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ABSTRACT .

A many-body description of the photoemission and
photoabsorption processes is outlined that incorporates the
multichannel treatment of the atomic dynamical excitations
into the framework of the multiple scattering theory.

In this context the interplay between excitation dynamics
and electronic and geometrical structure of the ground state
is elucidated. A new multiple scattering expansion is derived
that takes into account interchannel transitions as well. An
application to the analysis of photoabsorption spectra of
mixed valence compounds is outlined.

The same approach is shown to provide a theoretical model
for the study of the evolution from the adiabatic to the
sudden regime. Limiting, asymptotic cases are discussed.

Finally the unifying approach provided by the multiplu
scattering theory in the description of photoemission and
photoabsorption processes in condensed and gaseous phase
matter is illustrated.

KEYWORDS: multichannel / multiple scattering / XANES / EXFAS



1. INTRODUCTION

Electromagnetic radiation has been historically the most
widely used tool in the investigation of the properties of the
physical state of matter. The reason lies in the smalleness of
the fine structure constant o=(e?/fc)=(1/137) that goverrns the
coupling of the radiation with matter. The resulting weak
interaction has a twofold advantage: on one hand the
perturbation on the system under study is negligible so that
one is able to investigate the properties of the unperturbed
system; on the other hand from a theoretical point of view one
can use the linear response theory as an interpretative scheme
in which to frame the experimental observations. ' )

The study of the electronic excitation dynamicé in the
various states of the matter benefits of this fortunate
circumstance. There is however a price to pay for this
simplification in the investigation of the structural
properties of matter. Due to the smallness of the coupling
constant scattering experiments can only probe the pair
correlation function of observables that couple to the
electromagnetic probe, like the 1local density p(x) or the
current density j; (r). Except for periodic systems, where this
information is usually sufficient to reconstruct the spatial
organization of the atoms, in any other instance oﬁe has no
clue to the atomic géometricai arranéement in the system under
study. "

The advent of the extensive use of synchrotron radiation
has given a tremendous impulse to both areas of research. The
unique properties of this radiation soutce, like 1its
intensity, brilliance, polarizatién, tunability and
collimation, to cite a few, coupled with sophisticated data
acquisition techniques have made possible the explosive
development of all kinds of spectroscopic research.

On the side of electronic excitation dynamics a deeper
understanding has been achieved in the way an excited system
reacts to the excitation probe. Screening, polarization,
relaxation, autoionization and decay mechanics have been
elucidated in a wvariety of cases, both because of higher

quality data and better theoretical treatment.



On the structural side the photoabsorption process has been
progressively recognized and used as a technique capable of
providing structural information beyond the pair correlation
function relative to the absorbing atom even in non periodic
systems. In fact it has been realized that, even though the
primary probe, the radiation, couples weakly with matter, the
secondary probe generated in the photoabsorption process, i.e.
the photoelectron, can couple strongly with the atoms of the
system and therefore can carry supplementary information
through final state interactions.

As a consequence photoabsorption and photoemission
measurements, especially from inner shell states, have been
progressively used for structural purposes. The limitation to
inner shells, with the inherent simplification broudht about
by the localized and dispersionless initial state, has made
simpler the theoretical interpretation of the experimental
results, which in turn have exploited the selective power of
the incoming radiation both in terms of the type of atom to
excite and the type of final state to reach.

Another reasons for using deep core states has been the
reduction, in the final state, of the amount of electronic
correlation effects which in general tend to .obscure the
informational content relating to the structural arrangement
of the atoms in the system.

However relaxation processes and double excitations are, to
some extent, always present in the final state of inner shell
photoabsorption. Therefore a theoretical scheme for
interpreting the interplay between structural properties and
electronic correlation dynamics . would be highly desirable.
This scheme is provided by the multichannel multiple

1,2

scattering (m.s.) theory which forms the objects of these

lecture notes.
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2. =~ THE MULTICHANNEL MULTIPLE SCATTERING THEORY
We begin with the total absorption cross section, given by
) S N .
c(w)=4n~ahwZ| (¥Ne Z ¢, 1¥ M128 (ho-E+E)) (2.1)
£ o i=1 '

where Wmhnfare the”ﬁépyfbody initial and final state wave
functions for N electers.in the system and the sum over the
final states ¥ is idﬁended also over all directions of the
photoemitted electrons. fiw is the incoming photon energy and €
its polarization.

For transitions from a core state we assume that,';o a good

approximation,

YN =120, (2) 2 c @ (2.5, ;)

o1 (2.2)
— - Nz ’ ] .
= IN1A¢, (£) PN (2.1, ,)
where A4 is the usualzantisymmetrizing operator ﬂ=(l/N!)Z$(—DP
P (#=4) and @ "l(x,..x
the configurations present in the initial state wave function
¥.N. Normalization imposes I, |c_|2=1, if (¢c|¢¢)é1.

Similarly we assume that, by expanding ?@N(r,rrurw¢) in

n-1) are Blater determinants describing

terms of the complete set \FaN—l(ri'wrm)»

-

¥ N=Nt 4 L £4() E FARCNE -, (2.3)

We take the functions q%ﬁ‘1 to be eigenstates of the N-1
electron Hamiltonian o

N=1 N-1 P sz 14, jN-1 2
Hy,= -2 V2- Yy ————+ I — (2.4)
i=1 i=1 k=1 |2 —Rk | i<i | ri-r, !

with eigenvalues E,N1:

S N-1 _ g N-1 [y N-1
Hy, ¥ N1 =ENT ¥, (2.5)



P .

where ¥ Z, = N, R, denotes the nuclear positions and Z, are the
k=1

associated charges.

We use throughout atomic units of length and Rydberg units
of energy. The factor VN! in Eq. (2.3) again assumes that we
can approximate ‘PaN'l by a linear combination of Slater
determinants, belonging to a continuum spectrum if ¥ N! does.
In any case we assume for simplicity all continuum states
normalized into a box enclosing the system: one may eventually
take the limit of the box linear dimensions to infinity and
transform the sum in Eq. (2.3) into an integral.

The final state wave function ‘Pf is an eigenstate, with
energy E=ﬁm+EVPOf the N-electron Hamiltonian

N-1 2 P 2Zk

HN=-—Vr2 4+ L — e T e -+ Hy
i=1 |r—‘ri| k=1 |r-—Rk'|

(2.6)
=-V.2+V(g,x;,R) + H_,
Therefore
N N
HNWf --E‘Pf (2.7)

and we shall henceforth assume that EﬁfENg is the ground state
of the system. ‘
The insertion of Eq. (2.3) into Eg. (2.7) gives

(-V2_+ V(r,x;,R) + Hg_, ) zsza(r)‘l'oﬂ“l(;rl...:rN_l)

(2.8)

= P N=14 .
=E AL f (e)¥ Nz 2 )

and by ﬁultiplying on the left by qﬂﬂ'l and integrating we
obtain the set of equations

(V2+E-E 1Y) £ (x)=
(2.9)
= o[ Voo (2, RO +W, (2, R) ] £, (1)

where



N-1 :
[ - =1

| }'Il Sr, W Nt (r.xy )
1=

Vaal '(I:I:Rk)

(2.10)
vz, z,,R) ¥, N1 (£,Xy_;)

is a direct potential term and we have lumped all the exchange
terms into the quantities Woa: (¥,R,) which are thus
complicated, non local, exchange potentials for which a
suitable, local approximation has to be found. If we impose
the condition, as we shall do, that the functions fy(x) be
orthogonal to all the one particle states present in the
cmnfigurationsumaking up the ground state wave function (so as
to ensure the orthogonality condition (?%WWQN)=O) as well as
to those configurations that enter in all the ¥ "', then the
exchange term is given by
N-1

Wy (£,R) =1/£o(x) [ TT &Pr, ¥ ¥ (x .2 ) V(X,z,,R)
i=1

(2.11) .
L (-1)PPE . (x)¥P Nz, .x.x
P (#E) '

N-1)

We refer to the appropriate literature for the transformation
of this non local operator into a local one3. Henceforth we
shall assume that this transformation has been performed and
that our problem is to solve the coupled set of Schrédinger
equations with local potentials.

