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ABSTRACT

Precision tests of the standard electro-weak model at LEP/SLC energies need the precise
evaluation of e.m. radiative corrections, well beyond the one-loop level. The theoretical situation
concerning the main processes of the experimental interest is discussed in detail.

In addition to exact formulae to O(a) from virtual and real photon emission, a thorough
treatment of higher order effects is presented which sums up the full series of double leading
logarithms and some classes of single logarithms. This includes the vacuum polarization effects,
the multiple soft photon effects and the hard and collinear terms associated to the detection of
charged particles in electroragnetic calorimeters. The results are presented by means of simple
analytic formulae of immediate phenomenological application. Some numerical results are also
given.

1. - INTRODUCTION

The standard model of electroweak interactions of Glashow, Salam and Wcinberg(l) is in
agreement with all the experimental information which is available so far. It has had dramatic
success in predicting the features of the weak neutral current and the correct values of the masses
of the charged and neutral intermediate vector bosons, recently discovered® at the CERN
proton-antiproton collider. Yet the full experimental proof of the theory is far from bemg,
completed. Furthermore a large number of fundamental parametets is not determined by theory,
including the mass of the Higgs boson. Indeed the Higgs mechanism of spontaneous symmetry
breaking is the most peculiar aspect of the model which has to be tested, particularly in
connection with the high energy behaviour of the theory. Many theoretical ideas have been
developed® to extend the standard model to distances much shorter than those we currently
explore. In spite of the fact that none of the proposed extensions provides an overall solution to
the various problems of the standard model, there is a common belief that new physics is to

expected in the range of energy (0.1-1) TeV.
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Next operation of the new colliders LEP and SLC will provide a unique opportunity for
testing the properties of the electroweak model beyond the tree-level™®). Indeed the measurement
of various asymmetries inete” — ptu , ¥t ..., in particular in the vicinity of the Z where
statistics are expected to be good, and/or the observation of longitudinal polarization-either in
initial-state electron beams or in final state T polarization - will test the standard model at the one
loop level and possibly reveal the existence of a new level of physics. The latter would give
observable effects via radiative corrections if the associated new particles are too heavy to be
produced directly.

Experimental investigation of these effects will provide, however, precision tests of the
theory only if QED radiative corrections, associated with radiation of real or virtual photons and
dependent upon the details of the experimental arrangements, are under control at the level of
<1%%©). In fact this is the order of magnitude of the weak effects which are expected to be
measured. Indeed the most relevant higher order corrections can be directly reabsorbed into a
redefinition of the basic parameters (M,, I',, sin? 8, and the renormalization of the fine structure
constant. The leftover corrections lead then to observable effects of order 1%.

On the other hand ptire e. m. corrections, which add no additional theoretical information,
are expected©® to be rather important, especially in the vicinity of the Z,, boson and change sizably

~ the naive expectations. Indeed first-order corrections, for example, reduce the Z, peak cross
section by more than 50%, or shift the zero in the forward-backward asymmetry by about (+:300)
MeV, for an energy resolution of (10~1-10-2),

In addition, one must evaluate the corrections due to soft photon emission, which become
increasingly important as the energy increases, to all orders in o.. U sually, i. e. for non-resonant
cross sections, this leads(? to the exponentiated form e< exp{(4o/n) In (2E/m) In (Aw/E)}, where
m is the electron mass, 2E is the c.m. energy and Aw is the resolution of the experiment. In the
case of resonance production, the above factor is modified, and for a very narrow resonance-like
JAy -the correction becomes®) exp((4o/n) In(2E/m) In(I'/M)}. Physically, this is understood by
saying that the width I provides a natural cut-off in damping the energy loss in the initial state.
For the case of the Z, boson, where neither of the preceding cases applies (I'/M~Aw /E), the soft
correction is¢®) a complicated function of to E, M, Aw and I raised to the power (40/T)
In(2E/m), of the order of 50%.

Nowaday charged particles are often detected in electromagnetic calorimeters which do not
discriminate between the particle and the accompanying collinear photons. The effect of emission
of hard and collinear photons becomes increasingly important at high energies and its contribution
has to be included in the observable cross sections{!0, In perturbation theory, as well known,
this corresponds to large logarithms associated to the mass singularities(! 1) of the emitting charged
particles. Then introducing the angular resolution & of the calorimeter, the final correction
includes powers of logarithmic terms of the type (ovr) In 52 In (Aw/E) or (a/n) In 82. In Bhabha
scattering, for example, the inclusion of such terms is crucial to obtain a high precision monitor of
the beam luminosity(!2:13),

The aim of the present review is to summarize the status of e.m. radiative corrections(!4 at
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LEP/SLC energies, giving in addition simple analytical prescriptions of immediate experimental
applications. We consider the infrared factors to all orders in perturbation theory. All finite terms
of order o, are then explicitly reported for the main processes of experimental interest. We will not
consider polarization effects. Some of them are discussed in Ref. (15). The plan of the paper is
the following. In sect. 2 we define our notation and collect the relevant formulae for the Born
terms. We also discuss how the most relevant weak corrections can be reabsorbed into the
redefinition of the Z; mass and width and of sinzew,, and into the renormalization of the fine
structure constant. Real and virtual one-loop corrections are discussed in sect. 3. In particular a
very compact general formula for the box diagrams is given. Differential cross section to:order o
are also obtained. Multiple soft photon effects are summarized in sect.4, and included into the
expressions for the observable cross sections in sect. 5, for the reaction ee — f f,withffe¢.
Collinear hard photon effects are discussed in sect. 6, and corrispondingly the relevant formulae
for calotimetric-type experiments are then given. A complete analysis of radiative corrections: to
Bhabha scattering is presented in sect. 7. These results allow to use the process of e € scattering
as a high precision monitor of the beam luminosity.

Hard bremsstrahlung corrections are discussed in sect. 8. The basic results for neutrino
counting are summarized in sect. 9. A brief discussion of higher order weak effects is then
presented in sect. 10. A general discussion of the results presented, including some numerical
applications, is finally given in sect. 11 |

. « BORN TERMS: NOTATION AND FORMULAE

In the SU(2) ® U(1) standard electroweak model the Z, comples to a fermion pair as
Ly =My GENDVZ Ty, [ (ve—ap¥s) W21£2Z) SNCRY

where

ve=2 (I3 + 13R)e - 4 Qg 5in%8,

ap= 2 (I3 - 138,
Gg=(1.16635 * 0.00002) x10~> GeV~2 is the Fermi constant, defined from the xprecise
determination of the muon lifetime, and 131,JL (I3fR) is the weak isospin of the left - (right-) handed

fermion field (1/2) (1—(+) Y5)f. In the minimal model, which includes only left-handed isospin
doublets and right-handed singlets, we have, for three generations,

ve::: Viuz: V,t = ‘"1+ 4 Sin29W Qf == 1
2g= = ap= -1 ‘ v (2.2)



vv=av=l i ' Qf=0

V= Ve = Ve =1-(8/3) sin20,, Qp=2/3 2.2)
dy=ac=a,=1

Vd = Vg =Vp=—1 +(4/3) sin0,, Qe=-1/3
ad = aS = ab = —1

In the above eqs. M, and sin29W represent the physical mass of the Z, and weak mixing
angle related through

sin20y, = 1 - M,,2/M,? | (2.3)

where My, is the physical W mass. At the tree level the intermediate vector boson masses are
given by

K u
My, =— —; My =— (2.4)
sin O, sin O, cos 0,

with

oL
U= ()12 =37281 GeV.
V26

Radiative corrections modify the above relations. As discussed in great detail
elsewhere(16:17) the simplest and most natural choice to minimize the uncertainties in the
theoretical predictions of higher order effects is to define sinz;ﬂw through the intermediate vector
boson masses, namely eq. (2.3) is considered exact to next order of perturbation theory. Then the
theoretical prediction of higher order corrections to physical quantities at the vector boson scale are
particularly simple and contain the large logarithms associated to strong interactions effects

through the renormalization of the fine structure constant only. More precisely the above eqs.
(2.4) are modified as(17)

1) i 18 1
M,, = » M

sin O, (1-Apl/2 z sin By, cos 8., (1-An1/2

1

(2.5)

where Ar contains the O(o) corrections and it is determined quite accurately. In particular, one
finds

Ar=Re 8yp(M,2) +§,

1

where Re 8V1>(Mz2) represents the largest correction, due to the photon vacuum polarization,
which defines the e.m. running coupling constant at the scale s = MZ:Z, i.e. (see sects. 2-3)
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éz(s) = (2~6)

The remaining quantity & represents the genuine weak correction and it depends on sin2 8y
the Higgs and the top masses. This will be discussed in more detail in sect. (10). Quantitatively
one finds(1?) Ar ~ 0.07, leading to an important shift in the value of the vector boson masses(18),

