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ABSTRACT

We present numerical evidence fot the sp‘ontamyeous breaking of the chatge conjugation
symmetry in the Higgs phase of the standard U(1)-Higgs model i the infinite self-coupling limit.

C, P and CP violations in electroweak interactions have been experimentally observed and
phenomenologically included in the Standard Model. The origin of such violations is not very clear
and this is one of the most unpleasent features of this model. Howevet, it is not excluded that this
phenomenon be related to some non trivial structure of the physical ground state and in such a case,
non perturbative methods are needed in order to check this possibility. '

The lattice approach to Quantum Field Theories (QFT) combined with Monte Carlo simulations
ate the most readily available mathematical tool for a quantitative study of non perturbative
phienomena in QFT. This, together with the fact that the Higgs mechanism is an essential ingredient
in the Standard Model for electroweak interactions makes the lattice U(1) gauge-Higgs model! the
simplest non trivial model where spontaneous breaking of discrete Symimetties can be studied.



We present in this paper the first results from a Monte Carlo simulation of the standard
U(1)-Higgs model with strong evidence for spontaneous breaking of the charge conjugation
symmetry C in the Higgs phase.

The euclidean continuum action for this model is

* E ” * -
S, =Jd*x {(Dyde) (Dyde) + M2 bg 0 + Ao(0, 0)2 + 1/4 FuvFpy) (1
where Du=au+ ig‘Au is the covariant derivative and 'FI»W' the electromagnetic tensor. This model
has a local U(1) symmetry
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and a global Z, symmetry
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which is the C symmetry.
The lattice version of action (1) is

S= -p
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The first term in (4) is the standard Wilson action for the pure gauge theory (B = 1/g2) and
the scalar field at site n is given by ¢, = p,, €, &, being an element of the gauge group and p,, a
real number running from zero to infinity. The integration measure for the action (4) is Il dp,d
&, I1,dU,,, with the Haar measure for the gauge group. |

Other useful relations between continuum and lattice variables are

¢C(X) = (K1/2/a) '[I)n }"C = AJ K2
mg2 = (1 -2% - 8 )/ x a2 5)

One of the advantages in working with the lattice regularization scheme is that we don' t need

to fix the gauge. In fact, action (4) can be written using only gauge invariant variables in this way
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where an &V,"‘Um_ €, 4+ Notice that the integration measure is invariant under this change of
variables because of the gauge invariance of the Haar measure.
The equivalent to the action (6) in the continnum formulation is

.-.j dfx {m2p.2+ A pt+ a», Bupc +9%p2 B2+ 14 F, F ) (7)

wlhnc re B + 1/g aua is the gauge invariant vector field, ¢.(x) = p.(x) exp. (io(x)) and
lw 19“LB é B. The action (6) can be regarded as the discretized non perturbative regularization
of (7) with W, = exp (igaB,,(n}).

The only internal symmetry when we work in the gauge invariant formulations (6), (7) is
\/‘W'w-—:a»\f\lnu* and B" e Bu respectively, which is just the reflection of the C symmetry (and of
all combinations of C with a gauge transformation) in this formulation. If we call this symmetry
transformation C, physical states will be C-invariant if and only if they are C-invatiant.

In the numerical simulation we have approximated U(1) by Z(12) and we work in the A — o
limit. The effective action in this limit can be written as

Y
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Adding to this action a term of the form - h S, Im W__ which breakes explicitely the C
AL Y and {(Re
W ) for different values of h, f-and x doing eventually a linear extrapolat1on to h=0. We use

§: ymmftry we have computed the vacuum expectaion vallues (Im H W, ) (ImwW

the Im Hu Wan operator as order parameter instead of Im Wnu because of two reasons: i) the Im
W, , operator has no scalar projection, ii) it can be analitically proved that (Im Wnu » and (Re
W 3 are related by the equation

N/

(ImW_,}=h/x (Re Wm}
and therefore, lim , o (Im Wnu y=0.

