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1. INTRODUCTION

Intense, polarized photon beams, ranging in energy all the way from the infrared to the hard
X-ray region are obtained from electron storage rings and are finding application in an ever
increasing number of branches of science and technology.

The first synchrotron radiation (SR) users, back in the sixties, used (parasitically) the radiation
from the bending magnets of HEP colliding beam facilities. However, with the development of the
field, dedicated storage rings started to be built and novel radiation sources, such as wiggler
magnets and undulators, were developed with dramatic improvements in beam quality and
reliability.

A large number of SR sources are in operation, or under design, all over the world.

2. PHYSICS AND EXPERIMENTAL REQUIREMENTS

The distribution of interest in syrichrotron radiation over the various scientific disci.plines[l] is
shown in Fig. 1. The frequency of utilization of different experimental techhiques is also given on
the same figure. Most SR users are found in the fields of: Basic condensed matter physics,
Materials science and technology, Biology, Biophysics and Medicine.

The most exciting developmerits are connected with obtaining extremely high spatial and tine
resolutions. Very small samples containing few atoms, and the evolution of chemical reactions and
biological phenomena, can thus be studied and followed in real time.

Synchrotron radiation users are concerned with a wide range of phenomena, and a large
number of experiments many of which need very fast data acquisition rates (i.e. for kinetic studies),
high time resolution and possibly the use very small samples, are carried out n parallel at any given
facility.

The general specifications for the source are therefore that it should be:

- Flexible (providing for variable wavelength , adjustable source size, etc.)
Reliable
Highly intense
Highly (spectrally ) bright and brilliant.
Concerning brightness and brilliance, note that the great majority of experiments requires that:

a) the largest possible number of photons in the desired energy bin reach the sample in any given
time interval, so that samples containing fewer and fewer atoms (dilute solutions, very small
biological samples/crystals, monoatomic surface layers, dynamic behaviours,...) can be
studied.

b) the photons reaching the sample have the smallest possible angular divergence (diffraction is

often involved).
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FIG.1 Science with Synchrotron Radiation

For an unfocused beam this translates into the requirement of high spectral brightness, Bo
Bg, = d3n /[dt dQ (AMA)] )

where n is the number of photons,  the solid angle and (AM/A) the wavelenght relative bandwidth.
For a focused beam it translates into the requirement of high spectral brilliance, B,

B, = d*n /[dt dQ ds (AMA)] )

where s is the source size.

2.1. Evolution of Source Performances

An increasing emphasis is being put by the users on obtaining very brilliant sources through
the use of very low emittance, high current storage rings and the implementation of a variety of
insertion devices to generate the desired radiation. The time evolution of the brilliance of X-ray
sources(2! is shown in Fig. 2. In Fig. 3 the wavelength range and the brilliance and flux of some
of the existing or presently being designed sources is shown as an example, to gain a feeling for the
orders of magnitude.
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3. THE PRODUCTION OF SYNCHROTRON RADIATION

3.1. Bending Magnet Sources

The basic geometrical characteristics of a bending magnet source are illustrated in Fig. 4. Since
the vertical angular aperture of the emerging radiation fan (8,, = 1/y) is much smaller than the radial

one the number of photons, per unit time and per unit solid angle, is often integrated over the
vertical distribution giving the total flux, ®;:

@ =d2n/do, dt 3)
or the spectral flux

®= d2n / [d6, dt (AMA) ] @)
where 6. is the horizontal aperture angle of the radiation. The spectral flux is usually called flux for
short; in the following the 'spectral’ will be dropped from all definitions. Because of the vertical
collimation and the small effective source size a bending magnet source is intrinsically much more
brilliant than an X-ray tube. An example of the phase space distribution of a bending magnet
sourcel3], showing the equal intensity contours is given in Fig. 5. while the spectrum of the

radiation is shown in Fig. 6. A critical energy € is defined that divides the power spectrum into
two equal halves:
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ec=hve= (38rHhc( ¥/ py) = (3/8n2)(h e/m,) V2 B, 5)

where h is the Planck constant, vy the usual relativistic normalized energy of the electron beam and
Po the bendig radius in the magnet , B, the bending field and m,, the electron rest mass.
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A simple explanation[4] for the parameter dependence of the critical enetgy can be worked out
by looking at Fig. 7. The observer sees a light pulse that is At long in time, where At is the
difference between the time taken by the electron to travel along the curved trajectory and that along .
the chord corresponding to an arc subtending an angle of about 1/y. One has:

At ~4p,/[(3cy3)
so that
eiyp= WAL = (3/4) he (1 pg).