At the three level (Ar=0) eq.(2.1) simply reduces to.

szf PP —— 'Yu(Vf - af 'YS ) f Z“’ (2 1 V)

which gives, for the partial widths:

- oM,
[(Z —ff) = (vé +ag) @2.7)
12 sin? (20,,)

As shown in ref. (19) the above equation also suffers large radiative cotrections. They can be
absorbed, however, into the vector boson mass by a suitable parametrization of the lowest order
cmmpling, as in eq. (2.1). To illustrate this point, let us consider for simplicity the decay rate
I"(Z—> vv). To zeroth order we have, from eqgs. (2.4) and (2.7),

o

I (Z— VW)=
o : :
24 sin3 Oy (:0536W

Computation of one-loop cotrections gives(19:20)

[(Z— wW)=Tg(Z-> ) [1+(3/2) Ar+&(VV)]

where Ar is defined above, and g(vv) is the remaining weak correction. Recalling eq. (2.5), we
see that the above result can be recast in the form

.. M2 Gg
[(Z-» v )= ———— —— [1+&(w)],
121 V2

with g(vV) ~ 0 (0.1%).
More generally the Z decay width can be then written as

I, =(Z—all) ~—— {[1+ (1~4sin20,,)%] Ny + 2 N
z 242 woTITE R (2.8)

+ 3[14+(1~ 8/3 5in20,,)2IN+ 3[1+ (1~ 4/3 5in0,,)%] Ny}



where Nj, N,,, N, and N4 are the numbers of charged leptons, neutrinos, charged 2/3 and ~1/3
quarks respectively, with masses appreciably smaller than M,/2. Using sin2 By, = 0.216,
Ar=0.07 and N = Ny, = N, = Ny = 3 eqs. (2.5) and (2.8) give M,, = 94 GeV, ['(Z—» v¥) = 0.18
GeV and I', ~ 3 GeV, with the ratios

[(Z— W) :T(@Z—1):T(Z>ui): [(Z-dd)~ 2: 1.02: 3.54 : 4.52.

For the reaction

e (py) +€¥(py) = £ (py) + (py) (Fe”)
we. define

z =cos 0 =Py P3 =Py Py a = sin 0/2, b = cos 6/2
t=(p;-pp2=-s(l-2)/2 2.9)
u=(py-ppi=-s(+2z)/2.

It is useful to introduce a reference cross section, which we take to be, as usual,

b

47t062 87

O, =0, (eé—éuﬁ)= ~ n
pt™ "QED 3s s(GeV2)

The Born graphs are indicated in Fig. 1. With the same notation we have

b (2.10)

Mo (s) = - (%/5) Q¢ 1,5 T 9), o1

e2 1

M_RES (5) = — [8y () + g4 Ay [ g f 1,00+ gf, A, (5)]
° sM2 4sin220,) © H CATHTIEEV IS A S

where (g\h gfv) = (Veyvf), (gA9 gAf) =- (ac) af)v MZR =<M2z —i MZ‘FZ and

J H(S) =V (pp) Tpu (pp AM(S) =v (pyp) TuYsu (pp
FUO) =G v (kg A =u () Y¥s v (py)
By a suitable redefinition of the effective lowest order couplings, the Born amplitudes (2.11)

can be parametrized in such a way that the higher-order corrections are free, for all values of s, from
the large contribution associated to the vacuum polarization. This can be done by replacing e2 by
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the 82(s), the e.m. running compling constant at the scale s (eq. 2.6), and e2/sin? Oy coszf)W by
e2M2,/u? ~ O(M2,Gp), as follows

- &2(s
M D (s) = — :

Qg I (s) Vo),
(2.12)

V2 GpM2, 1
4 :;-.--MZR

MORES (s) = — [gy Ju(s) + 84 AN 1 gfv Tu@e + ng Au©)]

In the following it will be implicity assumed that the Born cross sections, based on the
amplitudes (2.11), can be implemented according to eqs. (2.12).
Then, in absence of polarization of the initial beams, the lowest order cross sections are

= (sz) (14‘212)

dQ 4s

do INT.V ol ,
_— = (-Qp (1429) @ Re y () 1y

dQ 4s

(2.13)

do INT.A o2
- = (-Qf) (22) 2 Re x (s) ) 1y

dQ 4s

do RES a? (vzf +a%)

— = [ (1+422) T F 8zry 1, ] lx 012

dQ 4s (vZe+a%e)

where
Ve Vf A af
Iy = —————— = ——
“'2@"* 212e vz, + a?‘e
and, using eq. (2.4),
M,? , 5
X (S) P (VZC + a).e) . (2014)
16 p2 §— Mzz"" M, I

The integrated forward-backward asymmetry, defined as,



| (1) deosd do - | doosd do

it

Apg=

+1
[ | doos8 do
1s given by the expression

3 ['(~Qf) Re X (s) ra+ 21, 1yl (s) 2]

Apg = , > p ‘ (2.15)
2[QF +2 (~Qp) Re X (5) 1y + (vZe+2a29) | x (5) 12/ (vZe+aZy) |
A non-vanishing effect clearly requires ae ar# 0.
At the resonance (s ~ Mzz) the asymmetry becomes
3 1(Ve ae) (Vf af)
Apg = (2.15")

(Ve + ag?) (v +ad) ’

and because sin? By 1is close to 1/4, for the process e*te” — 1L one finds Agg (s = Mﬁzf)
~3(1-4sin26W)2, which is very small. Then a clear understanding of the radiative correction is
crucial for the experimental determination of the weak parameters.
A better sensitivity to sin29w, near the Z,, pole, is provided by the left-right asymmetry
A r» which is defined in case of polarization of the ¢~ beam.
Indeed AL,R is given by
OL~ Or

— (2.16)

Alg=

where 0; p are the cross sections for e g+ X, where X can be any channel. Then, for
s:Mzz, one obtains
2vg a,

A —~ P ’ . "
R T (2.16")

where Pg, is the e longitudinal polarization, which is only linear in (1—4sin2®W).

For the process of Bhabha scattering, i.e.

e (pp) +e¥(py) —e(pg) + et (py)

eqs. (2.11-2.13) have to be extended to include the effect of t-channel exchanges, as shown in
Fig. 2.



The cotresponding Born terms are

el
M) = —3,,(6) Ty ()
t

Q.07
W 2 1 A ©
M Y(t) = ve Jy (D +a. A (D] [va Ty (D +a A, (t
M2 4sin2ee,) O eTHTTRTETHTTRTH
with
Ju(t) =1 (p3) wu (p1) AUL () =u (p3) Tu¥5u Py 2.18)

TLO=ve) Vv ®)  AR®=vEIN, ¥5 vpg
Then it is useful to define the various lowest-order cross section as follows

az
dog [Y(), YO = (—) (1+ 22) =do, (1)

5

o2

dog [7(), Y] = - (-4-—') 2(1+ 2% | (1-2) = do,, (2)
: S
02
dop LY, Y (O] = ()| 2/ (1- 2 [(1+ 2)2 + 4] = do, (3)
s
ol
dog [Y(s), Z(®)] =~ (;1_- ) 2% (1+2)2=do,, (4)
'S
o2

4, (710, Z 0} =(-=)2X0 (2 [ (=21 11+ D2+ 4 (ry—1p)] = dog (5)
S
(2. 19)n

o

dog [Z (), Z (O] = ()2 O 1+ 22 [1+4 1y 1y + 4 [1=d1yr, ]} =dog (6)
S
o

dog [Z(s), Y ()] = (—4~~) 2[Rex () J1(1+ 52 ry+ 2 z1,] =dag (7)
S

o2
dog [Z(s),y ()] =~— (=) 2[Rey ()] 1(1+ 22| (1-2)= dog (8)

S
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o2
do, [Z(s),Z2()] =~ (:1-—) 2 [Re x()] X'(®) (14 2)% [1+ 4 1y 1, ] =do, (9)
S
o? ,
do, [Z(s),Z ()] = (-Z-) | x(s) i 2 [(1+2)2+8 zZryT,] =do (10)
S
where
1 S M
X)) =— 5 %) (ve2 + aez),
2 M, 4u

and we have given explicit evidence to s-and t -exchanges.
This completes the list of the formulae for the Born terms.

3. - FIRST ORDER e.m. RADIATIVE CORRECTIONS
3.1. - Soft Photon Bremsstrahlung

In this section we consider the single bremsstrahlung reaction

e (py) + e (py)>f(p3) + £ (py) +YK), (f2e")

corresponding to Feynman diagrams of Fig. 3.