Since E=ﬁ0ﬂimg we can write in Eg. (2.9)

- N-1 N . N-1 .. # N . N-1. (g N~1l_opm N=1ly.
E-E' ! = Mo+ BN - BN = o+ BY - V1o (B N1-g N1
(2.12)
= -] ~AE. =k 2 .
=hw - 1~ AE =k,

since EgW4~E;‘=I% is the ionization potential for the core
state and AE;=E N1 - EJ“l is the excitation energy left behind
to the (N-1)-particle system. Therefore Ko is the wave-vector
of the final state photoelectron

Egs. (2.9) can then be rewritten as

(V2 + k%) £,(2) = Zyg. Voo, (5,R) £, (X) (2.13)

oL



where for sake of brevity we have put Veor = Voo ¥ Woge -
The functions f,(r) have a simple physical meaning in the

case of electron-molecule scattering. Through the asymptotic

conditions
j.kar
ik, .t e
o A A .
f (x) ~ (e Opg + £ (Erky) ————— ) N, (2.14)
r—yeo r

where the factor N =(k,/®)/?/(4%) is necessary to ensure
normalization to one state per Rydberg, they describe an
electron in the incoming channel @ with wave vector kgwhich
can be scattered in any outgoing channel ¢, with wave vector
Ko r
we have to take the time-reversed state of Eqg. (2.3) (complex

after loosing the energy AEm. In the photoemission process

conjugate if spin is neglected) so that the outgoing channels
become incoming channels which interfere constructively in the
wave packet describing the photoelectron so as to give an
asymptotic plane wave propagating out at infinity with wave
number k. . A '

Therefore Egs. (2.13) are to be supplemented with the
boundary conditions Egs. (2.14) written by replacing £,(x)
with £ *(r).

It is fairly obvious'then'that in the expansion (2.3) the
most important (N-1l)-particle states are the excited states
‘YaN'l with a core hole corresponding to the photoejected
electron, for which EQW4—E;’=I¢,'SO that ka2= ﬁm-wlc-wAEa is
small compared to V.. In this sense the ¥ ! are the relaxed
excited states of H ,.

The argument runs as ‘follows. If k%ﬁ»ﬁm-lc==kf and hf»
IVha.(rc)I, where rcsiszthe'radius of the atomic c¢ore, then to
a first approximatibn we can neglect the potentials in the
r.h.s. of Egs. (2.13), so that, together with the boundary
conditions Eqﬁl (2.14), we obtain

1ka.r-

fa(r) ~e By - (2.15)

The procedure for solving Egs. (2.13) with Dboundary
conditions (2.14) (in the end we shall take the complex

conjugate) closely follows Ref., 2. We first transform Eq.



(2.10) into a Lippman-Schwinger equation

iky.x .
fo(x) = Nje Opg +] G (x-x') Ey, Vo (") £4. (') d3c"
iky.x P
= N, e Sag + kztl JQ G (x=x")E , VK . (x") £, (x')dc"
=] k

(2.16)

+[pq G (z-2" ) E,, VI (2") £y, (x')d3r"

where we have partitioned the space in non overlapping spheres
Q, around the atomic nuclei and an interstitial region AQ. An
outer sphere K% enclosing all atomic spheres can be added by

replacing X, with X _,. Also V¥ . (x")=V,, . (r')for r'e Q.

oot oo
Moreover
(Vi k) G% (x-z') = §(x~x") (2.17)
whose solution is?
iku [k &= 2l
_ e
: . ~N
Gao(r“lﬂ")’-"(l/‘ln) — =—'lka ZL jl(kar<) Yr_.(:""<)
(2.18)
h t(kor,) Y (F,) = -ik, I, J% (x,) BY® (r))

where L stands for (1,m), ry(r,) refers to the greater (lesser)
of || and |r'| and jlp n,, hl+ are spherical Bessel, Neumann
and Hankel functions, respectively, with h1+ = j;*+ in,. We shall
use real spherical harmonics and put for brevity J“L(r)=
jl(kar)Y(@), etc...G% (r~-xr') is the free Green's function with
momentum ﬁku and outgoing wave boundary conditions.

Use of Eg. (2.13) allows us to write

xka.r

fo(r) = Nye 5an

(2.19)

+[G% (x-x') (V.2 +k2) £, (x) dr

which, together with the Green's theorem



[y 16%(x~2") (V2 +k?) £, (2
~£a () (V2 + k2 G% (x-x") 13! (2.20)
=Is (6% (x-2")V,, £, (2)-£, ("' V_ G% (zr-r') ]'n do'

v

leads to the following equations

ikg.r P ;
fa(r) = Nge gt fo (6% (eor) Vit () -
—‘fd(r') Vr' G“o'(a:--r'f) I'n do! (2.21a)
+ [4q G =" ) E Vo (21) £, (1) d3r ifreX Q
ika.r P - o .
0 = Nye Bog + kziljsnk[s s (e-2)V £ ()
- £,(e")V,, 6% (x-x') ]'n do* (2.21b)

+[aq G (r-2" )Ty Vi (") £y, (2) &' if re I Q

In order to perform the surface integrals around the
spheres Q, centered at R, we make use of the usual expansion?

, o n o g
Ghte=xt) = Ty 3) (kgr) Yy (E)) 6%y 1. 3, (ker) Y, ()
(2.22)
- o 0
= X, 3% (r) G in, 5o 9% (xy)
where
A
- L -1 v o s
Gy 51 = 4n k, L. it"Hlc Mo 1.h1*fl,,(.kaRij)] Yo (Ryy)
= NO R O
= N% 0 gpe = 1 % g (2.23)

with

Col' i =[Y, (@)Y, (Q) ¥, (D) aQ (2.24)

L L"
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and putting rj=r~Rj,lMd=Ri_Rj“ Unless explicitly stated, we
shall henceforth assume this meaning for ry. The matrices N and
J are defined by decomposing ~ih* =n -ij,.

Moreover we need also an expression for the solution of the
system of Schrédinger equations (2.13) inside each sphere Q.
Writing

£,(x) =Z £% (r) Y, (T) (2.25)

inserting into Eq. (2.13) and projecting onto Y, we find

[1/r(d?/dr?)r + kg? = 1(1+1) /21 £% (x)

. (2.26)
¥, - al
oo Vigrn ™ (0) £% ()
Here we have assumed that around each center k,
K Vi oL A
so that
Lot Y " _'n hid oo
Vk;Lan"o (1- ) —Z‘Ln CL LY Vk’.Lnaa (r) ; (2 -28)

If o runs from 1 to n, and 1 from 0 to 1 this is a set

max?’
of nu(lmm+l)2 equations and consequently we can construct this
number of linearly independent solutions £, ,%*'(r) regular at
the origin which, for given ®'L'can be interpreted as vector
solutions whose components are labelled by 0OL. To start the

integration, we might take, for example, near the origin,

£ ooz 15

LL! LL! Eua' (2.29)

Consequently the general solution can be written as
o =
£%(x) = 2

a'Ll CL‘la'fLchw" (l:'.) (2.30)

so that without loss of generality, inside the sphere Qi, we
can write

£ (x) = §3a, Z . Cy a' f

. N
1L o Ty Y (x) (2.31)
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Inserting this expression into Eq. (2.21b), taken for rel,,
remembering Eq. (2.22), one obtains
- 2 -
0 =, J%(x,) {kgp;? £y, Wl-ih*,, £

oLt 1 o~ a’
i;LL! ]C'iL'

+ L I, Zy g pk2 GaiL,kL' Wiip., fk;L'L"w']CkL"a'} (2.32)
k (1)

lkm X

3

+ [aqG% (x=x ) Vi, (2") £, ()" + N, e g

Here we have introduced p,, the radius of sphere Qk, and
defined the wronskian

W(f,g]=£(r) (d/dr)g(r) - g(r) (d/dx) £ () |r=p, (2.33)

calculated for r = p,.