’

-

FIG.7 Light pulse seen by observer \

!
! !
é,,
For any given machine the radius of curvature of the bending magnet is a fixed quantity. The
critical energy of the radiation can therefore only be changed, for all users, by changing the
operation energy (generally an unpopular operation !). The brilliance is also fixed so that

increasing the acceptance angle of the experiment will only increase the flux. This situation can be
improved upon by inserting "Wiggler" magnets in the storage ring straight sections.

3.2. Wiggler Sources

A wiggler is an alternating field magnet. An example of the fieldl3] in an actuial many-pole
wiggler is shown in Fig. 8a. In order for the storage ring to remain (to first order) unpcfturbed, the
field integral over the wiggler length must vanish. However the field in the device can now be
controlled, and so can the value of Ec» independent (at least to some extent) on the storage ring
energy. If the main purpose of the insertion device is that of shifting €., itiscalled a "wavelength
shifter” (WLS). It will usually have a single period and a single high field pole. An example, a
deéiign for a superconducting wavelength shifter, is shown in Fig. 9. The additional reverse field
poles are only used to make the field integral zero and are generally, although not always, designed
to have a lower field. If flux and brilliance are also to be increased a many-pole wiggler is the
preferred solution. When ithas N periods, flux and brilliance are approximately proportional to N.
It should be added that, as a further approximation', other considerations and parameters such as
the ring energy, the source size and shape,etc will often influence the choice (see below).

For a sinusoidal magnetic field the trajectory is approximately sinusoidal (Fig. 8b).

Let
B= B, sin (21s/A) (6)
and define:
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K = (e By) o)/(2 T m, ¢),
the full angular aperture of the radiation beam is then:

oM =~ 2Ky

20em

= 1,500

i
5
A

FIG. 8 a) Many-pole wiggler. Maps of B along the longitudinal axis at magnet midplane,
for various supply currents. b) Schematic trajectory in a many-pole wiggler. 8,4 is the

maximum emission angle.
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much wider than the natural emission ang,le ( .l/y) but can now be controlled through B0 and 7» o
The overall power radiated by a current I in a wiggler with N periods is given by:

Pyw=me/3e,) ( KZN/A ) I 2 | ©)
where €, is the dielectric constant of vacuum. In practical units:

PW Kw)= 634 EZ(GCV) BOZ(T) N 10 (m) I(A)‘ "

The number of photons per unit relative energy bin can be roughly estlmated by dmdmg PW“"
through e.. Infact the exact formula is(4):

dn/(dtdefe )= (Pw/eo) SEle)= ALKNT " (10
. = (4n%e / 9 eghe) S(eleg) | o

where S(e/e;,) is the well known SR energy distribution function ( see Fig. 6).
In order to again roughly estimate flux we divide (10) by 6y, the horizontal aperture, and to
estimate brightness by 1/y, the vertical aperture. We obtain: ‘ ’

O~NIy : Bg=~NIy2 (11)

Note that K has dropped out of the expressions. Exact expressions can be found in Ref. [4].

3.3. Plane Undulators

When K is made <= 1 the aperture of the radiation fan due to the 'wiggles' in the trajectory
becomes éompa:raxble to the natural radiation aperture and interference effécts_' start to appear. The
continuous radiation spectrum evolves towards a line spectrum containin :gya series of harmonics at
wavelengths given (for a sinusoidal field) by :

A=Ag( 1+ K22 +9202) 7 2iyY)  i=1,23,... | (12)
where A is the magnetic field spatial wavelength, i the harmonic numbcir and 0 the observatlon;%“

angle. The intensity pattern is such that at exactly 6 =0 only the odd hannomcs are present.
The total emitted power is given by