These will be evaluated in the soft photon approximation, namely under the condition that the
maximal energy Aw carried by the photon, fixed by the experimental resolution, is small
compared to the beam energy E. Then the effect of the photon emission on the fermion momenta
can be neglected in the numerator the fermion propagators. As well known, the matrix elements
then simply factorize in the form

S"'MRZ
5-2V5 k-Mp2

Mu(lY) = [Iu(k) + Fu(k)] M, ED(s) + | I k) + Fu(k) 1 M RES ()

3.1
where
ie Py Py
W =——p [—— - —]
@2m)/ pyk pyk (3.2)
ieQy Py Pa '
Fy() = [— -

(21C)3/2 pyk pyk

are the classical currents associated to the initial and final particles respectively.
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We define®9) ) A=Aw/E and

20 s
Be=——I[In ) 1]
n me:
20 s
Br=——0QF [In (——)~1] 3.3),
n mes
40
Bint =~ Qf Intg (6/2)
T

Then the soft bremsstrahlung cross section corresponds to isotropic emission up to a
maximal photon momentum, given by the experimental energy resolution Aw. Regulating the
infrared divergence by a small photon mass A,.the results can be expressed as multiplicative

corrections to the lowest order cross sections:

dGSOft( 1.),,) do (o]
e T 2D SQED (1y) 4 §INT (1) 4+ —— SRES(1y) (3.4)
dQ dQ dQ

with(8:21)

SQUED(17) = (Bg + By + 2B ) In QE/) + (B + B + 2B, ) In A ' . e

— (a/m) B(mg2) ~ (o) Q* B(m¢?) — (2ovm) Qg F(a,b) (3.52)

SINT(1y) = (Be + B+ 2Bjne ) In QE/A) + B + By ) In A

i8,(s)
e C AME-s)
+(Be + Bing ) Re { In{. 5 1}
cosdy(s)- M2 —s+As
~ (0/m) B(mg?) — (o) Qg% B(mg?) — (2a/m) Qg F(a,b) (3.5b)

(*) For the clfeclive definition of Aw in terms of the maximum accollincarity angle of the final particles, sec
sect 6.
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SRES(1y) = (B + B+ 2Bjp¢ ) In QE/A) + Beln A+

AMg2 —s) (M, 2—s) As+M,2—s

| - L artg ( )
MgZ s+ As M, T
(3.5¢)

Z"Z NIJZ I"Z
)] - (/) B(m2) — (o) Q2 B(mg) — (2a/my Qg Faby).

+ (Be+ 2Bjp ) In |

M 2---s

43

—arctg (
z'z

We have defined
Bm?2) = (1/2) 1n2 (s/m?) - In (s/m2) + n2%/3 , (3.6)
F(a,b) = 2(1n2 a - In? b) + Sp (b?) - Sp(a?), (3.7

with the Spence function

$p@) =Lip () =1 * %‘ In (1 -x). (3.8)

Besides the standard correction SQED(I‘Y), eqs. (3.5) explicity show how additional
contributions are generated from the Z propagator. These additional factors, depending on the
parameters of the Z can be casted in a rather compact form, introducing the notations®9)

s s idp(s)
= sin Sp(s) e (3.9)
MRZ-s M,T,
M, T,
tg OR(s) = " (3.10)
25
As+M, 25 M, 2-s
o(s, A) = arctg ( ) — arctg ————— (3.11)
M, T, M, T,

with the arctangent defined between * 1t/2. Then egs. (3.5 b-¢) can be rewritten as

: , e As i9p(s) ‘_
SNT(1y) = 3ED(1y) — (B, + By ) Re { = In [+ —— ¢ sin dp(s)1}
cos dg(s) M, T,

(3.12a)
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As idp(s)
BRES(1y) = 5UED(1y) — (Bg + 2By ) In | 14+ ——— e

M[ZL rz

sin 8y (s) |

—Be 8 (s, A) ctg S,(s) . (3.12b)

The last term in eq. (3.12 b) is responsible for the radiative tail of the resonance. In fact for
very narrow resonances - like the J/¥ - when s~M2 and Aw»T, 8(s,A) reduces to g (s), the usual
phase shift of the Breit - Wigner resonance.

Combining eqs. (3.4) with the virtual corrections discussed in the next section, the A
dependence drops out, as usual, and one gets a finite correction to the Born amplitudes.

When the first order corrections are large and negative one must take higher orders also into
account. The exponentiation of the leading logarithmic terms will be discussed later.

3.2. - Virtual Corrections

The electromagnetic virtual corrections to the Born amplitudes arise from the vertex
corrections (Fig.4), the vacuum polarization (Fig. 5) and box diagrams (Figs. 6-7). The pure
QED terms are well known(2?), The corrections to the Z exchange have been calculated more
recently. Let us discuss them in detail.

A. Vertex corrections
The relevant diagrams are shown in Fig. 4, where, for s»mcz, mfz

Byc(8)= By R (5) + 8,0 (5) = By, (5,m2) + Q% 8, (s;m?y), (3.13)

Byc(s, m2) = ( = (1/2) Be In (2E/L) + (0v/2m) [ (1/2) In2(s/m?,) - In (s/m2y)]
+ (3/8) Be + (au/m) (w3 - 1/4)} + i (o/m)[w In RE/A) - (B/4)xt ], (3.14)
and ﬁ&vc(s, mzf-) is obviously obtained from (3.14) with the substitution (m— myg), also in Be'

The imaginary part of the vertex corrections SIVC does not contribute to the cross section to-order
3
o,
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B - Vacuum polarization

The vacuum polarization part, corresponding to the diagram of Fig. 5, is given in the
relativistic limit (s»m2;) by M QED-3, (), with

Syp(s) = BRyp(s) +i Bypls) =

=(@/31) ¥ Q[ (s/mP-53]+il(-w3) T QY (3.15)
i=l,q ' i=l,q

“The sums extend to all fermion-leptons and quarks-loops, and Q][2=1, Qiz =4/3 (up quarks)
Qi2=1/3(down quarks). The imaginary part of the vacuum polarization, unlike the pure QED case,
gives an additional contribution to the cross section, interfering with the lowest order resonant
amplitude which is now complex. The hadronic vacuum polarization corresponding to light
quarks is usually evaluated numerically by means of a dispersion integral over the total hadronic
e*e” cross section®3). Furthermore, for heavy quarks, with s > 4mi2, the first term in the r.h.s.
of eq. (3.15), is modified as follows

) [In (s/m2)-5/3] — 2V1-(@dm7s) (1+2 m/s) In [(Vs/2 my) (1+ V1= (dm;Zs)) ]

- (4m¥/s) - (5/3). (3.16)

As already discussed above, the real part of the renormalized vacuum polarization function
dyp(s) can be absorbed, to all orders, into the definition of the e.m. running compling constant,
namely

e2(1+ BRyp(s) + ..) = e2/(1- B8R p(s)) = E2(s).

C. Box diagrams

The two photon box diagrams are shown in Fig. 6.
The corresponding amplitude has been first evaluated by Khriplovich(24), and subsequently
given by other authors(23:20), It can be put in the very simple form®

Mo (s) = 2a/s) QPO TSIV +2m i VoY 1+ Ay(9) ApG) [ AT+ 2ri AV ])=

= MyQED(s) (—(2m)Qg [V + 21 i V¥ ]) + MsQED(s) (~(ar2m)Qg [ A{ Y+ 2mi A,Y ])=

2

= M QED(s) CY (s.1) + MgQED(s) CW (s,) (3.17)
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with
NISQED= MQ,Q!ED(Y},L — "fp'Y5)
and where

V{7 = V¥ (s,t) = 8 In (/b) In QE/A) — z [ (inZa/b*) + (InZb/a*)] + [(Ina/b2)~(Inb/a2)]
= -8 In (@/b) In QE/A) + V¥

VoY =V,Y (5,0 =21In (@/b) — (1/2) z[ (in a/b*) + (In bja%) ] - z/(1-22)
AY =AY (s,0) = — z [(In2/b%) — (InZb/a®)] + [(In 2/b)+ (In ba?)]

AyY =AY (5,0) = — (1/2)z [(In a/b®) ~ (In bja%)] + 1/ (1-22) o (3a8)

The index f in V¢ stands for free of infrared divergences. The interference of M, ZEP(s)
with the lowest order one-photon matrix element M,QED(s) gives the dominant background to the
forward-backward charge asymmetry originated by Z exchange.

The y-Z box diagrams are shown in Fig. 7.

The corresponding contribution has been first evaluated® in the limit s~M22, extending the
previous c«)mputation(&%’) for a resonance with vector coupling only, e.g. J/¥. This
approximation corresponds to neglect terms of order (MZZ/s) In (Mzz/s) and simplifies the
calculation tremendously. In this limit one finds®):

M, (1=MRES o (5) X 810 (5) (3.19)

with

6YZbox.(S) = —(ot/ 27‘3)Qf .