We now put

— 2 : oo ] '
B = P Tgepn WIIper £, 0000 1C, % =
(2.34)
= P L W3, £) poge”® Cypn®
and invert this relation to obtain
sz Cyp® = Zorge (W3 £ 7], B b (2.35)
with obvious notation.
Then Eq. (2.32) becomes
0 = Z, J%(x) (Zg . Zhupe kg [W(-ih*, £)], %
[(W(3, £ 7], BY L+ Z 2 G%p i B | (2.36)

k (#1)
ik, x

a , . .
+N, e Sugt JaGo® (2=x ) E VI o (') £, (x1) dr"

We now introduce the generalized inverse atomic T,, t-matrix

whose meaning we shall discuss later
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(Tys ™) 0= KoZgopn [W(=1R%, £,) 1,0 0%7 [W(5, £7) 71, @
(2.37)

and use the usual development (remember that N =(k,/%)1/2/(4m))

ik, x

N
Nee — =(kg/m2 5 i1 g% (n)y, (k) =

Q

(2.38)
=(1/km) /2 L ity )}: I% 0 on I ()

where we have reexpanded the function J% (£)=J% (x,), which is
defined with respect to the origin of the coordinates o,
around site i through the quantity J%
(2.23)2.

Since the solution of Eg. (2.36) is linear in the source

1LY, oL defined in Eq.

term N,el*a'¥, we can put in Eq. (2.38)
M
(1/kg®) 22 i v (ko) = 8 (1/k m) /2 (2.39)
so that finally we can write

0 =2 0% (o) (E, . (T, "ho® | B* (L)

(2.40)

L . i i\ 1/2
+k‘:‘£i) ZL' GaiL,kL" BakL" ;L) + JaiL,oL 80.;2 (l/kaTC) / }
(=

+a0 G% (x-x') Iy, Vi, (x') £, (x') d3c"

Notice that we have now affected the quantities BﬂL(Q;L) by
the indices @,L, marking the. dependence on the inhomogeneous
term §,,8, . Therefore in Eq. (2.36)

N
= ¥ 1l po
Let us neglect, for the moment, the interstitial potential,

aq (£)=0. Then the Egs. (2.40), one for each
i, determine the coefficients BQM(Q;L), which through the

i.e. let us put V!

relations (2.35) and (2.31), provide the functions folxr))
needed to calculate the transition matrix elements.

To interpret the HﬂL(g;L)y we need to consider Eqg. (2.21a)



for r ¢ X €, and use Eg. (2.18). Performing the surface
intégral and remembering the definition (2.3%) we find

- ke X §
fo(2) =N eFaT Saa
1 ‘ ; ‘ A A
= ko Zy Ly 1M Y (ke ) Y (R B (0L Y (k)

+faq G (x=z') Z VI . (x') £, (x") d’r' (2.42)

Assuming again Vﬂuv(r)ﬂo, this equation c¢learly shows the
meaning of the BﬂmlgﬁL)'s as scattering amplitudes irnto the
channel o with angular momentum L emanating from site k in
response to an excitation with angular momentum L into" the
channel Q.

It is interesting to derive an explicit formula for the
B“njs in the atomic case, which is obtained by suppressing the
terms k#i in Eqgs. (2.40) and (2.42) and putting i=o.

From Eg. (2.40) in such a case we obtain, since? Jg%

oL,o.]‘,,L=
S
B (T,H O B (@)= - Oy 8y, (ky/m) /2 (2.43)
giving
-BY (L) =(T,) %% (kg/m) /2= (2.44)

=(ke/T) Y2 By [W(3,6) 1,9 (kgo) 78 [W(=ih*, £) 1), @&
This explains the definition in Eq. (2.37). The quantities
(Ta)m”Lﬁ are the natural generalization of the usual atomic

T -matrices for non spherically symmetric potential in the
multichannel case.

For the many center case the interpretation of the
coefficients B“iL(Q;L) as scattering amplitudes is indeed
confirmed by the physical meaning of the m.s. equations:

z

-1y o’
[y AR (Tai )

ppe By (@i L)+ (2.45)

(L Q, o] I
+ Zr ELu G 1L, kL' B kL' (g{.lll) — '*I

Oog (1/ (kgm)) /2
k (1)

in ’ oll
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which can also be written: as

B% (L) = ~Z,... ('I'ai)“d"m.]}(l i Zow % p e B e (51D
o (#1)

= Z, (T, )%, I% 0, (L (k) ) L2 (2.46)

Since, from Eq. (2.38), J“““ﬁ‘is the exciting amplitude of
the L angular momentum component of a plane wave impinging on
the origin as seen from site i, Eq. (2.46) shows that B?M(Q;L)
is the sum of the scattering amplitude originated directly at
site i by the exciting amplitude plus all the scattering
amplitudes generated by the waves that are scattered by. all
other sites k(#i) and propagate from site k to site i, where
they are finally scattered into the final state.

If is interesting to look at the structure of the m.s.
matrix Eq. (2.45):

Qoo - -1y oo
(T )7

ST L kL Oyt (1= 8y,) Ogge G%yy r

= -1y oo C8 R NO o
=(K,; ") Oyt (1= 8y, B N™y 1= 18060 T% 1 yr

LL'

s ACULY
1A% iL,KL"

= Moo (2.47)

iL, kL'
where M and A are hermitian matrices (actually A is real
symmetric). We have introduced the reactance atomic K ,-matrix
related to the T,,-matrix by the usual relation

(T, 1% o= kg Zgup [W(-ih* £,) ]

LL® 9 Y SO WA, £) M g, Y=

LL” L
= koZgupe (W0 E) T8 [W(IE)) T g, &
ikg 8118y
= (K, "H® -1 kg (2.48)

remembering that -ih*/= n -ij,. The term iI k,= 1 Oyqr Opp+ kg has
been incorporated in A by lifting the restriction i#k and
in i =Kgdi. - In Eq. (2.47) we have used
the decomposition (2.23).

using the relation J%



s

By exploiting the sum rule?

. J* JakL'.oL = koJ%

‘ = 1 AOOT .
iL, oL 1™ Ky A iL,kL* Saa- (2.49)

it is now easy to derive a generalized optical theorem for the
amplitudes B% (Q;L):

Iy B (/L) (B, (@iL) 17 =1/m [(M~iA)TIA (M+iA)P1oe
_ (2.50)

= 1/% Im [(M=1A)]%%, .= 1/% Im T
which we shall need in the following. For convenience we have
put (M-iA) “l!=s-l=t¢, which is known as the scattering path
operator.,

The presence of an interstitial potential Vi (¥) merely
modifies the quantities Tﬁfl and G in Eq. (2.45). However the
general structure of the m.s. equations as well as the
validity of the generalized optical theorem (2.50) remain
unchanged. This is also true in presence of an outer sphere.
We refer the reader to the already cited articles for
details!-?,

If we assume that the initial core state is localized at
site i, we need the vave function f, (x) inside the sphere Q,.
From Egs. (2.31) and (2.35) we obtain

i - i , -
Ealx) = I, z:LL' CiL'a f:i;:LL'mm (r) Y, (%))
= za' 2I_,L,' zdl'v'Liv F’i.‘z[w(j'fi) —1]L'L"a'a" (2 .51)
" w. ) . :'\
B® iLe fi;LL- (ri,) YL(.ri)

By defining the functions
£,0:0%(x) = pEEL L E M () (W (G ) Th) L L (2.52)

we can also write, making explicit the dependence on the
incident wave vector kg and using Eq. (2.41),
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. R ) o o oo’ D
f(xl‘ (-l‘,kﬁ) - ALL L(xILI B i]-‘l .ﬁ.LLl (rl) YL(ri)

(2.53)
» . + » i ] A

To obtain the total cross section we have to sum over all
possible photoelectron final states labelled by the index (.
Since the wave functions fl, are normalized to one state per
Rydberg we have, using the projection property 42=2,

o(w) = 4nlaho Z,

[ c_iﬁml (Zy £t (2:ky) Wit g - zl r, N1ag L) |2
' m=

(2.54)
= antaho 3yf dk, | (5, 5,0 ek L exlotm))s,,l2

The last. step follows from the orthogonality of fl to all the
1nltlally cccupied orbitals and the fact that we assume the
arthogonality of ¢JWr to all the orbitals appearing in the
s S = (P NP NNY) is the projection of ?’Nl‘onto the
occupied ranflgurdtlons present in the initial state.