Pt == ht Ib ’Yz N XO K2 = ht ][b 'Yz I"Ul I{Z (13)

with: hy=1.9 10°6 w/A/m , and Ij, the beam current. Since K~1, Py is always lower than the power
radiated by a wiggler of the same length. The spectral flux at the peak of the ith harmonic - i.e. at



kp = A;(1+1/iN) - is given in Ref. [6,7]:
®; =he INUj; (14)

with hgp=1.43 1014 photons/s/.1%/A and Uj; a universal function of K. ®; can be higher than
that for a wiggler of the same length. U; can be expressed as a function of (A /A) with Ap=

Ao/ 2YD).
For a pointlike electron beam the spectral brightness is

Bg =hy N2 y2 Iy, Fi(K,8,0) (15)

where Fy(K) is a function containing a line shape function (sincz) and an angular distribution
functionl6] .
For a real electron beam the situation is more complicated. As N increases the radiation beam

angular divergence starts to be dominated by the electron beam one and the N2 dependence tends to
become a simple N dependence. Similar formulae can be derived for helical undulators{ 7],
3.3.1. Polarisation

In a plane undulator the polarisation of the radiation is linear, in the plane perpendicular to the
magnetic field. In a helical one it is circular. Circular polarization can also be obtained, at least in a
certain range of beam energies, by a sequence of crossed, properly spaced plane undulators [8,9]
or 'asymmetric’ wigglers [10].
3.4. Undulator Design Constraints

The values of B, and A, (and therefore of A and K) that can in practice be obtained depend on

the permanent magnet material and on the gap. They can be computed from a semi empirical
formula derived by K.Halbachl11,12];

B, =Bpexp (E[bcE]) ; E=g/h, (16)

where g is the allowed gap (the formula is valid.-for =.7 > & > =.07 ). For "hybrid" undulators

built of SmCo permanent magnet blocks (the equivalent of coils) together with high permeability
steel poles (e.g. Vanadium Permendur), one has:

Bp=333T b=547;: c=1.8
while for pure SmCo magnets

Bpy=11T b=3.14; ¢=0
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3.5. Effective Source Size

The radiation is produced by an electron beam that has a finite size in the four dimensional
transverse phase space (x,x', z,z'). The electron beam is gaussian and its envelope is an ellipsoid
with standard deviations o , oy', 05 s c,. On the other hand, even for an electron beam that is
pointlike in phase space, because of the limited angular aperture of the emitted waves, the minimum
radiation source size that can be reconstructed is diffraction limited.

From the uncertainty principle it is easy to deduce that the minimum resolvable phase space
area for a radiation beam with wavelength X is:

Ax Ax'= AzAZ'= O Op'= M2T an

having defined (for the sole purpose of estimating widths) standard deviations (or oR") also for
the radiation beam. In reality photon distributions are generally not gaussian: for other than
heuristic purposes this should be properly taken into account [13],

Coming back to the electron beam, in a storage ring the product

Ex= 040y’ (18)
is the betatron radial emittance and is a constant of motion determined by the lattice. The vertical®’
emittance, €,= 0,0,', is proportional to &, through a coupling constant 0<k <1 describing the
coupling between horizontal and vertical oscillations. The value of k'can be controlled by the lattice
tunes or by coupling elements such as tilted quadrupoles. It is zero for an ideal machine: its ultimate
value in a real machine depends on machine errors and impetfections. It can be'made much less than'
1 (.1t0.001 ). The values of o, and o, are of course functions of the position along the machine.’
At places such as the long straight sections where the T'wiss functions O, O.,, are zero one has:

Ex= Ox(0y/ By ) = GXZ/ By

(19)
= = Vs 2
e,=k g4 = 0,0, = 0,/B,.

By properly choosing the B functions at the radiation source points one can therefore change the
sha.tpe of the phase space ellipse, in particular trade beam dimensions for divergence and vice versa.
By keeping k small, a much smaller emittance can be achieved in the vertical than in the horizontal
plane. »

In analogy to the electron beam, the radiation beam can be described by an emittance

€r =OR OR' (20)

the same for both planes and also a constant. In particular, for an undulator of length L, at the
harmonic central wavelength A= <{1+K2/2) ?LO/ZYZ, one has:
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oR '= (ML)12 Q1)
so that op= (1/2m)( AL)12, (22)

The angular distributions being different for different A and in general not gaussian, the above
definitions are only approximate. Definitions differing by factors of two and applying to slightly
different cases are often found in the literature.

