but in this case a more direct solution is available

along the lines of refs. 5 and 6. We start
by decomposing the gauge field into longitudinal and transverse parts:

Ly, = 0,0+ €,,8%8, (5.2)

which when substituted into (5.1) yields
L =2(0F)* + >(m? +¢)(~aOa + fO) - ¢*(3-(a — £))*
+ 0493 b+ A(0-4)%+ 2¢(8, +A3.)p3_(a— B). (5.3)

To disentangle the double pole present in the propagator of §, we introduce the auxiliary field F and replace
the higher derivative kinetic term 1(04)? with

—§F2 + FOB. (5.4)

The equation of motion for F then leads back to the original form of the lagrangian (5.3). With this
replacement, the lagrangian can be (partially) diagonalized by making the change of field variables

$=¢'- Z(n—Pz+8), (5.50)
1 e?
a= ;;(77 T Zame (B2 — B1))y (5.5%)
F= m'ﬂl, m' = mz; ez’ (5.56)
B = %(ﬁz - Bi), (5.5d)
leading to
L=20,410_p— mp2 = 10, fo0_fp + 9,nd-n + 3.4'3_4' + X34 (5.6)

This lagrangian appears to describe several decoupled: free particles: a massive field 8; with mass m/, a
massless field A, with negative metric (a ghost), a massless field n and the chiral field ¢’. However, since the
change of variables (5.5) does not constitute a canonical transformation, to insure consistency we compare
the equations of motion before and after the transformation. This leads to a set of constraints among the
fields which must be resolved.

The equations of motion for the original lagrangian are

d-¢+eL_=0, (5.7a)

.(8-Ly —04L_)=(m?+%)L_, (5.75)
6+(6..L+ - 8+L-) + (Yﬂ2 + 62)L+ “+ 2¢8+¢> = 0. (576)
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Rewriting these in terms of the new fields ¢, n, 8, and f, and demanding consistency with the equation of
motion for 8, that follows from the transformed lagrangian (5.6):

(] +rri'2) Bi=0

we arrive at the consistency conditions

a_(ﬂg - ﬂ) = 0, (58(1)

266+¢' + 'ﬁ1‘3+r) + m'3+ﬁ2 = 0, (58b)
2 w2

m=Tt (5.8¢)

From the decomposition of L, given in (5.2) and the chiral condition (5.7a) we also find

d.¢'=0, (5.9)

which is also obtained from the equation of motion for A following from (5.6).

Since constraints (5.8) and (5.9) do not involve the field f;, this field indeed describes a massive excita-
tion with mass m’ as in refs. 5 and 7. For the other (massless) degrees of freedom, we go on to resolve the
constraints explicitly. We start by putting the system in a finite box in the spatial direction with volume L,
~L/2 < £ < L/2. With periodic boundary conditions on the derivatives of the fields [6], a mode expansion
for the fields ¢’, n and f; gives

[ ¢0 \/— 1
$= = (Qx+Pt+nZ>:om

(3 1 _; i b it
"= 7 #3@n + Pa) + 0 e et (o

[Breknlztt) 4 gHgika(att)) (5.10a)

fa = \/" \/_(Qﬁz + Pst) + Z /-I———[ﬁ e tunttiknz 4 gt giwnt—ikaz] (5.10¢)

in which | Sin
wn = |k, kn= < (5.11)
Note here that we have already incorporated the second class chiral constraint
X=p=—03.,4'-E=0, {5.12)
P / ¥ alp— 8.
- 'I': _1" x(p x¢ ))

corresponding to (3.23) of the non-abelian case into the mode expansion where p is the momentum conjugate
to ¢'. This accounts for the fact that the noni-zero frequency modes of ¢’ depend only on the combination
z+t. The first class chiral constraint £ remains to be imposed on the Hilbert space. Using the correspondence
principle, the commutators

[$6: Pl =1, (5.13a)
[0y Pa] = 4, [Bo, Pg} = 4, )
[&m&f’m = by )

(s 1) = bams 1Brs Bl) = <bam. (5.13d)

follow from the Dirac brackets of the classical theory. “The negative sign m the last commutator arises because
B2 i8 a field with negative metric {a ghost).
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Using the field definitions above, the hamiltonian for the massless sector can now be written