By introducing the expression (2.53) into Eg. (2.54),
performing the angular integration over'%gand introducing the
atomic matrix elements

MO = (£9% (r) Y, (x,) lex] ¢.(x,)) (2.55)

we can rewrite Eq. (2.54) as

o(w) = 4n’aho I, ! a,alzﬁ,‘, }EfL' 351,1.- Suo M“ffL BP . (@/L)
; (2.55a)
![ Bﬁ.iL' (@7 L) MQ'B’ Sor.'o]‘
Lf gLt
= 4noho Ty, Zgg. LEL_f 2.1+ Seo »ﬁﬂL
(2.55b)
{tm B8 ) M{‘W Sgo ]

Lrel!

using the generalized optical theorem Eq. (2.50).

From Eq. (2.53) it is immediate to write down an expression
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for the photoemission cross section for ejection of an
electron into the state k, with energy k¢2=fM%J£~AEq

do(@) dk, = an2ahol (S,etzky) | exlot(@))s,l2
(2.56)

- 4n2aﬁwl£ Tger Iy B (L) 3% v (g ‘M“"I‘j‘ft,saoﬂz
£ £

In both cases the sum over L, indicates the sum over the
final angular momenta allowed by the dipole selection rule in
Eq. (2.55). Notice that in Eq. (2.56) it is not possible to
take advantage of the generalized optical theorem.

Tt is interesting to compare the expression (2.55) with the
total cross section for electron molecule scattering. The
general definition of scattering T-matrix in the multichannel
case is derived by lookihgkat~the asymptotic behavior of the
electron wave function

A o
£,(2) ~ I 4w ¥ (k)i (% ()3

- ik, T, Hte (g)Toe
pesoo oQ o L L ( ) L

.
(2.57)

where r is referred to the center of the coordinates.
This expression has to be compared with Eg. (2.42), with
Vﬂur=0, after all coordinates r =r-R, have been referred to

the origin. To this purpose we use the reexpansion formula?
-ik h* (k. r )Y (£) =-i £, h* , (ko) Y , (¥) J° (2.58)
o 1PTaTk L k L' 1' Yo Lt olL', kL ) !

valid for |xr,-r|=IR| < |z | since ‘we look at | 2| —doe
Substituting this relation into Eq. (2.42) we obtain

~
~ Y4k T L ) ¢
Eu(1)  ~  EAm Y, (ky) it [Ny J% (z) Oy

~i/4n Z,, T, bt (ker) Y, (£) 0%, B% (QL)]

N
= 1d ) O )
I oam Yy (k) it Ny (3% (1) 8y

-1/ (4mNQ) Ty, HY (1) Ty 0% 0 B (@i L) ] (2.59)
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This gives [Lor TWLL the expression

T = T T%0 e B (@i L) (T/k3) 12 (2.60)

The total scattering cross section into  any channel o'
starting from channel O is given by

Y By = 4 3 S e A0 S 2
0% (By) = 4m X, .2 |z e |2=4n Z, |

z, e ]

L5 1

(2.61)

using the detailed balance. relal.tibn“:
Using Eq. (2.60) we find

’ Ol 2 +yoo .
T 1T (TTH) ™

i /e 3 y RO > ‘ /s *
T/ ke Tgr, e T%n,ne B (L) (g 3%, g Brpn (L) ]

R/ Ky Zyp Ly JaoL,kL' Im %,

L', kL™ oL,k'L"

1/ky Im TO® (2.62)

since J“oL"kL.‘ is real and we have exploited the relation,
derived from Eq. (2.45)

v oy 1/2 BO oy eTye= ¥ 400l | ‘
(kgit) By (0;L)= Zk"L' lka,k:'L' Jq'oL-,k'L' (2.63)

Eq. (2.62) is n’o’thing else that the optical theorem for the
scattering T-matrix. As a consequence Eq. (2.61) takes the
form

' =y - & Ua
0%, (Ey) = 4%/k, I Im TO*
(2.64)
. \ 3 ) : o Ol
= An/ky® Im Zpw By Tpe I% e % ke Teonr, onn
exploiting the relatiQn,JadJkU = Jamy,m,

We shall discuss the relation of this expression with Eq.

(2.55) in the next section.
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3. THE GENERALIZED MULTIPLE SCATTERING EXPANSION

In the expressions (2.55), (2.64) the structural
information is contained in the inverse T=S"! of the multiple
scattering matrix Eq. (2.47) through the presence at the
structure matrix elements G%, ,,.,, in a rather involved way
that intermingles dynamics as well as structure.

It turns out however that under certain circumstances, to
be discussed shortly, one can expand the wvarious cross
sections in a convergent séeries the general term of which has
a simple and direct physical meaning.

In fact, remembering the notation introduced in section 2,

we have
— a-1 -1 -1 — (9 -1
T=8"= (T,7/+G)™" = (I+T,G)™" T,

so that if the spectral radius p(T,G) of the matrix T,G is less
than one, where p(A) is the maximum modulus of the eigenvalues
of A, then

(I+T,G)' = X (-1)" (TG)" (3.1)

n=0

the series on the right being absolutely convergent relative
to some matrix norm. For short we shall henceforth define
G*, ;1. =0 to account for the factor (1-§,) in Eq. (2.47).

As a consequence the photoabsorption cross section Eq.

(2.55) can be expanded in an absolutely convergent series

o(®w) = L o (o) ' (3.2)
n=0
where
0, (@) = anahe L. g, Z. IS MaﬁL ]_Im(Tai)lBﬁ'iLhiL,
£°F £
. . (3.3)
[MB s ,.]
L‘fL'

is a smoothly varying atomic cross section and
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O'n ((Jl)) = 4”&%‘0) ZOICI' Eﬂﬂ" I‘i‘Llf ELL' MafB

o (3.3)
Lol (=1) " (TaG)f’Ta]BB'iL,i,L«[M“'B" 3

.
L%L.am
represents the ,cantribﬁtion to the photoabsorption cross
seéction cbmiﬁg from process wheére the photoeléctron, before
beirng ejectéd at infinity, leaves the photoabsorbing atom,
ldcatedlat site i, with angular momentum L and channel state
B, is scattered {(n—l1) times by the surrounding atoms and
returns to site i with angular momentum L' and channeél state

B'. All these events are eventually to be multiplied by the
corresponding amplitudes

Seo M®  and s, M

Lk L*eL!

and summed together to give the n—th ordéf’contr{bution"iﬁ is
clear that this term bears Lnformatlon on the n partlcle
correlation and therefore is sensitive to the: geometrlcal
arrangement around the photoabsorblng atomn.

In order to better ;llustrate‘these~concepts let us treat
some asymptotic cases. It is obvious that the condltlon
p(T,G)<1 1is satisfied at high photoelectron enerqgy since

lim | (T,)%

pRre )
ka—é

e 1= 0.

In this regime one can safely write

(T,) o 8,8y and MU'~ MO §

o 0O
nne = £54100,:0pqt LL

mnsaa' (3.5)
since the photoelectroh is sensitive only to the atomic cores,
which are spherically symmetric, and only the "incoming"
channel fmtﬂ) in BEq. (2.14) is relevant, following the same
argument leading to (2.15).

As a consequence the asymptotic cross section o, (®) is
given by

N A 2
o, (0 = 4naho s, M* 2 Z Im 1% (3.6)

ilm, i1m

where, for simplicity, we have assumed a single 1 final state
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and Tan“kv is the inverse of 8%, the submatrix of S relative to
the channel o:
[T —1]iL,kL' = 8%k = (£%0) 7 By Oy + G% L ke (3.7)

In other words the different channels decouple and they
have identical m.s. structure, apart from the ¢trivial
dependence on the photoelectron propagation vector ky, and on
the atomic scattering matrices t% .

Eq. (3.6) is the form used by Rehr et al® to discuss the
role of multielectron excitations in the EXAFS structure of
the Br, molecule in the framework of the "sudden
approximation". _

The total cross section is therefore an incoherent sum of
photoabsorption cross sections relative to different channels,
so that we can limit ourselves to a single channel. On a
theoretical basis, born out by experiments, one expects the
predominance of a single channel in the sum (3.6) when the
ground state of the system contains one single dominant
configuration. In this case the biggest overlap factor among
the S
configuration in the final state and to AE,=0 in Eq. (2.12).

w0 8 1is S,,, corresponding tc the same relaxed

Depending on the systems, one has 0.7 < ISOOV <0.8 so that one
single channel accounts for 70~80 per cent of the spectrum. We
shall see in a moment how to &dccount for the rest in an
approximate way.