The effective source size in phase space (X,3) ,2.,,2.',) is determined by the convolution of
the two distributions:

3= (02 +0gD)12 ; ¥ = (62 4012 (23)
and since

o?=ef ; o2=e/p 24)
there isa (very broad) optimum for B, the same in both planes:

ﬁopt = OR/UR"

It is often useful to have a beam with the smallest possible angular divergence: ©'should then
be much smaller than ‘oR". Undulators are therefore often placed in "high B" straight sections.

For wigglers, wavelength shifters and bending magnet sources the beam angular spread plays
hardly any role because it is usually much smaller (at least in one plane) than the aperture of the
radiation fan produced by the curvature in the trajectory. The main objective is then to achieve a
small source size, i.e. to have 6« op. This calls for a low B at the wiggler location. A low P also
helps in reducing the effects of these strong field magnets on the machine optics. The shape of the
source in phase space has however to be watched. A strong wiggler may produce a large amplitude
wiggler in the trajectory and the source intensity distribution in phase space may consequently
become very complicated. An example[l‘” is shown in Fig. 10.
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FIG. 10 - Intensity distribution in phase space for a high K wiggler.
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3.6. Undulator Tunability

The undulator spectrum can be shifted by changing the magnetic field: i.e. for a permanent
magnet device by changing the gap. For a fixed minimum gap, the range over which the central
wavelength can be varied while maintaining an acceptable flux increases with energy. However K

varies with wavelength and the surface power density in an undulator beam line increases
approximatively in proportion to B4,

4. LOW EMITTANCE LATTICES

4.1. The Electron Beam Emittance

The primary requirement for high brilliance is to have a low emittance electron beam. This is of
course useful only as long as

€ >= E:R .
In practice, however, this condition is always met by hard X-ray machines for which the
required wavelengths are in the order of 1 A or less , so that ER = MNQ2r) <=2 10-1! merad, a

value much smaller than electron emittances achievable in today's state of the art SR machines.
The horizontal betatron emittance, €, usually called emittance for short, is given by:

g0 =(Cqr2/L)-(JIG31 H dsy(f G2ds) (25)

with G=1/p=ecB/E=¢B/(mcy) and
Cq =3.832 1013 m

where p is the bending radius produced by the magnetic field B on an electron of energy E, m is
the electron rest mass, and

H =(1+02] D, %/B, +2 0. DD, + B, D", 2 (26)
is the lattice 'invariant’, with Dy the dispersion function and o, B the Twiss functions. By
defining:
Is = J IG31 H ds = [[e/(mey)13BRH ds (27)
I, = | G2 ds =] [eB/(mcy))? ds.
the emittance becomes

€0 =( Cq ¥/ 1) Us/1p). (28)

For an isomagnetic lattice , for which B=B,, and p = pq in the bending magnets are positive
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constants, I5 and I, are given by:

Is=2n<H>pg2 , Iy=2n/p, (29)
where the < > indicates the average over the bending magnets. The emittance then becomes:

€0 =(Cq Y I(<H >/ p) (30)

Since, furthermore , < H > is proportional to p, it is found that €, does not depend on the value
of p,. Note that:

€= OpZ<H > (g/ly) (1)
In fact, for all lattices, the emittance can be expressed in the form:

€0 = (ke/ly) 03 V2 (32)
OB = ZE/NB

where 8p is the magnet bending angle and k. is a function of lattice parameters only, depending
on the particular type of lattice. For the most commonly used lattices it is a constant. Ny is the
number of (identical) bending magnets in the ring.