{4 In (b/a) In [ (M2g-5)2/(A25) ] + 2[Sp(a?) ~ Sp(b2)]-4 (InZa-In?b))
(3.20)

Subsequently the complete calculation of the Y-Z box diagrams has been performed in ref. (27).
The final result takes a rather long expression and will not be repeated here. More recently however
a very compact formula has been derived in ref. (28), which holds for all energies, and in the limit
M, - A reduces to the pure QED Yy box result (3.19). With the notations of egs. (11) it can be
written as
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2oc2Q

f
MYZ  (s) = {[f(s,t0) = £(s,u,.0] [ gy I+ g, Ayl [gf, 7+ 6F, A" ]
box 4 sin2 (20,,) VI 8A A VIUTE AN
L) + fs.u.0] Lgy Ay +g, )0 L gfy A+ gf, IR (3.21)

where (for simplicity we put M2R=M{2)

1 (ur)1/2 s u u
f(s,tu) = {[In +In (1- — )l In(—)+ [Sp (1 +——)
M2 A2 M2 t 2
t u-t-M2 s -t t
-Sp(1+ )N+ {In(I-——)In(—)+Sp (1 +—)
M2 u2 M2 s M2
s 1 M2 _ $ —
=SpA-—=)} +—{ (——-1)In (I-—=) +In (——)}, 3.22
m2 u s M2 m?2 :22)

and s = s+ €.

Then for M2— A2 one recovers the 7YY box diagrams results (eq. 3.17)

f(s,t,u) — f(s,u,t) — ~ (1/s) [V + 2w V1]
f(s,t,u) + f(s,u,t) = — (1/s) [A{V + 2m i AyY]

On the other hand for s~M?2 eq. (3.21) reproduces the approximate result of eq. (3.19)
Moy Y(5) = = (0/27) Qg {4 In (b/a) In [(M2=s)2/ A% ] + 2[Sp(a®)~Sp(b?)]

~ 4 (In%a— In%b) ) M_RES(s) + 0 (s-M2). (3.23)

Finally the result (3.21) can be cast in the form

MyouPA9) = MoRES(s) { = (@/2m) Qp 14 1n (b/a) In [(My2-)% /375 ] + VY2 (s0)]}
+ MRES(5) { ~(oy2r0) Qp AYZ (s,t,u)}

= MoRES(s) C¥2(s,t,u) + Qg MgRES(s) C¥Z (s t,u) (3.24)
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with

M;RES(s) = M_RES(s) (v, — Y ¥, Yy V5= W)

and
b s2 u t
VYZ (s,t,u) = 4 In (—) In (— ab) + 2 [Sp (1+—-) — Sp (1+— A)
a M4 M2 M
S t t S .
+(M2-5) { /) [In (1=—)In (~—) + Sp (1+— )= Sp(-—)+
M2 $ M M
-t " S -t t
U2 In (—) ]+ (s~ M2) [ (1/u?) (In (1-— ) In (— )+ Sp (1+—)
M M2 S M2
S S
~Sp (1-—)) = (Usu) In(1-—) ]~ (te> u) }
M2 M2
=V, 2+ 2ni V2 (3.25)
S -t t S
AYZ (s,t,u) = (M2 - 5) { /)] In (1=—) In (—) + Sp (1+— ) = Sp (1-—) +
Mm? s M2 M

t S -t t
+(1/2) In ( - N+ (s~ M?') [(I/qu YIn(l—-—)In(—) + Sp (+—) -
M‘! M2 s M2

S
~Sp (1 —-—-S— N—=(/su) In(——) ]+ (teu)}
M2 M2

=AZ+2ni Ay? (3.26)

This concludes the discussion of the yy and YZ box diagrams.
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3.3. - Differential Cross Sections to one Loop

The invariant matrix element M, (s) for the reaction ete—f f, including the virtual e.m.
corrections of order o discussed in the preceding sections, is given by

M, (s)= MgRED(s) (14 8, (s) + 8y, p(s)+CYY (5,1)) + M4REL(5) C MV (s,t) +

(3.27)
+MgRES($)(1 +8,,.(s) + CV2(s,t,u)} + MSRES(s) C¥Z(s,tu),
Then by adding the real (eq.3.4) and virtual (eq. 3.27) contributions the infrared
divergences are exactly cancelled and we obtain*

do/dQ = doEP/dQ + do™NT/dQ + doRES/AQ) (3.28)
where

oL/ ~ | Mu@ED(s) 2 { 1+ (Bet Be+ 2B;p) In A+ (3/4) Bt By)
+Houm) (1+ Qg% (/3 = 1/12) = (a/m) Q¢ [ 2 F(a,b) + V 1Y (5,0] + 2 Re 8yp(s)}

— (a/m) Q¢ AqYRe { MRED (5" MQED (5)}, (3.29)

do™T/dQ ~ 2 Re {[ MoQP(s) MoRES(s) * ] [ 1 + (Bp+ By, In A+

As A Mp2-5s)

R
+ B In ( )+ B In ( ) +(3/14) B+ B

+a/m (1 + Qf2)~(n2/3 = 172) = (o/2m) Qf (4 F(a,b) + V¥ + V%) + Re 8vp(s)1}
— 2 Im { Mg QEP(s) MRES(5)*} { Im 8y p(s) — 0 Qg (V)Y = V.2 ) } +

+2 Re { MgQE(s) M RES(5)*} { ~ (a/2m) Q¢ A, Y}

(*) Asusual, the corrections proporlmml to Re 8,,,,(s) can be appropriately reabsorbed in the runmng coupling
constant, by implementing M, RES (syas m(q[ (2 12).



=2 Im { M50(s) MRES(5)*} { - Q¢ AV}

+2 Re { M RED(s)™ MRES(s) } { — (ov2m) Qg A%}

~21Im { MOQED(S)* MGRES(s) } { — e Qe A%, - (3.30)
and
i As
doRES/AQ ~ | M_RES(s) |2 { 1+ Bgln A+ 2Py In | |
Mg2-s+As
A Mg2-s) ‘
+PBeln | | - Be 8 (s, &) ctg dp(s) +

MRZ— s+ As
+(3/8) (Bg + Bg) + am (1 + Q%) (r%/3 - 1/2) — oUm Q¢ [2 F(a,b) ; V 2}
+Re { M RES(s)* MsRES(s) } { — (a/m) Qp A% }
~Im { MRES(s)* MgRES(s) } { ~ o0 Qg A% }. (33D

The appropriate sum over the intial and final helicities is implicity assumed. In the absence of
polarization of the incoming beams this leads to

| M_QED(s) |2~ (0Z/d5) Q2 (1 +22)
Re { M QED(s)* M5QED(s) } ~ (a/ds) Q%22

2 Re { MQED(s) M RES(5)™} ~ (02/ds) (- QP2 Re X, () [(1 + Z2) 1y + 2z1p]

2 Im { M,RED(s) MRES(5)*} ~ — (@2/ds) (~ Qp) 2 Im X () [(1 + Z2) ryy + 2z7p]
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2 Re { MsQED(s) MRES(5)*} ~ (0%/4s) (- Qp) @ Re x (s)) [2 21y + (1 + 22 1]

2 Im { MsQL(s) MRES(s)*} ~ - (0/4s) (- Qp) @ Imx () [2 21y + (1 +2)1, ]

2 Re { MQEP(s) * MRES(5)} ~ (02/45) (- QP2 Re X (s ) 221y + (1 +22) 1,

21m { MQE0(s5)* MgRES(5)} ~ (a2/ds) (- Qp) @ Im ¥ (s)) [(2 zry+(1+29)1,]

v2e+aZe
| MoRES(s) |2 ~ (a2ids) [(1+22) ————+8 zry, 1, ] | x5 |2
vZ+ a2
V2f+ a2f
Re { MoRES(s) MgRES(s)} ~ (a2ids) [22 ————+4 (142D 1y 1, | % (5) |2
v2 + a2
Im { M RES(s)™ MgRES(5)} ~ 0, (3.32)

having used the notation of sect.2.

By insertion of the above results (3.32) into the egs. (3.29-3.31) one then obtains the final
expression of the soft differential cross section to order o . Some remarks ought to be made here.

The first concerns the necessity of including higher order corrections. Given the precision
required® at LEP/SLC, where one wishes to measure M, and I', to an accuracy
O0M,~8I",~10MeV, it is clear that the QED corrections have to be under control at the level of
~0.5%. From egs. (3.29-3.31) it follows that large logarithms appear to one loop level of order
Beln(M, /T ;)~37% or Bo~11%. Therefore one needs to include higher order terms in the
perturbative expansion. Actually it is known(7-29) how to sum up the whole series of leading and
some next-to-leading logarithms. The related formalism has been extensively studied(® in
connection to the production of very narrow resonances like the J/¥ and generalized® to the case
of the Z,,. It will be reviewed in the next section.