In the energy region where Eq. (3.6) is valid we can also
expand T* as

T¢ =(I+ t* GH ™ t* =X (-1)" (%, %" t%, (3.8)
n=0
so that
0, (@ =4noho X, 1S, M* 12X E (~1)" Im [(t% G™)" t* 1, .
o0
B E\ioza ho-anas(m) (3 ¢ 9)‘

Analytic expressions for the m.s. terms, based on the Eqg.

(2.23) for the matrix elemernts GiLkL,, are available in the
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literature’ 8. For our purpose it is sufficient to observe that
each G%, ,,. carries a factor exp{ikyR,} independent of L,L'
contained in the Hankel function appearing in the definition
(2.23), which can be better taken account of by defining the
reduced matrix

—ik, R,
"o ik
o - oL
G gk ™ € Gy, xu
(3.10)
o -
G iL, 4Lt 0
For the n-~th order term in Eq. (3.9), we find
" O X o ame y 3 o [0 3 o
Z[(%,6%me Jimim = 0T o o, 6% el
kyL;  Kp_qLnop 11 kil
(3.11)
U G% te
Kpop lpo;  Kpoibpop,ilm  ilm

The set kl.u»knﬂ_defines a path p, of order n that begins
and ends at the central atom (located at site i), to which we
can associate a total path length

~ n=1
R“"= I R ' (3.12)

Py m=1 km km.+ 1

Therefore, putting

Pn . Pn
Al (kgrRy )exp (101 (kgrRyp) ) (3.13)
— ! o Ol o a
=X ZL e e G %
L Lyt ilm, KLy kn-1la-1, ilm
we can finally write
10l : =
Zm [ (t a GH) " taa-l ilm, ilm —
(3.14)

" 1 Py \ - tot 1 ) pr}
= Lpn At (kyrRy) exp {l[kaRpl+ ¢ (kg Ry 1}
n

so that the functional contribution of the n-th order m.s.
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term to the photoabsorption cross section in channel o is

N Py | tot 1 Pn ‘
zZA n(Kgr Ry ) sin [k, R . + ¢ n (KgrRyp )] (3.15)

Pn n
This means that each path contributes an oscillatory signal

in the cross section of period ZN/RtM@n and amplitude Aﬂﬁkh,
anik) .

The quantities A' (k,,RPn;,) and ¢ (ky/RPn,,) are slowly
varying functions of k,, so that, indicating by ko=[fhw-1_11/2
the photoelectron wave vector of the primary channel, we can

write approximatively in Eq. (3.14)

zm ( (taac;a) ntaa] ilm, ilm =

T al k Pn ; Stot g k.1 Pn .
pnA n ( O'Rik ) exp{l [ko Rp + ¢1n (‘(O’YRiLk ) ] } (3 . 1‘6)
fi .
e e ) tot o 1 Pn .
exp{i(ky=ky) [R + (d/dk)¢® (k,R,, )| 1}
P, -

If we then define the complex number

. iyl (kg o0 ,
B n(ko) e = Sy, M, | Ea I Sgo |
(3.17)
A tot Py
exp{i(ky—kg) [R + (d/dk) ¢ (k,R,,) | 1}
Py =k
we can finally write
=% X o% = 4mot .0 22 Z(-1)" B! (k.)
0, (@) =2, X, 0% (0) =4nohw IS, M, 12Z £ (-1)" B a2 (ky)
pn
1 Pn . tot 1 Py 1 .
Al (ky,Ry,) s:.n[koRp + O kg Ry )+ (k) ] (3.18)

n

This is the generalization of the result arrived at in
Refs. 5,6. The modification needed when there are two or more
configurations present in the ground state with comparable

amplitudes, is straightforward. We easily find in this case
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. .
0,,(w) = 4nahw Ty Sp, MP, 12 T Z (-1)° B!, (kg) AL, (kgsRyy)

1

ot p:n
sin [kBR; + QY (kg Ry )+ W (Kp) ] (3.19)

n

where the EB is over the corresponding relaxed configurations
in the final state.

It should then be possible to disc¢riminate in the
experimental analysis between the various oscillatory signals
appearing in the spectrum due to the presence of different
main channels B.

However the formula (3.19) is only asymptotic and
deviations from the sudden approximation (3.5) must be
considered if one wants to exploit a larger energy range.

The general expansion to use in this case is given in Eq.

(3.4) . The lowest order term is n=2, since G% 0. This is

iL, L=
the usual EXAFS contribution given by

0,(w) = 4nohim X

y . oo
oot Suo Mal 2m "sz' p> (Tai) 1 1t G*

‘ iL,kL®
o0y

(T,0) 1 %1% G%, ;. 4 (T,,),%2% [M*'iS,,01" (3.20)

where for simplicity we have assumed (TM)““}L= (Taﬁlﬁa'ﬁmﬂ and
set M*%' o M%) L SLL", since terms proportional to
M**' | (a#a) would be of higer order in this expansion.
The new feature now is given by the fact that at each
scattering event the photoelectron can change its channel
state, and consequently its propagation vector k,. This fact
can make difficult the detection of, say, a two channel in the
EXAFS signal of fluctuating mixed valence compounds,
especially for the first coordination shell whose atoms can
participate to the relaxation effect of the photoabsorber.
However it is likely that there is no relaxation beyond the
first shell so that one can write (T, ),*%1%~(T,) ;% dujp, for
atoms located in the second shell. Eqg. (3.20) then implies
that there are only two EXAFS signals, originating from this
shell, each one with a definite propagation vector. Since for

higher order shells the period of oscillation in k is shorter,
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1t should be ‘easier to detect the two signals. Recently
interesting results concerning lattice relaxation in
homogeneous and inhomogeneous mixed-valent materials have been
obtained by the use of a two channel EXAFS analysis?.

Equations like the one in (3.19) constitute the basis for a
structural analysis of photoabsorption spectra. This analysis
is in many way complicated by the need of taking
configurational averages both dynamical (over the phonon
spectrum) and structural, when it is the case (as in amorphous
systems). The way to do this averaging processes is still a
matter a research.

It is interesting at this point to compare the
photoabsorption cross section Eq. (2.55b) which reduces to the
following '

o) z arh @ Ty, SeM*, (Im o} M 5, 1 (3.21)

if one takes the most important terms (M%** o~ M* B where L

o
represents the 1 channel selected by the dipole matrix element
with initial core electron angular momentum 1-1), with the
expression (2.64) for electron- molecule (i.e. cluster of
atoms total cross section, which we rewrite here for

convenience

0%,1 (By)
| (3.22)
™

- 3 ‘ el X o
"4n/ka Im EL" ZkL z’k'L' I oLm kp,kene 9 k'L', oL

LKL

The greater structural and angular momentum selectivity of
the photoabsorption cross section is apparent. In Eq. (3.21)
only paths beginning and ending at the photoabsorbing site
with the same angular momentum are possible. No such selection
rule exists in Eq. (3.22). Moreover in the greatest majority
of cases, when only one single configuration is dominant in
the ground state, only the primary channel a, matters, the
effect of the remaining channels resulting into a smoothing
action on the primary transitimn. Therefore, as a structural
probe, photoabsorption has to be preferred to electron

collisions.