Hijassless = Hn>o+ Hnco + Hyeromodes (5.14)
Z 'knuﬂbﬁd’n + ﬂft"n - ﬁlﬁu]

n>0

+ Z |kn”'71’7n - ﬂ,tﬁn]

n<0

e | :;1 1
o} - [—¥] 2 -
+L[L/_;; STaos TRF+QE

+ %[';(Pnz'{‘ an) - i(sz + Qﬂz)]a

and, since the constraints (5.8) are first class, the physical subspace of Hilbert space is defined as those states
which are annihilated by these constraints:

(Bn — na)lphys) =0, n <0, (5.15a)
(2e¢), + Wn, + m'B,)|phys) =0, n >0, (5.158)
(Ps — Qs — Py + Qu)Iphys) = 0, (5.15¢)
(26(P+ Q) + (P, + @) + m'(Py + @g))lphys) = 0, | (5.154)
E|phys) =0 (5.15¢)
This hamiltonian in the presence of the constraints (5.8) can be understood by making the change of
variables .
h=¢'——~(n~F) (5.16)
which is a canonical transformation:
(R AL = 8amy ko, Pr] = i. (5.17)

Further, by virtue of the constraint (5.8a), the combination n — 83 has an expansion which on physical states
will only depend on the combination z + ¢, similar to the expansion of ¢’. Thus the field h on physical states
is also a left-mover. With (5.16) it follows that the hamiltonian takes precisely the form of the hamiltonian
for a free chiral boson [3] on physical states. That is,

L
(phys'| Hipassless[Phys) =(phys'| / L dz(32h)*|phys) (5.18)
- X2
=(phys'| + Q% + g} knlhthalphys),
with .
Qr= Q¢ - ;(Qn - Qﬂ))
and

e
hn=¢n m(’?n ﬁn)y n >0,
h,=0, n<0.
Of course, on physical states, P, = Q.
Thus we have shown the physical spectrum of the abelian model to be that of a (massless) chiral boson
h and a free massive scalar field #,. This is similar to the spectium found in ref. 6, the main difference
lying in the inclusion of a free right handed Weyl fermion in the latter case, in order to employ conventional

bosonization techniques. Of course, this ‘trivial’ massless mode is then also present in the spectrum obtained
in that paper. By contrast, in the present construction no such field exists.
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8. Conclusion

Starting with a non-abelian generalization of Siegel’s action [1] for chiral bosons, we have first shown
that although the original action posesses a global O(N)z x O(N) g symmetry, the constraints which follow
from the action allow only one or the other of these symmetries to be consistenly gauged, but not both. Thus
the theory passes the first test for comparing it with chiral fetmions. Setting the boson coupling f? equal to
4n/n and n equals +1 as is required to reproduce the free theory of chiral fermions [4], we next examined
the Noether current of the gauged O(N) symmetry. Here we found that the divergence of the current has
precisely the anomaly of the corresponding fermion theory. Thus a second requirement is satisfied. Next we
turned to the quantization of the theory for which we followed Dirac’s procedure for the quantization of a
constrained hamiltonian system [17].

An important aspect of our quantization of the model was to take into account zero modes of the
constraints explicitly, in order to separate first class constraints from second class. Our treatment is a
generalization of Witten’s non-abelian bosonization, and carries over to the gauged theory. In this analysis,
we were led to the hamiltonian for quantization (3.25) which involves first class constraints. When these
constraints were imposed on physical states in the Hilbert space, the remaining non-vanishing or ‘physical’
hamiltonian turned out to be precisely what one would obtain from the original lagrangian, but with the
lagrange multiplier A set to —1. This is consistent with the abelian free case (2] showing that the constraining
of X is not affected by the presence of gauge fields. So once again we are led to the conclusion that the non-
abelian generalization of Siegel’s action leads to a quantum theory identical to that which follows from a
non-abelian generalization of the action of Floreanini and Jackiw [3]. Further, because Siegel’s action is fully
Lorents covariant, and therefore easily gauged, this equivalence between lagrangians tells us how to couple
gauge fields consistently to Floreanini and Jackiw’s action in the quantum theory.