The second remark concerns the emission of hard photons collinear to the charged particles,
which becomes more and more important, as the energy increases. Nowadays charged particles are
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often detected in electromagnetic calorimeters which do not discriminate between the charged
particle and the accompayning collinear photons. To include this contribution in the observed
cross section, one has to introduce a small but finite angular resolution §, in addition to the energy
resolution A, similarly to jets anxa]lyses(m) in QCD. Then, as well known, one encounters large
terms in the perturbative expansion associated to the mass si gularities(11) of the charged particles.
The final result includes logarithms of order (a/:rt)lnSzlnA or (ov./n)wln82, which are quite
relevant(12:13) for the analysis of the data. A discussion of these contributions is given in sect.6.
The final remark concerns the effect of emission of hard-not collinear-photons which,
whenever required by the experimental kinematical conditions have to be explicitly added. They
correspond to terms of order (o/m) In(A,d), and have been also calculated®® in a way which 1s
suitable for a Monte Carlo simulation of events. A short discussion will be given in sect.8.

4. - MULTIPLE SOFT PHOTON EFFECTS

In this section we will discuss the collective effect of multiple soft emission, reviewing the
results of previous analyses, to which we adress the reader for a detailed derivation of the main
formulae.

From the previous section, in particular from egs. (3.5) and (3.29-3.31), it follows that the
most relevant corrections come from real soft photon emission, namely

- dk ,
do ~ (wn)[lIn (s/mez) -1] J—-l—— [1+ (1- K/E)?] do, Is (1 = k/E)], 4.1).
k

in the case of initial-state radiation, and similarly for interference and final-state radiation terms.
The resummation of the full series of double logarithms and some simple logarithms,

corresponding to multiple soft emission, is quite well known(?) for QED ‘processes, where the

basic cross section dg,, is not a rapidly varying function of the energy, or the momentum transfer.
One has

do, ,
do@P =2 (A@WEP+...... 4.2) =

where In ¥=0.5772 is Euler's constant and B=, + 2 3;;,, + By. It has been generalized in ref. (8),
using the technique of coherent states(??), to discuss the radiative effects generated in presence of
a narrow resonance like the J/¥, whose decay width is much smaller than the energy resolution of
the experiment, and then in ref. (9), without any restriction on the relative size of I"and Aw, just
in connection of Z, production .We will briefly review those results.

When the reaction
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at+b—c+d+...

proceeds through the production-of-a resonance in the s-channel, the classical current associated to
the external charged particles is modified as follows:

W-M+(12) il -
juho = - ,“) (k) + J“(F" ), | 4.3)
WM~k +(1/2)if

where ju(i) (k) and jH(Q (k) are the ushal cl»assﬁc:al currents associated to the initial and final
particles respectively, namely

ie . p
((R)) - zf"o R '
J“ (k) = € 4.4
eml3 1 l(p]l " k) @4

‘This modification takes into-account the finiteness of the time interval between the formation
of the resonance and the creation of the final state, as can be seen from the Fourier transform of

(4.3). In perturbation theory thisis equivalent to write the matrix element for the emission of one
soft photon as :

MW=, OMOW i)+, (O MOew), | @)

and accounts for the shift in the c.m. energy when the radiation is emitted from the initial state.
Lct us introduce the actxon AR relative to the distribution of classical current ]uR(k) of eq.
(4. 3)

AR = | a4k u® AH (—k), (4.6)

@myt
where Au(k) is quantized electromagnetic field. Then, for a pure resonant process, the matrix
element

1 -i Ag +

MR':-—\-/—-I\—I-—- <fle S|l> o (4.7)

+ - .
with N=<e A, elA, > can be shown® 1o be: (i) finite and does not therefore possess an
infrared divergence, (ii) separable in the infrared factors and (iii) directly comparable with the
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observable process section which results proportional to IK/TRIZ. This results extends the previous
orxg?(zg’), valid for QED non resonant process, where ju(R)(k)'simply reduces to ju(c)(k) =
j“(?ﬂ)(k)+ jum(lk) (see eq. 4.11).

Without entering into the details of the derivation, one obtains®) for ee — R — ff

240 Mg2 -5 lﬁc
Vs MR,_2 ~s+2Vs Aw

doRES = dg o {(Aco/E)Bf |

@38

| 2s Aw I 2Bing s — ]MZB 5 RES
. - [ 1+———— (s, Aw)] +C }
Mg2 — s + 25 A ML © d
where M2 = M? — i M,
s Aw - (s - M?) s — M2
S (s, Aw) = arctg + arctg , 4.9)
MI” MIC
and CpRES ~ O(or) accounts for the rest of the finite corrections and has to be calculated

perturbatively, We have not included in eq. (4.8) and the subsequent eq. (4.13) factors of the type
B r-1(14B), as in eq. (4.2), which contribute to order B2 only. For a discussion see the
appendix of ref. (9).

First order expansion of eq.(4.8) clearly coincides with the soft term of eq. (3.31). CFW’Z'S is
then determined by comparison with the remaining terms of eq. (3.31).

Let us briefly discuss this result. First, it is easily seen that the infrared factors appearing in
eq. (4.8) reduce to the standard one (AW/E)PetBr +2Bin in the limit Aw « (M2-5)/2Vs, as they
should.

On the other hand, in the case of a narrow resonance like the J/¥, for which in a typical
experiment Aw» | (MR2 -5)/2s I, the Aw dependence drops completely out, namely the width of
the resonance provides a natural cut-off in damping the energy loss in the initial state.

Furthermore, the B. . dependence eq. (4.8) also cancels out, giving no interference between the

int
soft emission from the initial and final states.

Finally the term proportional to 8(s, Aw), with the arctangent defined to have values in the
interval (=x /2, © /2), gives the radiative tail of the resonance. In fact for narrow resonances
d(s,Am) reduces to d,(s), the usual phase shift of the Breit-Wigner resonances.

We would now like to discuss the radiative effect arising from the interference of a resonant

term with a pure QED term. As shown in detail in ref. (8) the procedure to follow is quite clear.
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One starts with the sum of two infrared-finite matrix elements, MQED and NIR, as

— — J— : R . + .
M =Mggp + My =<fle” 1 AcS oo i+ (IWN) <flem IAL S, 19> (4.10)

where A is the action relative to the distribution of pure classical currents

Futo=jOy00+ Oy, (@.11)

which describes the infrared properties of a pure QED process(29). More explicitly A is given by
eq. (4.6) when jRu(k)-—> jcu(k). The full observed cross section is then proportional to IMI2,
While [Myp]% o< do@EP and | MR 12 e doRES_ the interference term comes only from that
part of <flexp (~i A.) which overlaf)s with < f | exp (—iA+R)/\/N. Introducing, therefore, -a
marix element M™qp, as

o — : At .
MiMoen = 1/ VN) < fle” T ARS . 1i>, (4.12)

all the interference effects will then come from Re (Mi“‘QED M*R), as one can see by comparison
with perturbation theory.
With that in mind, one finds

] Aw BH-Bimnt
do!NT = dg INT {(——E‘ ) (1/cos &y ) -
(4.13)
. A Bc A Bim
‘Re [ el ¢ —) ¢ ‘ ) 1+CNTy
1+ As/ (M2 —s ) A+ (Mg?-5)/s

with s/ (Mg? ~ 5) = (s/ MI) sin 8, ciOR,

Again, taking the limit A«(A») | (MR:Z"S)/S I one gets the usual QED, or narrow resonance-like
behaviour respectively.

As for the pure resonant case, comparing first order expansion of (4.13) with the pertubative
result (3.30) one recovers the infrared terms and determines the rest of the finite correction CgNT
by subtraction.

From the above formulae (4.8) and (4.13) it is clear that, in esperiments studying
forward-backward asymmetries, di ps and similar subtle effects, the I" and Aw dependence in the
infrared factors has to be taken into account propetly.

A particularly simple case is provided by the measurement of the line shape of the Z, in the
total cross section ete™— X. Then one can take the limit Aw » | (MR:Z-S) / 2Vs lin eq. (4.8) and
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obtains

| (s-M2)2 + M2 Pe s-M2
doRES= do [ e 1 [+, o Spl+..., (4.14)

the dots indicating additional non leading terms, in exact analogy to the case® of production ofa
very narrow risonance. Physically, this is understood by saying that the width T prowdes a
natural cut-off in damping the energy loss in the initial state,

The resummation of the leading and next-to-leading logarithms from initial state
bremsstrahlung has been also studied31) more recently by extending to QED the formalism used
in the context of the QCD-improved parton model(32), In this case one defines electron or position
densities e(x,s) at the scale s ~ M2. The corrected cross section is then obtamed by a convolution
of the e” and e densities with a reduced cross section &.