4.1.1. Values of kg for the Most Common Low Emir[tance Lattices with Uniform
Field Bending Magnets

For most lattices the minimum achievable emittance can be computed analytically. For instance
for a Chasman-Green type of lattice with Dx=D'x= 0 at the bending magnet entrance point (Double
Bend Achromat, DBA)“S'] one obtains: '

Kg = Cg/(15) = 248 10°14 qm,
If Dy and D'y at the magnet entrance are adjusted to further minimize the emittance [16] ope
obtains:
Kg = Cg/(12V15) =824 10°15 7m,
Detailed studies of FODO lattices have also been carried out , leading to [17],
Kg=1.5510"13 xm
Other types of lattices , with uniform field or gradient magnets, have also been proposed, see

for instance References [18,19,20].
In practice the theoretical absolute minima for the radial emittance of the various lattices are
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rather difficult to achieve because of problems arising from the very strong focusing they require. It
should be kept in mind that the lower the lattice emittance, the stronger are the sextupoles required to
correct the lattice chromaticity (see Section 4.2.2). As a consequence the particle dynamics becomes
highly nonlinear and the acceptance of the storage ring can be severely limited. A realistic lattice
design therefore requires a considerable amount of work (tracking, etc.) before its acceptance,
current, lifetime, and performance in general can be established.
In the range from 1 10 6 GeV , &, /¥ ~ 10717 m is close to the lower limit of existing

designs for long lifetime, high current synchrotron radiation sources.

4.2. Problems Inherent to Low Emittance (l.e.) Lattices for SR Sources

4.2.1. General ]R‘ema/rks

To obtain very low emittances very strong focusing lattices have to be used. The strength of
the aberrations - ‘chromatic’ or amplitude dependent - of a lens system increases, for a given
aperture, with the strength of the individual lenses, requiring strong corrections and leading to a
very nonlinear system of forces acting on the individual particle. Resonances of up to high order
can be excited and eventually highly nonlinear motions, simulating a chaotic behaviour can result.
In practice the effective acceptance of the machine will be reduced. The maximum aperture within
which particles execute stable oscillations is, somewhat improperly, called 'dynamic aperture’'. It
can not usually be defined analytically but has to be found by time consuming simulations(211,

4.2.2. Chromaticity Correction

The natural linear chromaticity of a lattice, &7, defines the changes in the tune seen by an off
momentum particle:

&1y = AQy/(Ap/p) = I Bi(s) K;(s) ds (33)

where i =x,z and K;(s) = G;(s)/(Bp) is the strength of the quadrupole field along the particle
trajectory. From Eq. (33) one sees that the largest contributions to &; come from quadrupoles
located where B is high. It is not unusual for l.e. lattices to have uncorrected values of £=100,
leading to an insufficient momentum acceptance.

In any one plane the chromaticity can be corrected by adding sextupolar fields that produce a
tune shift with momentum given by:

[ AQ;/(Ap/p)lg = Eg; =-(1/4m) [ Bi(s) Dy(s) hy(s) ds (34)

where hj(s) =Gg;(s)/ (Bp)
Gg;(s)= B{"/(2a2)

and 'a’' is the sextupole bore radius.
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Note that for a sextupole the sign of h(s) is opposite in the two planes (x and z). Therefore, to
correct both chromaticities at least two families of sextupoles are needed, one located where Bx is
higher than 3, and one at places where the opposite is true.

Also note that since in L.e. lattices D, tends to be low, the sextupole strength h(s) needed to
correct the chromaticity tends to be higher than for more usual lattices.

The strong sextupoles one has to introduce to cotrect the linear chromaticity produce nonlinear
terms of their own in the particle trajectory. If following Ref. [22] one writes out the coordinates of
a particle traversing one lattice superperiod to second order in x, z, Ap/p, one obtains:

X, =M, X, + 20dorder terms ( p2; PXos PX'o xz.or; XoX'ob x'20; z.2; z,z's; z'oz)
(35)

' 1

- nd gt e w2 e o ey g '
ZL-MZZO + 20¢order texms(pzc, PZ'o X%0s XgZos X' oZgs XoZ oy ¥ o2

o
where Y isthe vectorly,y', Ap/p!; y=x,z, and My is the superperiod linear transfer matrix.

In order for the lattice to be perfectly corrected all (30) second order terms should be made to
vanish and this in turn requires that the 18 integrals listed in Table I vanish. The 18 integrals are
divided into groups according to their effect on the behaviour of the lattice parameters and
functions, and to the resonances they excite. It is in practice impossible to exactly cancel all 18 of
them.

TABLE I - Integrals relevants to the lattice behaviour with sextupoles (to 2™ order in x, z, Ap/p).

I = J, @2hD~K) B, ds Io=[, h B cos I, ds
L _ .