After presenting the fully gauged hamiltonian and Poisson bracket algebra for quantization purposes,
we dropped the gauge fields and examined the free theory. Here we have shown that the Kac-Moody algebra
for N Majorana-Weyl fermions is reproduced by the boson theory, and because the Virasoro algebra follows
from the Sugawara construction, the identification of the two quantum theories is established. Next we
relaxed the condition that f2 equal to +4x/n, and studied the renormalization structure of the model.
A consideration of one-loop perturbation theory leads us to two conclusions. First, a remnant of Lorentz
symmetry in the chiral model [3] is enough to show that the chiral structure of the theory is preserved under
renormalization, and that only the coupling f2 is renormalized. Second, the explicit one loop calculation
shows that for values of f2 not equal to :4x/n, the coupling is indeed renormaliged, so that it is only when
/2 equals +4n/n that the theory can possibly be equivalent to a free fermion theory. For this value the first
term of the #—function vanishes. This is exactly as in the case of Witten’s non-abelian bosonization.

In the last section, we finally specialized to the abelian gauge theory, or chiral Schwinger model {7],
for which an explicit solution is known. In this section we gave the complete solution of the theory in the
context of chiral bosonization, in order to clarify those parts of the derivation which are affected by the
chiral structure of the boson sector. In particular, we found that because of the chiral constraints, certain
of the fields are left-moving {or right-moving), and that in the final result the spectrum only differs in the
sector where chiral bosons replace the normal bosons used in a previous solution (5,6].

Finally we end with some comments about the implications of our results. First, we have shown that
both in the presence of gravity {2] and in the presence of gauge fiélds, that the approach of Siegel [1] is
identical to that of Floreanini and Jackiw [3] on the quantum level. An alternate method for quantizing
chiral bosons exists, which also starts from Siegel’s action [20]. This method is based on the erroneous
assumption that further fields and further constraints must be added to the theory in order to cancel a local
‘Siegel anomaly’. Hence, ‘no-movers’ are added, and an analysis is performed on the resulting lagrangian. On
the basis of our study, this alternative approach is unnecessarily complicated and can be avoided. Because
Dirac’s procedure for isolating the canonical degrees of freedom on a manifold defined by certain constraints
within a larger space is obtained from an analysis of the underlying geometry of the manifold, we are quite
confident that when the procedure is applied to Hull’s approach, exactly the same quantum hamiltonian we
have found here will be reproduced.

The first order formalism of [10] on the other hand is very close to a hamiltonian formulation of the
theory. The key to its simplicity is that the ‘square root’ constraints (see ref. 2) are assumed from the
beginning, and therefore when quantized along the lines presented here, the resulting theory should be the
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same. Thus a justification of this very nice ‘quick and dirty’ method for obtaining the ‘physical’ hamiltonian
wotld be obtained. Of course, in thé proof, the presence of zéro miodes mist be carefully takeén into account.

In summary, we have analyzed the quantum theory of non-abelian chiral bosons coupled to gauge fields,
and shown that whenever the theory can be checked against the theory of ga.uged chiral fermions, the two
are in agreement.
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Appendix

The careful reader may wonder whether some of our conclusions concerning zero modes may be affected
by ambiguities in operator ordering when defining the quantum theory. In this appendix we show that in
the places where one might suspect this to be a problem, no difficulty arises.

The first potential problem occurs in the term tr{EpQg]| of the hamiiltonian (3.25). However because

the nperators {rq and Q gy commute when a equals b, and since in the hamiltonian they occur inside a trace,
no ambiguity arises here.

The second potential problem is a little more subtle. In the the derivation (3.29) one encounters terms
of the form

, tr(Tag(z) ProTog ™ *(z))|phys >, (4.1)

where Ppy is defined through
. — 1

Pp = t{PpaT,=Ep+ ;QR» (A-2)

and of course g depends on ¢. Now in order to use the vanishing of £ on physical states, which in terms of
Pz means

Ppy|phys >= iQablphys >, (A.3)

we have to check that Pgj, commutes with ¢=!(z) inside expression (A.1). A short computation gives the
desired result. Introducing the commutator

16°(9), po{a)] = i635(z ), (A4)

where p;(z) is defined through

Pr= 1 [ dz g~ Ha)ei(@)o(a)(pule) — Ais(a)3ua’ (), (4.5)

we have

tr(Tag(z)[Pr, 9~ (2)]) = tr(Tag(x)l% / dyg ™ (y)ei(v) Toa(y)pi(y), 9~ ()]) (4.6)
= i%cgtr(TaTbgg;g“)
- —}L-e;;eftr(TaTch)
- —%tr(TaTbTb)
=0,

where the last line follows because T, T}, is proportional to the unit matrix, and tr(T,) = 0. Thus we conclude
that no operator ordering ambiguities occur that affect the derivations in the main text.
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