' 1 1 , ;
o(@s)= | f dx; dxg 6(x X5 5=5,) e(x4, ) s (x, , 5) & ( Xy Xy S) :
Xy+Xy >2-A0/E 4.15)
in exact analogy to Drell-Yan processes in QCD(32.33),

The electron density e(x,s) and photon density (x,s) in an electron satisfy the evolution
equations(4)

$ (.._.(_1.._,. )e(x,s)=(a(s)/@2n) | : [ € (y,5) Pee (X/y , 8) + ¥ (y.8) Pey (x/y , s)ldyly
S
d

S (__.(_j_._..) Y(x, s) = (x (5)) / (2n) f [e (y,8) Pye (xly,s) +y(y,s) P (X/Y s)] dyly

y (4.16)
with

Pee (%,8) = [(14+x2)/(1-%)],. +O[ ot (s)]

Pey (x,5) = [x2+(1-)2) + O ot (s)]

Pye (x,8) = [1 +(1-x)2 1/ x + O . (s)]

Pyy(x8)= Of a2 (5)] 4.17)

In the above equations as) is the QED running coupling constant (:=a. (mze))
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a/ofs) = 1- (BT o g Q¢ 2 In (s/m2y) (4.18)

and the sum extends over quarks and leptons with masses m2f < s. Clearly c(x.,,m?-ﬁ:)m o(1-x) and
y(x,mze)=0.

As in QCD, the solutions of egs. (4.16) take a simple form in terms of the moments, which
have to be transformed back to the x space. To order o/r one obtains a result of the form

o(s) = Oyt SGLL+50F, (4.19)

where 80, ; is the leading logarithmic correction

801, = (/) In (5/m%) | 0, (2.9) Peg(2) d, (4.20)

and 00y, is the remaining connection, which has to be extracted from the complete first order
calculation.

In the soft limit (Aw/E«1), the contribution to (4.15) comes from the non-singlet part of the
distributions e(x,s) only, corresponding to the annihilation of the initial electrons after emission of
the soft radiation.

Then the solution to eqs. (4.16) can be computed analytically if o(s) is a smooth function of
s, and takes the form

o(s) = 6(s) R (1- Aw/E, s) 4.21)

with(>)
(1-x)N
R(x,s) = e 3/4m 4.22)
YL (1+)
and
s 20(Q%)  dQ?
n=] —— =—61n [1 - (0/3n) In (s/m2)] (4.23)

m? 1" Q2

To leading order n=Pe and eq. (4.22) coincides with the previous result (4.2) a part the
term exp (3/4m), arising from the improvement of simple soft breemsstrahlung spectrum ~2/x by
[1+(1-x)2)/x [egs.(4.17)].

A generalization of the concept of coherent state in QED to account for the emission of hard
and collinear photons as well has been discussed in ref. (36). It is shown there the equivalence for
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the non-singlet case of the two methods of resummation discussed above - the coherent state

picture and the evolution equations - leading to eq. (4.21).

It has to be emphasized that this factorized result is not valid when the cross section G(s) is a
rapidly varying function of s, as in the case of resonance production with I' < Aw. Furthermore it
does not include the emission from the final state and interference effects, as in eqs (4.8) and
(4.13), and therefore can only be applied to the observation of the line shape of the resonance,

after taking appropriately into account the s dependence of o(s).

5. -ete - ff: FINAL FORMULAE

The discussion of the previous section on multiple soft-photon effect, together with the
complete one-loop results of sect. 3, leads(®) to following form for the radiatively corrected cross

section, in case of unpolarized beams,

do/dQ (ete™— f f) = doREP/IQ (Cyp ¢, P+ C,QED)

nfra

+do™NT/dQ (C ¢ [NT+ CEINT) + doRES/Q (C, RES+ CRES),

~infra

where the infrared factors are given by(")

. Be+Bf+'2Bim
C.. QED. A

infra

BertBint
C.  INT= A [ 1/cos &;].

infra

18y (s) A B
.Re{e [ ]

As
1 +m::— & 16R(S) sin 6R(S)

(*) We have not inicluded factors of the type y“'B I"'l( 14B), which contribute to order Bz only.

G.1)
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A _ Bimt
[ ] } (5.2)
MIT  —idg(s)
A+ e / sin dg(s)
S
Bf A ﬁe
Cipga =4 I I
As ]l‘SR(S)
1 +—MF e sin Op(s)
| A l 2"‘3int : :
{1 - B, 6(s,4) ctg Op(s)
M —iSR(S) Be £ R( )}
A+ e / sin Op(s)

S

The finite factors C(i)p are simply obtained from eqs. (3.29-3.31) with the help of egs.
(3.32) and include the leftover contributions of order (o/rt)

CpED= (3/4) (BABp) + (a/m) (14Q2) (%3 — 1/2) + 2Re Byyp(s) ,
(5.3a)

~ Qom) Qg F(ab) - (am) Q¢ (VY i+ [22/(1+22) ] A},

CNT = (3/4) BB + (wm) (1+ Q) (%3 - 112) +Re 8y5(s) (5.3b)
—(20/m ) Qe F(a,b) + [ Im x () / Re x (s) ] Im Syp(s)
—(an2n) Qe (VV+VZ + 2n[Imyx (s)/Rex (s)] (V,-VZ,)) }
—(a2n) Qg 2zry +(1+22) 1,1 /[ 221+ (1 +28) 1y ].

A AYHAZ + 20 [Imy (s)/ Rex (s) ] (AT-AZ))},

CRES= (3/4) BB + (om) (1+ QP (w%/3 - 1/2) ~(20/m) Q¢ Flab)  (5.3¢)
-(on) Qg { VZ1 +{4(1+ 22) Tyl +2z (‘v:"f + l!lzr) /-(v2+ a?)].

IU(1+22) (VY +a2) [ (Vad)+8zryr, ] A%}
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Notice that the vacum polarization corrections due to Re SVP(S) should be removed from
egs. (5.3 a,b) when introducing the running conpling constant &2(s) in M'OQED; as already
discussed in sect.(2.3).

The above results for CF(ii) have to be appropriately modified, as explained in next section,
when hard collinear radiation is detected together with the final particles, as in calorimetric-type
experiments.

The reaction ete”— pHp has been investigated in great detail®?). Indeed radiative effects
lead to rather large corrections to the naive expectations.

First order corrections, for example, reduce the Z peak cross-section by more than 50%, or
shift the zero in the forward-backward asymmetric by about (£300) MeV, for an energy
resolution of (1()“’1-10"2). It is therefore crucial that higher-order corrections are properly into
account if the Z mass and width have to be measured to an accuracy of the order of 50 MeV.
Numerical results are given in sect. (11).

The observation-of hadronic jets at very high energies also provides a test of the standard
electroweak model. In fact the production cross section of qq jets and the corresponding angular
asymmetries are very sensitive to the weak vector and axial quark couplings, particularly for
energies near the Z,. Compared to the pure leptonic process, €.g. ete— pty, the quark angulfar
asymmetrics have the obvious advantage of being enhanced in statistics by a factor
R=c(ete —hadrons) / o( ete"— puti). On the other hand the observable effects depend on the
hadronization properties of the quark jets and are limited by experimental problems of particle
identification. Various methods of jet analysis have been su ggested('38) which are suitable for the
purpose of measuring the electroweak hadronic asymmetries.

The above formulae (5.1-5.3) can be then used to describe the radiative corrections to e¥e —
qd. In case of heavy'ﬂavours production the mass mg, which enters in the radiative quark factor
Bg, is well determined and does not lead therefore to any ambiguities. On the other hand for light
quarks my has to be considered as an effective quark mass. Indeed the reason for that has to l?e
raced back to the cancellation of the quark mass singularities in the physical ¢ cross section,
after including the QCD radiation emitted from the quark legs in the definition of jets. Then, as
well known, the original quark mass gets replaced by a typical hadronic average tranverse
momentum <p->. For this reason the above formulae cannot be used straightforward to large py
events, which should be analyzed by explicit use of a qqg final state. To conclude this discussion
on the quark masses we observe that in most realistic cases the possible emission of a hard
collinear photon from the quark legs cannot be distinguished from the products of the
hadronization of the quarks into the physically observable jets. In these cases the considerations of
next section have to be applied and then Py dependence is appropriately replaced by Bg (see
definition in next section) irrespective of the actual value of mg.