It is also interesting to compare Eqg. (3.21) with the
photoemission cross section Eg. (2.56), which under the same
assumptions reduces to

a .
5 = antho 12,2 8%, (L) it v (k) M® S, |2 (3.23)
dk |

Q

By using the solution (2.63) for B% , together with the
definition (2.23) for Jmﬂ“mﬂ arid the relation (2.38), we find

B (g L) it v (/l; )
L° 1L ’ L' %

4 A 3 1° % @ ko
= (kg/T) Y2 Zp, 1Ry g i Yy (kg)e
‘ ‘ ‘ ' ’ . A ’ ikg-RkO
= (ke/m)M2 L, [(I+ TaG)‘l Tol ™ e Yy (kg e
(3.24)

At "high" photoemission energies, again

(1+7,6)°t T, ~ [1-T,6 + (T,6)2+...] T,
retaining only terms up to the second.
Within this approximation and putting for simplicity

(T, % e = (T,0),%% &, we derive

; . . A»' ’a g = [ ¢
L, B% (L) ity (ky) = (ko /M2 B, (T,,),™
Y l ,\; [ au aln N l' A
{1 YL(kg) aik'%yr - zﬁL'G inkn (Tax)i - YL'(kﬂ)
4+ 5 ' o : oia® cor
’ ‘Em" k&L' zﬁlm G~iL;jL" (Taj)l" G JLM, KL
P A o dky Ry ;
(T,) 1 &% il v, (k4o te 7 (3.25)

which has to be inserted in Eq. (3.23).

As can be seen from this equation, now there are
contributions coming from paths Dbeginning at the
photoabsorbing site and ending anywhere in the system, as it
ig obvious since the photoelectron is detected outside, in

ree ¢ e,
f space
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The structural analysis is more complicated than in the

=]

photoabsorption case, but can still be done and is giving its
fruits!®. The expression (3.25) incorporates the multichannel
structure which can help analysing photodiffraction
experiments with more completeness.

Of practical importance in the structural analysis is an
accurate approximation to the exact, but computationally
cumbersome, expression (2.23).

The following approximation

) : 1t A \ A ; )
GaiL.kL'a -an kall ' Y, Ry)Y,, (Rik)G(Paikr‘ all"Bll') (3.26)

where

gpio, Py = [1+ o/ (2p)212 3, (B/p) 1/p :
(3.27)

exp{ip[1+(a/ (2p)?]}
with
0= 2[1(1+1)+1' (1'+1) ];
(3.28)
Bii= [1(1+1)1'(1'4+1)1V/2; Pk = koRy,

gives rather accurate results for m.s. paths of low order
(n=2,3,4) when compared with the exact expressions. In Eq,
(3.27) Jy,(p) is the Bessel function of order zerof-ll,

The nice feature of Eq. (3.26) is the proportionality to
Y Y,, which allows to close intermediate angulau: momentum
summations through the addition theorem for spherical

harmonics
A ‘
(21+1)/(4m) P (R}R) = % v, R)y, (R (3.29)

For example the second term in Eq. (3.25), putting the origin
o at site i, becomes
ik, .R, .

* [ ' N Q‘ ki
- o o 21
Tene G%ipwpe (T Y% ity (k,) e

‘1 A n
= 4R kg, 17 Y (Rik)ZkL"(L'(R.ik)y

u N ~ Uy Ry
P i 0y By (T S Y (ky) e - (3.30)



) A A A
= % it Y (R,) Z. (21'+1)P,, (ky Ry )

ik_q‘Rki

gP* i Qper By kg (T, %% e

ik ;
V1w e o AA o R
= % ity (R E (p% 7 kyRy) e (3.30)

where f£_. (p%',.; %QﬁmJ is an effective scattering amplitude
off the atom located at site k, calculated at the angle arcos
ﬁﬂrikk) between the vector joining the photoabsorbing site 1
with the scattering atom and the directiOn'ia of escape of the
photoejected electron. A similar form is wvalid for the third
term if one introduces an effective scattering amplitude off
atoms located at site k and j.1'?

The expression (3.26) can also be efficiently used for
computing m.s. terms like those in Egq. (3.13) for
photoabsorption. We refer the interested reader to Refs, 8,11.

Until now we have simply assumed that p(T,G)<1l and given an
argument (|T,)%" ,|-0 for k =) to show that there exists an
energy regime for which this relation holds. '

However, by simply considering the behavior of p(T,G) as a
function of hw (hence of the various k,), one can predict some
general features of photoabsorption spectra.

In fact the spectral radius (T,G) is a continuocus function
of fiw and, as already observed, goes to zero for fAw=—es. At the
other extreme however, i.e. near threshold thmeléf, it is
reasonable to assume that p(T,G)-—dee, due to the singularity of
the Hankel functions hZ}kﬂRiﬂ» appearing in the definition
(2.23) of the matrix elements of G (the product kahnjkaRH)
goes like kdd). Consequently p(T,G) must cross at least once
the value p=1 in the range I_< hw< e. Moreover, the nearer to
1 is its wvalue, the slower is the convergence of the m.s.
series.

On the basis of this simple consideration we can therefore
conclude that there are at least three regimes in a
photoabsorption spectrum: a full multiple scattering regime
(FMS) (p(T,G)31), where a great number of m.s. paths of high
order contribute significantly to shape up the photoabsorption

spectrum or even an infinite number of them, depending on
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whether the m.s. series converges or not; an intermediate
multiple scattering regime (IMS) where only a few m.s. paths
of low order are relevent (typically n<4) so that interatomic
configurational correlations of this order are accessible; a
single scattering (SS) regime where only the lowest order term
of the m.s. series (n=2) 1is detectable and provides
information on the atomic pair correlation function.

The energy extent and even the sequential order, as a
function of increasing photon energy, of the regimes described
‘above are obviously system dependent. Usually the FMS regime
precedes the IMS which, in turn, merges into the $S region.
This is the normal situation; however there are exceptions to
this. In copper K-edge spectrum, for example, in the first ~50
eV above the absorption edge the EXAFS like O, (W) term alone is
capable of reproducing the experimental spectrum and the exﬁct
band calculation. However a substantial discrepancy shows up
in the energy range 50+200 eV, where clearly m.s.
contributions of order higher that two are present!l,

This behavior can be understood on the basis of the
peculiarity of the relevant atomic phase shifts that are small
(modulo T, by Levinson theorem) at low energy and must cross
n/2 (again modulo W) before going to zero at high energy. At
the crossing |t,;|=|sind I~1, so that the coupling of the
photoelectron with matter becomes again substantial.

Summarizing, since the magnitude of P(T,G) depends on the
interplay between the atomic T-matrices and the structure
factors G, both ingredients must be considered in discussing a
photoabsorption spectrum. The bearance of the multichannel
structure of T, on the magnifude'of'p is still an interesting
subject ‘open to research.

Experimental analysis based on the preceeding
considerations is confirming that structural information can
indeed be obtained from the SS and IMS energy region of the

spectrum!3-14,

In the FMS region the presence of many scattering
paths in a limited energy range (usually 2-5 Rydbergs) makes
it impossible to derive any detailed information whatsover on
the various paths. However it is an empirical experimental
fact that clusters of similar atoms (in the sense that they

have similar scattering power, i.e. atomic phase shifts, like
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atoms in neighboring or corresponding positions along the
periodic table) with the same geometrical arrangement give
quite similar features, like fingerprints in photoabsorption
spectra.

This is quite evident in molecules where these particular
features have been named “cage" or "shape resonances", They
afford a kind of global information about both the structure
and the type of atoms participating in the resonance

These resonances are the cluster analogues of the
scattering or photoabsorption resonances which are well known
in the single atom scattering case. They have been mainly
asssociated with the presence of some effective repulsive
potential that creates a sort of cage that traps the final
state electron in a quasi-bound state decaying away with a
lifetime W=ﬁf{1 connected with the tunneling probability
through the barrier. In reality this is only a partial, model
view of the potential reésonance theory'®. Be as it may 'be,
these resonances, which show up as more or less sharp maxima
"in the cross section, are associated with a singularity of the
reactance matrix k related to the atomic t-matrix by the
relation (see Eg. (2.48) for the general case)

: 18,
t, =(1/kgle ~sin §;; k1= cotg & = t,7! + ik,

t,o=k, /(1-ikg k) (3.31)

where we have indicated by k0 the wave vector of the electron
and introduced the potential phase shift 9.
Since the cross section is proportional to Im t, (see Eqg.
2.55b) we find '
- $ 28 2 e =2 '
Im t, = (1/ky)sin®d, = k,/(ky* + %) (3.32)
so that at a maximum

k,"t = k, cotgd =0-> 3, = /2 (modulo )

This implies that at a resonance k, is singular.