I,= [, 2hD-K)B,ds Lo=lr B, sin p ds

Ordinary chromaticity integrals Iy= ,foLh By cos py ds

h: sextupole coefficient

L .
Lg=1 hBPsin p, ds
L : o s
I, = fo (hD-K) B, 1?2 cos p, ds Ig 10,13,16 €XCite integer resonances

L .
Ig= I, (hD -K) B2 sin p, ds

. . ' L
1, g influence the off-momentum orbits I = fo h me cos i, ds

Iy=ll h B, 2sin b ds

I,= foL(Zh D -K) By cos2 p, ds = JOL h B, 2sin (u, +24,) ds
L= ]"@hD-K)B, sin3 p ds | Ls=J,“h B, sin (u, +2p,) ds
I, 5 influence (9/Q)/(d/p), (9/B)/(d/p)

1 excite 3rd order resonances
L 11,12,14,15 ‘
I= [ '2hD-K)B, cos2 p, ds

3Q,=n; Q,+2Q_=n
I,= [“@hD-K)B, sin2 b, ds e

I5 ¢ excite 1/2 integer resonance 2Q, ,=n
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FIG. 11 The ESFR lattice and tune diagram. The schematic layout of the lattice elements
and the tune diagram are also shown

However the resonance driving integrals can be minitnized by proper atrangements of sextupole
families and by choosing a tune that is as far as possible from the resonance lines[23,24],
For the most extreme performance requirements higher order terms have also to be taken into

account. Int the design of the ESRF latticel 23] (see Fig. 12) resonances of up to sixth order had to
be avoided.
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4.2.3. Position and Field Errors

The lattice functions and parameters of a real machine are influenced by the inevitable position
and field errors affecting the lattice elements. This is particularly important for low emittance
lattices, since the lowest possible emittance is only obtained if the lattice functions in the bending
fields are precisely tailored. Strong focusing and strong chromaticities also produce an extreme
sensitivity to magnet positioning errors.

Typical state-of-the-art values for the magnet alignment errors Ax, Az and tilt Aot are:

Ax,Az=0.1mm , A= 1074 rad.

With this kind of accuracy it is very likely that the closed orbit has to be corrected before a stable
trajectory can be found.

Field errors can be systematic , such as differences between the ideal field shape and the actual
shape obtained with a given pole profile, or random, such as field errors deriving from magnet
assembly tolerances. Systematic errors are of course the same for all magnets of a type. Even
relatively small errors can have a significant effect on the machine a’cceptancc[zsl (‘'dynamic
aperture’). Random errors ate usually more troublesome than systematic ones.

When designing a storage ring, the effect of errors and tolerances on the aperture has to be
simulated by tracking.

The closed orbit is obtained ( provided the machine is stable ) by iteration:

AYy=Al(Y-Y,) (36)
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where Y = (x,x',z,2,Ap/p ) , X, is the starting vector and A is the transfer matrix through one
turn.

Special programs exist, such as PETROC [2] that allow one to simulate the correction of the
closed orbit by means of beam position monitors and corrector dipoles.

4.3.  Lifetime

4.3.1. Gas Scattering Lifetime

The scattering on the residual gas is important for low emittance machines even at relatively
high energies when the physical or the 'dynamic' apertures are small. It is given by:

Vtge =0 X5 N; §; 37

with: Ni =K ni p]"l R
K, =3.53 1016 molecules/cm3/ton'
$; = Io (do/de); da.

N; is the density of scattering centers, n; the number of atoms per molecule, Z; the atomic charge
and p; the partial pressure of species i. The corresponding differential scattering cross section is
(do/dO); and L is the solid angle over which particles are scattered out of the ring acceptance. c is
the velocity of light .

When an elliptic machine acceptance with half-axes a and b is assumed and provided the
pressure is reasonably uniform around the circumference, the expressions for S; and T,
becomel26]: '

8i =@ 2 ZZA Q) |, 1 1g = (41,2 Ky ) IQ) 34 72 ny py (38)
with ) = /2)[( BBy /a2) + BB /b)) -

[}_x’ B are the average values of the radial and vertical beta functions around the ring and BxM:
B, their maximum values. Normally one also sets

% Z% 0y~ p 2% (39)

with p the total pressure. Normally Zcq =~ T+ 10.