The 2-jet cross section d.csqg1 is clearly given by
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dogg(0) = doq('9)+do (0) =do 04(® + dag(n-6) (5.4)

Then, for a doublet of (uu) and (dd) quark pairs we define the radiative correction factor as

doy; + doyg
Soge =—n 4 4 (5.5)

0 0
dcsuﬁ + d%a

In sect. (11) we will show the rapidly changing behaviour(9 of g in the vicinity of M,.

‘One of the most common methods which have been envisaged to measure quark asymmctrm
is to'look for leadmg particle effects in the angular distributions of inclusive produced hadrons.

Then the cross section for observing a hadron h at an angle 6, with fractional momentum
x~2ED/s is given by

do" (8, ) = £ [ dog (8) DMy () +dog (6) D5 () ], 66

~where the sum goes over all quarks which are active at energy Vs and transverse momentum
effects have been neglected. Correspondingly the hadronic asymmetric are defined as

do 1 (8, x) - dah 8, x)
Ah (g, x) = , — - (5.7)
do 1 (0, x) + doh (8, x)

This quantity is rather insensitive to radiative corrections®®?), as shown explicitly in sect. (11).

6. - COLLINEAR HARD-PHOTON EFFECTS

The detection of charged particles in electromagnetic calorimeters does not allow to
discriminate a particle from the accompanying hard collinear radiation, as remarked at the end of
sect. 3. One has to include then the corresponding contribution in the observed Cross section.

In perturbation theory this effect becomes increasin gly important at high energies because of
the large logarithms associated to the mass singularities of the emitting particle. Kinoshita, Lee
and Nauenberg(!1) have observed that if one surns over all degenerate states the mass singularities
cancel out to all orders of pertubation theory. Then by introducing a small but finite angular
resolution §(8«1) of the calorimeter, one is finally led to an observable cross section which
contains, to leading order, logarithms of order ((c/m) In 82)”‘. This result is well known and rather
commonly used in QCD jet analyses(19),



31

The formulae(37) reported below apply to a typical experiment in which the following
1|:w::qui1"eme:nts are satisfied: (i) the final state consists of a particle and an antiparticle (f=e, I, ...)
detected within a certain acollinearity angle J of a few degrees (J g 5°). The energy resolution Aw
then depends upon J. (see eq. 6.1). Muon pairs production is the most typical example of such a
process. In the following we will take f = . (ii). An electromagnetic calorimeter of finite and
small angular resolution  is centred along the muon direction. In principle it does not discriminate
between a charged particle and the accompanyng collinear photons.

Then using (i) and (ii) one would be sure that all but a fraction A=Aw/E of the beam energy is
taken by the muons and the accompanyng hard photons. For small 0 and A, fully analytic
expressions can be used, neglecting hard-photon effects of order [(o/t) A, (o/w)d]. On the
contrary, all double logarithmic terms of the form

(/) In (s/m?) In (A, T/M) , (/) In 82 In A,
or simple logs such as

(m) In (s/m%) , (m)In (A, T/M, In8?)

can be resummed to all orders, using known results on the exponentiation of the infrared and
mass singularities. | |

For a given acollinearity angle J, the maximum energy taken by undetected soft photons,
which defines the energy resolution Aw, is given by

Vs
Koy = Aw =———————{ = (1=cosJ +2[ (1 ~cos J)[1/2 - (mzuls) (1+cosH11V?}
1+cos]J

(6.1)
Then for J = 1°, 3°, and 5°, one obtains A = AWE=(1.7)%, (5.1)% and (8.3)%, respectively.
To first order in «, the contribution from collinear hard radiation (k 2 Aw) from the ﬁnal
particles, when detected within a small cone of half opening angle d, consists of the following

correction factor(10:12) to each term in the r.h.s. of egs. (3.29), (3.30) and (3.31) : (j = QED,
INT, RES)

Sjcon=<dorj"’ (4oum) [ (In (E/Aw) = 3/4) In (ES/myy) ~1/2 In (E/Aw) + 112 (9/4 —n2/3))
(6.2)

Then in agreement with the Kinoshita-Lee-Nauenberg theorem on the mass singularities, the
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m“-dependencc disappears after adding Eq. (6.2) to Egs. (3.29 - 3.31) and the overall correction
factor to the Born cross-sections can be simply obtained from Egs. (3.29 - 3.31) by the
substitution |

By (n A+3/4) — (2oum) [ 1n (4/8%) (In A+ 3/4) + (32 —1213) ]
| (6.3)

Notice that the contribution of the muon loop to the vacuum polarization factor Re SVP.(S),, in
¢gs. (3.29 - 3.30), is kept unchanged.
" The previous result can be generalized to all orders using the known tesults on the
exponentiation of soft and collinear divergences0), as follows. The factor [exp (Bum AN,
present in each term often radiatively corrected cross sections (4.2), (4.8) and (4.13) is replaced
by lexp (Bgln A)], where B=(20/m) In (4/82). In addition the finite factors C®)., (=QED, INT,
RES), which account for the rest of corrections in the eqs. (5.3) are modified as

Cp—s O, ( Bu— B )+ 2aum) (312 - n2s3) 6.4)

Numerical results are given in sect. (11).

7 - RADIATIVE CORRECTIONS TO BHABHA SCATTERING

The:presence of t-channel exchan ges in Bhabha scatterin g makes radiative corrections to this
process more complicated than in the pure s-channel case, as, for example, e’*‘e:'w-)uL"‘u',

The reaction ete — ete”, on the other hand, is particularly interesting for its large cross
section and could provide a high precision monitor of the beam luminosity. Detailed studies of
clectro-weak radiative corrections to this process, which have been performed e:zlrlie:r(41'43vl2), are
all incomplete in some respects.

Indeed the calculation of electro-weak first order corrections, performed in ref. (41), does not
extend to the energy range around the Z,, because of the lack of finite width effects. Those were
included in ref. (42), together with the complete treatment of soft photon effects, resummed to all
orders. The analytical expressions for the box diagxrams in the s and t channels however, were
only given in the limit s~MZ2, the left-over terms bein g of order (a/m ). An attempt to improve
ihese results has been made in ref. (43). Finally a treatment of collinear hard photon effects, quite
relevant in calorimetric-type experiments, has been given in ref. (12).

Very recently a final and complete description of QED radiative effects for Bhabha scattering
nas been given in ref. (13), including exact analytical expressions for all one-loop diagrams, and
»oft and collinear hard photon effects resummed to all orders. Therefore those results include all
double logarithmic terms of the form (ovm) In (s/m2) In (A, I'/M), (a/rt) In 62 In 4, simple logs as
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(ou/m)in(s/m2), (o) In (A, I'/M, 82) resumed to all orders, and all finite terms of orders (o/n).
Only hard photon effects of order (a/) (A,), have been neglected and have to be taken into
account explicitely, whenever necessary. We summarize here the analysis of ref. (13).

Our considerations apply to a typical experiment in which the requirements of the previous
section are satisfied, namely:

(i) The electron-positron pair should be detected back-to-back within a certain acollinearity
angle J of a few degrees (J.g 5°).

(ii) An electromagnetic calorimeter of finite and small angular resolution &is centred along the
electron and positron directions.

The relevant virtual graphs are shown in Fig. (8). We have:

M(s,t) = MyQED(s) [1+ 8UED(s)] - MRED (t) [ 14+ 8P (1)] + MRES (5) [14+28,(9)] -

= Mg™ (1) [1+ 28, ()] + Mo, 2P (5) = Mo, @0 (1) + My RES(8) = Moy ™ (0,
(7.1)

where, as in sects. 2, 3 for the Born tefms and s-channel exchanges,
MoQED(s) = (e%s) () Iu(®), MR (0= (2 J,() (v,
MGRES(s) = [e%/(s~ Mg?)I [ fy Jy(s) + o Ap() 1 Ly Jp(s) + 4 AY(9) 1,
MW@ =[e¥t= MMy Iyt)+f, Ay 1Ly Iu® +f, Ay ],
Mo EP(s)= (202/s) {J MORMON V,Y(s) + 2riV,Y(s) 1 + Ay(s) A';l(s) .
CAAYE) +2miAY () ]}, -
MipoxEP(0) = (20270 {3y (0 () TV, YO + 20V, (0 1+ Ap® AL @
JAYD)+2riAT (D] ),
Mo, RES(8)= (a/2) { MRES(s) [V Z () + 2 iV, 2 (5)] +
+ MRES (5) [V, 2 (s)+ 2miV,2(s)] }

My, V() = (2m) { MW (®) [V, 7 () + 21 iV, 2 (0] + Ms WO [A 2 () + 2m A2 (01 }
(7.2)
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with
1u(®) = (k) yulky), Jyy(s) = (qp) Yyv (ap), Ap(s) =7 () v, Ysulky),
AU® =T @)%V @) Ju®=T@)1u &), Tu0 =7 k) v @),
| A =u@)my rsuky), AL©® =7k, 1sv @y, (7.3)
and

fy = (4sin26w—-1) / 4sinB,, cosB,, fo =—1/4 sinf, cosf,, ,
0,y being the weak mixing angle. Moreover the following notations are used:

=(-5/2) (1+cosB), z=cosB, a=sinB/2, b=cosb/2.