It is easy to convince oneself that quite similarly, in the
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cluster case, resonances are associated with singularities of
the cluster K -matrix which can be shown to be given by

) — oy ..1 L] - §
(KC) oo ]_'Ly_ szl sz" JaOL,kL' (M )“(1 kLl L" JajL",()L' (3 033,’
where the matrix M has been defined in Eq. (2.47), and to be
related to the cluster T. matrix Eq. (2.64) by the usual

relation, analogous to (3.31)
(T o= [(1- 1 k k)T g, oo (3.34)

where we have introduced the diagonal matrix k = Ko, ﬁmr SLU.

The matrix K_ is hermitian, so that its real Glgﬁnvalues l
can be identified with the tangent of the elgenphase ShlfLSn
A.=tan §, .

Therefore in the electron molecules scattering, as in the
atomic case, resonances occur whenever some eigenvalue l goes
to infinity (§,, - ®/2), i.e. whenever

Det [|M |l=Det || (K, )% . &, + (1-8,,)8,,.N* ik 1= 0 (3.35)
due to (3.33). Similarly for the photoabsorption case Eqg.
(2.55b) where the cross section is proportional to

Im T= Im (M-iA)~! = Im(I-iM"1A)-IM~1

The sharpness of the resonance depends on how fast, as a
function of energy, the eigenphase Sm increases through ‘an odd
multiple of ®/2.

Eq. (3.35) is the natural generalization to the multichannel
case of the resonance condition already discussed in Ref. 16
for the one channel case. It gives the wanted, global relation
between scattering power of the constituent atoms and their
geometrical organization in the molecule or cluster. In the
one channel case, under the assumption that the relevant
atomic phase shifts are non resonating and actually depend
smoothly on the energy, it leads to the rule k R=constant,
where k_ denotes the resonance wavevector and R the average

coordination bond length, in molecules or clusters with
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identical angular geometrical arrangement but different bond
length scale. This follows from the fact that the structure
matrix elements N, ... depend on energy only through the
combination kR.We refer for applications and more details to
Refs. (16,17).

As a final remark, we note that the condition Det |[M |[=0
does not entail necessarily the other condition p(T_,G)>1.
Stated differently, at a resonance the m.s. series might even

converge, although one is always in the FMS regime where p~1.

4., THE ONE CHANNEL APPROXIMATION AND THE OPTICAL POTENTIAL

The multichannel m.s. theory approach to the description of
photoabsorption and photoemission processes in condensed
matter is a relatively recent development that makes use of
concepts already known in atomic or molecular physics. This
approach is substantially equivalent to the configuration
interaction method (Fano, Davis, Feldkamp)!®. For the relation
of this latter approach to some aspects of the many-body
calculational approach, see Chang and Fano!®, although in the
general case this relation can be quite involved.

As a general trend, however, the calculation of the EXAFS
signal in photoabsorption and photoelectron diffraction
processes in condensed matter or molecular physics has been
traditionally based on an effective one particle approach,
that is one particle moving in an effective (real or complex)
potential. Multielectron excitations effects are added on top,
so to say®.

In this section we want to illustrate the relation of this
one particle approach to the general theory of section 2 and
show how the multiple scattering approach provides the
unifying scheme in which to frame the different ways of
solving the one particle problem.

The first reduction procedure one can think of is to
eliminate in the set of equations (2.13), supplemented by the
poundary conditions (2.14), all the "inelastic channels"™, i.e.
those with o # o' and such that AEu # 0 , in favour of the

"elastic" one. This elimination is in principle possible and
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leads to an effective Schrédinger equation with a complex
potential, which in fact describes exactly the effect of the
eliminated channels. This potential is known as optical
potential. The contribution of the inelastic channels to the
total absorption cross section is neglected altogether.
Actually, since the optical potential is quite complicated,
approximate forms based on ad hoc theoretical considerations
are used in practical calculations, where quite often the
imaginary part is neglected.

As a further approximation one reduces the potential to a
muffin-tin form, although this is done only for computational
convenience. In order to keep the discussion and the notation
simple we shall assume this form for the potential, so that
the relations (3.5) apply. The necessary generalization of the
following considerations for non muffin-tin potentials is left
to the reader.

The problem is therefore reduced to the calculation of the
quantity

o) = 4anaho I, | (dele-x19;) |2 S(ho - B, + E,) (4.1)

where now |¢,) and l¢;) refer to one particle eigenstates with
energies Ef and E, respectively, of the effective one-electron
Hamiltonian. For the final state

(k2 - H)¢, = (A + k? - V(x))¢, = 0 (4.2)

where V(r) = Z& Vi (r) is a collection of muffin-tin potentials
and k?*= fiw® ~ I, is the photoelectron energy.

Three methods have been used to calculate the quantity in
Eq.(4.1):
a) the scattering method, where one calculates the time
reversed scattering wave function ¢, for ¢., with energy k? and

normalized to one state per Rydberg. Then
0, () = an?afo| (97 (r) I 210, (£)) |2 (4.3)

with



(V2+ k? - V(x)) ¢°, = 0

07, ~ (1/4m) (k/m)V/2 (e F + £ (k' k) (e /) ]

¥ —hos

b) the Green's ﬁfunction nethod, whereby one: transforms
Eq.(4.1) as (T = ¢E'x)

6. (0) = anfafio (1/7) Im(¢; |TH(k2-H) 2 TI1¢;)
(4.4)
= 4noho In Jdride? d; (x) € G‘(m,r')ferr1f¢i(:i),
where (k?~H)G™= I or in the coordinate représentéticn
[V2+ k2 V()] G (z,2') = & (x-2") . (4.5)

G~ being the Green's function operator, with incoming wawe
boundary conditions. e '

¢) the band structure approach for periodic systems, whereby
the scattering states are replaced by Bloch states ¢;Wr),
where q indicates the wave vector in the reduced Brillouin

zone (BZ) and n is the band index. Then Eqg. (4.1) becomes

Oh (W) = 4noho X v/ (2m)3
| (4.6)
[ a8 (k2 =€ (q)) | (9 (x) €219, (2)) |7

where € (q) gives the dispersion low for the band of index n
and v is the volume of the unit primitive cell.

It is not at all immediate that the three expressions..can
be cast into the same final form for identical systéms. We
shall show that this 1s possible in the framework of the m.s.
theory. ,

We can obtain the result of the scattering approach by
performing the necessary index reduction in Eg.(2.55a). We

obtain, assuming i=o

Oh () = 4n?0hin X M I B (L) B* (L) M* (4.7)
Lel'y Lg " oL!

where
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M, = (R°,(x) |€-210,(x)) (4.8)
R° (¥) = R° (r) Y (%) (4.9)

and R° (r) is that solution of the radial Schrédinger equation
that matches smoothly to jl(kr)ctgﬁffu(kr) at the radius of
the muffin-tin sphere of the absorbing atom and behaves like
rt(1 + ...) at the origin. It can be shown to be identical with
the reduced form of the function f@“mﬂ introduced in Eq. (2.52).

If the potential V(r) is real, by using the optical theorem
(2.19) we obtain the alternative form (2.55b)

O (@ =4nohwX M Im 1t M (4.10)
Lel' s L oLf,oL'f L'e '

where we have dropped the star on M, ., since in this case R, (x)
is real. This form will be useful for comparison with the
Green's function approach.

The solution of Eq.(4.5) for a collection of muffin~-tin
potentials is given by (but see Ref. 21 for a more complete

definition)
Gt(r,x') = - L R(x) T, ., R, (x')- Z, R (x)8 (')
for z,x' € Q (4.11a)
G'(r,r') = - I, R (z) Tinene Rpo(®hy)
for r € Q,, r'e Q, (4.11Db)
where S,(¥) = S, (r)Y (%) and S,(r) is that solution of the

radial Schrédinger equation that matches smoothly to j, (kr) at
p, and is singular at the origin. We need only the expression
(4.11a), since ¢o(r), being a core state, is localized at site

o. Its insertion in Eq. (4.4) gives, since Gﬁn(G+)f,

Oge () = 4nafiwE  Im(M 1 M +M M} (4.12)
LfL'f Ly oLf,oL'f L'f Le L'f

where

M = (S (x)ie-xid (x)) (4.13)
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For real potentials, since M, and M, are real, we recover Eqg.
(4.10) .