In Fig. 1 we show the numerical results for {Im ]."I,l Wnn yath =0, B=1.15 and several
values of k. All the points in this figure have been obtained from a linear extrapolation of the results
ath =0.08 and h = 0.15. The dotted points in the figure are results from an 84 lattice and each point
is the extrapolated value of (Im [ Ipl WW ) averaged over 22000 MC iterations with 2000
thermalization sweeps. The two crossed points are the corresponding extrapolated values in a 4%
lattice with 100000 MC iterations.

The obsevation of Fig. 1 strongly suggests the existence of two phases: i) a broken phase in



the large k region and ii) an unbroken phase in the small k region. Again the results-in'the 4% lattice
support this conclusion in the sense that in the unbroken phase finite size effects are negligible
whereas in the broken phase they become quite relevant with a high increase. of the expectation
value of the order parameter when we go from the 44 to the 84 lattice.
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FIG. 1- Numerical results for {Im I‘I]tL Wnu) at h = 0, B =1.15 against x. The 'dottedl, crossed
points have been obtdined from 84 , 4% lattices réspectively. ‘

We have also computed the expectation value of (Im Hu W) at B=0.75, ¥ = 0.3 and
h =0.08, 0.15 extrapolating it to h = 0. The surprissing result was that the 44 and 84 predictions
were compatible and both indistingushible from zero. The exciting thing about this result lies in the
fact that it suggests a different realization of the C symmetry in the confined and Higgs phases of
the model !, giving us a criterion to distiguish both phases.

Our numerical results for (Im Wnu> extrapolated by a linear fit to h= O were always
compatible with zero in the Higgs and confined phases but an anomalous behavior (negative
extrapolated values) was observed for this quantity in the Coulomb phase. The origin of this
anornalous behavior in the Coulomb phase can be easily understood ds a consequence of the abrupt
change in the slope of (Im Wnu) at h = 0 whén we cross the transition line from the Higgs to
the Coulomb phase. Indeed, the existence of massless vector states in the Coulomb phase 2 implies
that 85=0/dh (IMW ), _, will be divergent in the thermodynamic limit. In Table I we report the
numerical values of a, obtained from a fit of (Im Wn}i> =a,h+a h3. The first and second



rows in this table are the results from 44, 84 lattices respectively. One can see from these data that
the change in ay when we go from the 44 to the 84 lattice is a 10, 20 percent in the Higgs and
confined phases against a 100 percent in the Coulomb phase.

Finally and as a further check of our program, we sumarize in Table II some of our nurerical
results for R against the theoretical value R, where R is the ratio

exp

R= (ImW,)/(Re W,,)=h/ «.

i )

The agreement between theoretical and experimental results is quite good.

TABLE I - Numerical results for the slope a, of <lm Wnu>u The first and second rows are
results from a 4% 8% 1attice respecrtively.

B= 115 k=043  P=1.15, k =030 B =075,k = 0.30
1.17(2) 0.56(2) 0.52(2)
a
0 1.24(1) 1.09(1) 0.65(1)

TABLE H - Comparison of the experimental results for R against the theoretical results at
several values of h and «.

h = 0.08, x = 0.47 0.15, 0.47 0.08,0.32 0.08,0.30
Réxp. 0.1702(8) 0.3184(9) 0.2505(15) 0.2662(21)
R 0.1702 0.3191 0.2500 0.2667

In conclusion, we present numerical evidence for spontaneous breaking of the charge
conjugation symmetry in the Higgs phase of the standard U(1)-Higgs model in the infinite
self-coupling limit. Our numerical results suggest also a different realization of the C symmetry in
the confined and Higgs phases of the model and in such a case, this would provide us with an
order parameter to differenciate these two phases. On the other hand, it should be noticed that our
result strongly contrasts with the expectations based on the semiclassical approach where no
spontaneous breaking of the C symmetry is expected in a theory with only one scalar field.

In our opinion it would be very interesting to check how our results depend on 1. If similar
results are obtained, then the dynamical mechanism we have studied could have implications on the
understanding of discrete symmetries in the Standard Model.

All the numerical calculations were made at the VAX 8600 of the INFN, Frascati (Italy). One
of us (V. A.) would like to thank the Frascati’' s Theoretical Group for their warm hospitality and
generous offer of computational resources. This work was partially supported by the CAICYT.
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