If the aperture limit is set by the beam dynamics and the maximum acceptance is N,o, , N,©
then I(W) in Eq. (38) can be written:

z

Q) = (U)I( By/N,2e,) + (B, /N, %e, )] (40)

€y and €, being the radial and vertical beam emittances.
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4.3.2. Bremsstrahlung Lifetime

Bremsstrahlung in the field of residual gas atotns, or of their electrons, changes the particle

energy; if the energy change is larger than the momentum acceptance, (Ap/p) determined either

max*
by nonlinearities or by the RF bucket , the particle is lost.

To the accuracy required for an estimate of the lifetime, 1y, is given by:
1%, = (16/3) ¢ Ky (1o 2/137) (In(AP/p)ax ~ 5/8 ) Z; 1n(183/Z;1/3) ny p; 7, (Z;+1) (A1)
or, with the approximation (39):
1/t = (16/3) ¢ Kpy (1g2/137) (In(Ap/p) g - 5/8) In(183/Zeg13) p Zeg(Ze+1).  (42)

Usually bremsstrahlung is not the dominant contribution to the lifetime of low emittance
machines.

4.3.3. Touschek (or intrabeam scattering) Lifetime

Because of the single-Tousheck effect particles are scattered out of the machine momentum
acceptance (Ap/p)y,,,. The scattering rate depends strongly on energy and on the particle density in
the bunch: it is higher at low energies and high densities.

However, as the rate of single events increases, a multiple scattering regime sets in that causes
the bunch volume to blow up until a steady state situation is reached. In addition, the bunch volume
and therefore, for a given current, the density of particles, may also be determined by instabilities;
typically the bunch length may be determined by longitudinal turbulence . As a consequence the
particle density is a complicated function of current.

In general, therefore, Touschek lifetimes of SR machines have to be computed in a self
consistent way, using complex programs such as ZAPI27] and the single-Touschek lifetimes
produced by most general purpose lattice codes are not always meaningful .

4.4. The Effect of Insertion Devices on the Lattice Performance

4.4.1. General remarks

Even a perfect insertion device (ID) has a number of effects on the lattice parameters:
- it changes the tunes. For a planar device with vertical fields the vertical tune is the most affected:
- it can either increase or reduce the beam emittance depending on the value of the dispersion at the
place where the device is inserted;
- it broadens the beam energy spread;
- it shortens the damping tirne;
- it shortens the beam polarisation time. Polarisation can also be rotated using special undulator
arrangements [9,10],
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Most effects are essentially proportional to the device strength parameter, K, to some power
and to the device overall length. The perturbations induced by a perfect undulator are therefore in
general negligible with respect to those produced by a perfect wiggler having the same length.

In the following it is generally assumed that wigglers and undulators are placed in
dispersion-free sections.

The results of tune shift measurements on the ADONE wiggler[zs] are compared to the
computed values in Fig. 11. A simple linear calculation of the focusing perturbation introduced by
an alternating magnetic field placed in a straight section was originally given in Ref. [29]. The effect
of the ID, in a rectangular field approximation , is represented by a thin lens placed at the center of
the straight section. The thin lens mattix phase shift and self-B are 0" and B*respectively. 0 and
B*/L » where L is the ID length, are universal functions of B/Bj;,,, where B,, is the ID magnetic
field and By, is the value of B, at which 6" approaches w (see Fig. 12). By, is given by:

Bjyy= M/(cLE2) (43)
with £2 =(fIBy} ds )/( By M )-

If the unperturbed value of B at the center of the straight section is equal to B*, the ID is
perfectly matched into the lattice.

The formulation is very useful to gain insight on the physics; in practice however matching
conditions are computed numerically and implemented by changing the excitation of the ring
quadrupoles. Furthermore, even under perfect (linear) matching conditions the machine petiodicity
is disturbed and the effect of nonlinearities, in the machine and in the device itself, has to be
carefully evaluated (see for instance Ref. [25] ).

4.4.2. The Effect of Insertion Devices on the Damping Time

In general for a ring of energy E, bending radius p and circumference 2nR, the damping time
T is:
Ty= 4nTo/Cylpd; ¥ =10/ (44)

with: CY = 8.85 105 m.GeV-3, T, the revolution period, J; the damping partition number and
i=x,z, E. One has:

Ie=1-Uyly |, I=1, Jg=2+(y) (45)
with I4=/D,G (2k + G2) ds.