Finally, 4in an infinite regular lattice, where for
simplicity we assume all sites to be equivalent, the KKR
method writes the Bloch function as

o, (2) = I, 0" (@) R (x) (4.14)

with the same definition of R (r) as before.

The coefficients a° (q) satisfy the homogeneous equations
T (e O G () ot (q) =0 (4.15)

where t, = eid; sinﬁl:MS the wusual 1 wawe atomic t-matrix,

common to all sites, and

. \ 4/ y -q. (R, -R,
Gy () (1/N) T et ®R) Gy,

(4.16)

i

~-q. (R _~R,.) ]
r e o Tk GoL,kL'
k (#¢0)

since now the second term is independent of the initial site
o.

A non trivial solution of Eqg.(4.15) demands that
pet [l t1(e)~ G(ai®) |l = 0 (4.17)

which determines the band dispersion k2=8=£n(q).
Correspondently Eqgs. (4.15) provide o’ (q). Using the
expression (4.14) for the final state wave function, the Eq.
(4.6) gives

Oy (@) = snlaho T M M Z v/(2m?3
LfL'f Lf L'f

[, a8k -¢, (@) o (g [& (D] (4.18)
Lf L'f

Now this expression is nothing else that
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Oy (@) = 4nofio

(4.19)
Im | dr3 dr3(bo(r) €-x Ggg (2, x') E- 1 ¢, (x")
where
_ (9", (£)1" 6", (2")
Im Gy (2, 2') = Im Zqi% 4 1 =
k2 - ¢ (q)
(4.20)

= ®IZ (67 (2)]1" 07 (x") S(k2- g (@)

But the function Gy  (¥,x') is a solution of the Schfédinger
equation

(V+ k?- V(x)) Gy (x,r') = 8 (x - z') (4.21)
which satisfies periodic boundary conditions

Gpg (X+R, X'+R) = G,  (r,z') (4.22)
due to the property of the Bloch states

¢ g (E+R) = el 97 ()

Such a solution is provided by the function defined in Eq.
(4.11), where now 1T, ... depends only on the difference Rfﬁj
due to the periodicity of the lattice. When inserted in Eq.
(4.19) this solution provides the usual result (4.10), since
V(r) is assumed to be real in band structure calculations,

The equivalence of the three approaches, Jjust proved,
reconciles the apparently different point of view of the
chemist, who wusually thinks in terms of wave function
amplitude, with the physicist attitude, who is inclined to
think in terms of density of unoccupied states. In fact Im
G(xr,r'), for r,r'e Q , is proportional to the local projected
density of states, of which a particular 1 character is
selected when performing the weighted trace in Eqg. {(4.4). This
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equivalence 1is not surprising, since the presence of a
potential modifies at the same time the amplitude of the wave
function and the density of the available states.

When the potential is complex, thereée is no more equivalence
between the scattering and the Green's function approach. In
fact the generalized optical theorem Eq. (2.50) does not hold
in this cage. One must then resort to theoretical
considerations to know which method to use.

The imaginary part of the complex optical potential
describes the reduction of the wavefunction amplitude of the
elastic channel due to transitions to all the other channels.

As it is known in scattering theory?, the imaginary part of
the forward scattering amplitude is greater than the integral
of its modulus, the difference giving the flux of particles
scattered in the inelastic c¢hannels. So for the
electron-molecule scattering the form (2.64) is still to be
used for the total cross section, elastic plus inelastic.

In the photoabsorption process we add an ele¢tron to the
ground state of the (Z+1)-equivalent atom; therefore we neeed
to describe the propagation of the added eléctron in the
presence of all the other electréons of the system. The
amplitude of this propagation is the probability amplitude
that the added electron remains in the original state in which
it has been added to the syétémi Its imaginary part, &s in the
scattering case, gives the total probability of scattering in
and out the initial state.

This propagation is described by the one particle Green's
function G(¥,r';E) which obeys an effective one particle

Schrédinger equation, better known as Dyson equation,

(VZ+E~ V_(x)) G(r,x';E)-
(4.23)

| @™ & (x,2";E) G(x",r';E) = & (zx-r')

where Z(x,x';E) is an energy dependent, complex and in general
non local, effective exchange and correlation potential,
whereas V_(x) 1is the usual Coulomb or Hartree potential.

Therefore in calculating the photoabsorption cross section we
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have to replace Eq. (4.5) with Egq. (4,23) and use formula
(4.12) .

Much work has gone into approximating the self-energy X in
a way suitable for numerical applications. Hedin and
Lundqvist??, by incorporating the Sham-Kohn?3 density~functional
formalism for excited states within the single-plasmon pole
approximation of the electron-~gas dielectric function, have
produced a useful, theoretically sound, local approximation to
Z given by

Ve ()2 Zy(P(2) ,E -~ V_(2); P (x)) (4.24)

Here X, is the self-energy of an electron in an homogeneous
electron gas with momentum p(r), energy E - V. (x) and density
p(r); the local density of the actual physical system.

‘The local momentum p(x) is defined as

p2(r) = k2 + K2 (x) - | (4.25)

where k? is the photoelectron energy, k2.(r) = [3nr%p(r)]1/3 is
the local Fermi momentum and Mz is the Fermi energy of the
system as a whole. For molecules it should be the first
ionization energy. ' ‘

Since E - V_(r) ~ p?(x) we can write with Lee and Beni24
Ve (®) =~ L (p(x), p?(x):p(x)) (4.26)

To calculate Z&, one uses Eq.s (25.14) and (25.15) of Ref.
25

‘ d3q 4x f(p+q)
Re L (p,®) = - [— '
(2ry®  q® e(q, (p+q)? - )
| d3gq 1 1
-, | —

(2m)3 20,(Q) O, (Q) -0+ (prq)?



i mPZ d3q ar 1

2 2m)3 g o(q)

Im %, (p,0)=

{£(p+a) [ (p+q)? -0, (@) — ]

- [1-f(p+q)] [ (p+q)? +@ (a) -]}
where the dielectric function is approximated by

0)2
e (p,@) 17l =1 + 2

[0? - w,%(q) ]

@2 (@) =02 + &7 [(43) (@/k)? + (a/kp)*]

m#is the plasmon frequency and f£(k) is the Fermi distribution
function. A useful analytical approximation to these equations
is given in ref. 6 where other approximate forms of effective
potentials are discussed, like the X-a and the Dirac-Hara
potentials?®,

5. CONCLUSIONS

The multichannel multiple scattering theory outlined in
section 2 provides a siﬁple, natural scheme in which to study
two main problems that are still a subject of active research:
the evolution from the adiabatic to the sudden regime and the
ihterplay between excitation dynamics and structure.

In fact the nature of the crossover from sudden to
adiabatic behavior is an interesting theoretical question
which is not yet well understood. We refer to ref. 27 for a
review discussion on this point, mainly based on the articles

of Fano and Cooper?®

and Lee and Beni??. A more quantitative
attempt is contained in the work by Chou et al® (but se also

references therein) and in ref. 29.
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In our formulation we see from Eq.(2.47) that the driving
terms that control the crossover are the off-diagonal (i.e.
interchannel) (Kai)““'mﬂ matrix elements of the atomic
reactance matrices. It is not the purpose of the present notes
to develop this aspect of the theory which is still a matter
of investigation.

Another aspect which is clarified by the present theory is
that of the relation between ~excitation dynamics and
geometrical and electronic structure of the ground state. It
is not surprising, looking at the structure of the m.s. matrix
Eq. (2.47f and the resonance condition Eq. (3.35) that the
general shape of a photoabsorption spectrum is determined
mainly by the geometrical structure of the -ground state and by
the configurations present in it. !

Certainly many applications are needed to establish the
relative role of the various factors that contribute to a
photoabsorption or toc a photoemission spectrum. What was
missing was a unifying interpretative scheme which we think is
now provided by the multichannel multiple scattering theory.

After the completion of this notes I became aware of the
fact that the questions treated here had been addressed by
Bardyszewski and Hedin in a different scheme provided by a
novel perturbation theory approach, with applications to
photoemission and X-ray spectroscopy3®®. Their conclusions are
qualitatively similar to those presented here although further
study is needed to established the relation between the two
approaches.
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