For uniform field bending tmagnets (I4/I5) is usually « 1, so that
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If the lattice is also isomagnetic , defining R= F,;p , one has:

To(s) = Kt (Fm p2/E3) (46)
with K=47410% sGeV3/m? .
For low emittance storage rings F, is usually quite small, typically of the order of .3 or less.

In the presence of wigglers/undulators, the ratio of perturbed (ty) to unperturbed (t)
damping time is:

T/t = (1+IZW/IZZ)_1 a7

where I, is the integral I taken over the wiggler magnet length. Iy,/1y is always > 0, so that
the damping time is always shortened,

4.4.3. Effect of the Insertion Devices on the Beam Energy Spread

The standard deviation of the beam relative energy spread is:
o2 = (CyYIp) (13/1y) “ “8)
or, for an isomagnetic lattice:
(SEZ = Cq ¥ gp. (49)

In the approximation: J, =1, Jy= 1, Jg = 2, the ratio of perturbed to unperturbed energy
spread then becomes:

(Orw/ Opg)> = (14133, /13) / (1+ L /Iy, I3=[1G3Ids. (50)

The energy spread is always increased.

4.4.4. Effect of Insertion Devices on the Beam Emittance
The ratio of perturbed to unperturbed emittance is given by :
(Exw/ Exo) = (115, /1) (T / 1), (51
where g, is the integral I5 computed over the wiggler magnet. It is seen from (51) that the

emittance can be either reduced or increased depending on the value of the integrals Is and I,
When the dispersion in the straight section is zero, s, is zero and the stronger damping causes
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the ernittance to decrease until the self-generated dispersion starts to take over (see below). When
instead a strong wiggler is placed in a dispersive straight section the ratio (ISW/IS) tends to become
large and the emittance increases.

As said above, wigglers are usuvally placed where Dy is nominally zero and B, is low.
However the dispersion generated by the wiggler itself has to be taken into account. The value of
<H,,> for a sinuscidal field is approximately given by:

<Hy,> = (D 2/ <Bo>)+ <By> (04,5 (52)
with 0y =K/v.

The two terms in (52) are the lattice and the wiggler contribution respectively. The first of
course vanishes with Dx. <Bx> is the average of the beta function over the wiggler and is
assumed to vary not too rapidly with s. Last, although the nominal value of Dy is zero in the
straight section, a residual dispersion due to misalignment and field errors will exist and may easily
become the domtinant term.

4.4.5. Longitudinal Stability

Small emittance lattices usually have very small values of the (linear) momentum compaction,
0. . This because the integral defining it

o= | [Dy(s)ps)] ds

is closely related to Eq. (25) defining the emittance.

Values of o, ~10-4 are not unusual for lattices with emittances ~ 10" m rad. Nonlinear
terms have therefore to be carefully evaluated because a highly nonlinear motion in the longitudinal
phase space can lead to the loss of longitudinal :;tability[BO].

4.4.6. Ton Trapping

An electron beam can, under certain circumstances, trap the positive ions it creates in the
residual gas. The ions see the bunched electron beam as a sequence of focusing lenses[31].
Depending on the bunch charge, the pattern of bunches around the ring and the charge-to-mass ratio
of the ions, the system can be stable (trapping) or unstable (no.trapping). Trapped ions, besides
possibly altering the local residual gas pressure, produce strongly nonlinear fields that can drive
resonances, instabilities and coupling of the vertical to the horizontal motion, thereby increasing the
emittance, lowering the lifetime and, in general, leading to less stable beams.

For very low emittance lattices one would generally predict ion trapping to be impossible or
~asily avoidable under most operating conditions. However the phenomenon is in practice very
complicated and the theory in qualitative agreement only with the presently available experimental
results. Furthermore, few data exist for rings with the kind of performance one is considering for
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third generation machines. Given that the achievement of the design brilliance, long lifetime and
stable, reliable operation are the main justifications for building advanced sources, positron beams
(that can not trap the positive ions) are often considered by the designers of SR machines, in spite
of the higher cost of positron injectors. '
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