The matrix elements Ms®ES(s) and Ms¥ (1) are defined as MRES.W = M RES.W = s
Tu¥s — 'Yu)-

The radiative factors in eq. (7.1) are defined as follows (see Fig. 8):
BUED(x) = 25, (x) + 8yp (X), (x=5,1), (7.4)

with the vertex and vacuum polarization parts given by (see sect. 3.2)

3, (s) = SVR,(S) + iSVI () ={-(1/2) B In (2E/N) + (0/2x) [(1/2) In? (s/m®) — In (s/m?)] +
+ (3/8) B, + (0/m) (w23 = 1/4) } +i (ovm) [ in QE/A) — (3/d)n ],
Sy (1) == (1/2) B, In (2E/A) = (2 ovm) In a In (RE/A) + (0/2r) [ (1/2) — In? (s/m?) —

— In (s/m?)] + (3/8) By + (o/m) [(3/2) Ina—1n2a ]+ (om) (Y12 ~ 1/4),
(1.5)

and
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dyp(s) = avp]R (s)+i svpl (s) = (W/3m) X in; [In (S/miz)“‘ 53]-i(w3) X in )

i=lq i=l,q

Syp ()=(o/3m) Z Q?i[m(i-‘t/amf) -5/3), (7.6)
i.#l.q

with.
Q2=1, Qu?=43(up), Qq*=1/3(down).

The yy and YZ box diagrams contributions MQEDBOX (s) and‘MRESbox (s) have been discussed
in sect. 3. The expressions for the t-channel box diag;r:atms‘MQEDbox ®) _,anchwbox (t) can be
easily obtained by applying the crossing relation s o tin eqs. (3.17) and (3.24), with
I'lv’,[?"]m-—éMZ and t — t+ ig, when necessary. One recovers then the Yy results (42)

V¥ = 81nbIn QEA) +8Inaln b+ (1/4)n” (-b%) + [ (-b4)/b*] InZa +

+ (1-b%) In? (a/b) + (a%z) Ina+a2ln @b)=8Inb1n QE/M+VY (D),
AT == UATA-69 + (-6 /6 Ina - (-b%) In? @/b) + (@2 /b%) Ina — an (a / b),
V() =2 1n EA) + (172) {4 In a = [ (-b%) / b* ] In a + a2/ 267} =2 In QE/A) + Vo Y(0),

AY®O == (1/2{[A~b*)/b*1Ina+a?/26%}. | (1.7

and, similarly to eqs (3.24 - 3.26)

VZ @) +2 7 V)2 ()= (M- t) [ £ (s) ~ f (Qus)] =

=41n (Vs/A) @ Inb+im) + V&) + 2 1 Vo2 (1)
AZ®O+2miAZ () = M2 [f s, +f(tus)]. (7.8)

It is clear that the exact espression for the YZ box diagrams given above, allows for the
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complete evaluation of all (o/r) e.m. contributions to the process under consideration. A similar
attempt has been made in ref. (43). Although the box contributions have been put in closed form
in terms of two functions, analogous to the non-infrared parts of V; and A, their analytical

expression are rather cumbersome and include further simple and double logarithms of (s-M2) in

addition of the pure infrared terms. This concludes the discussion of the virtual contributions to
one-loop corrections.

The analysis of the real photon emission contributions follows closely that sect. 3.1 as far as
soft effects are concerned.

Then in terms of the Born cross sections 660(1) defined in sect. 2 (egs. 2.19), the
bremsstrahlung terms read as

6 9
do(ly) =8%P(1y) = X dop () +8NT(1y) T Bog) +5RES(1y) do (10),  (7.9)

i=1 i=7
with, using eqs (3.5),
8Py = (2B +2Bjny) InE/) + (2B, + 2B;,,) In A —
- (20/z) B(m?) + (2a/7) F(a,b), (7.10a)
sint(ly) = (B¢ + 2Biny) In REA) + By, + Pe) InA + Re ({exp [i8,(s)] / cosg(s)}.
- Bing + Be) In {A [1+ (As/MI) exp [i 84(s)] sin Sg ($)171}) -

- (2o/r) B(m?) + Qovn) F (a,b). (7.10b)

SRES(ly) = (2B, + 2Binp) In 2EA) + B In A~ B3 (s, Aw) cot 8 (5) +
+ (Be+Biny) In 1 A {[ 14 (As/MI) exp [i Sy(9)] sin dp(s)}1 |~

- Qoum) B(m?) + (20/m) F (a,b), (7.10c¢)

o

In experiments where the electrons are observed as a single particle track, then one obtains the
final corrected cross section by simply adding the virtual and real corrections from egs. (7.1) and
(7.9) respectively, exponentiating the soft part as usual. When however collinear hard radiation
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(k > Aw) from the final particles is also detected, as in calorimetric-type experiments, one has to
include further corrections, as explicitly indicated in sect. 6. We will first consider the former
case. Then we obtain

do,, (e*e et = gdo () ( Cypr D + D), (7.11)
=t
where, as in sect.4.,
=) @ +2B‘“‘)(1-1 , 6), | N (7.122)
. .D= (zsw.(ZB°+2B*"‘)[ 1/cos By (s)] Re (exp | i 8x (9)] { A {1 + (As/MT)-
expli 8g(s)] sin 8(s) 1} Be {A{A + (MIVs) exp [~ i 8p(8)] / sin 8g(s)}~1}Pinn)
i=17,8,9), | (7.12b)
Cy 10 = 4] A {1 + (As/MI) exp[ﬁﬁlR(s)]sm Sg(s) 1 |B°'|A{A+(Mr/s).

expl i 8p(s)] / sin ()1 | “"[ 1B, 8(s, Aw) cot Sg(s) 1, (7.12¢)

and the finite factors: Cp(i)(*) include the leftover contributions of order (ou/1t):
CD = (3/2) By + Qoum) (W23 = 1/2) + QUmF(a,b) + 28ypR(s) + (/) {Vye¥ (5) +

+[2z/ (1+ )] AY ()}, (7.13a)

;=312 B+ Qoum) (1212 - 172) + 2o/m) [ (3/2) In 2~ In® a] + QmF(a,b) +

+ 8y pR(s) + yp (1) + (2m) [ Vi ¥(s) + A V() + Vi YO + A Y0 ], (7.13b)

*} As usual, the vacuum polarnmmxon corxccuom duc to dyp R(s) can be resummed by introducing the running
coupling constant & 2(s)=e2/ [1- SVP (s)]inM (s)
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= (3/2) B, - Qovm) (72 /6 + 112) + (4a/m) [(3/2) Ina ~ In2 a)] + (2ou/m)F(a,b) +

28,0 + (/m) { Vi + [ (b =1) 7 b4+ 1)] A, Y0 1}, (7.13¢)

= (3/2) Bo+ Qoum) (712 - 1/2) + (204m) [ (3/2) Ina ~ In? a] + (20/m)F(ab) +

+8,pR(s) + (2m) [ ViY(s) + A Y(s) + V, 2(1) + AZw], (7.13d)

=(3/2) By~ Qovm) (12 /16 + 1/2) + (4om) [ (3/2) In a - In2 al+ (2o/m) F(a,b) +
*+ 8yp(0)+(@2m) [ Vi) +V) ZO] + (@2m) {[(£y2+£,2) b4 - (fy2-£42)1/

T2+ 04+ (£,2- 91} [AY)+AZ0D], (7.13¢)

= (3/2) Bc - Qoun) (x2 /6 + 172) + (4ov/m) [ (3/2) In a — In2 al+ (2oum) F(a,b) +
+(Om) Vi (0 + (m) A Z@) {64 [ (£, 2+ 6,22 +4£,2 A2l = (621,22} /

T (B2 + D2+ 48,2 1,2+ (£,2-£,22}, (7.136)

= (3/2) B + Qoum) (%3 — 1/2) + Qa/m)F(a,b) + 8,,,R(s) +

+[Is) /R ()] By, 1(s) +

+@2m) { Vigl(s) + V() + 20 [ 1) R ()] | V,Y(s) ~ V, 2(s)]} +
+(a/2m) {[ f2(1+22) + £,2 22 ] / | fy? (1422) + 1,222 ]} { AY(s)+ A Zs) +

+ 20 [T(s) R ()] [ AYY(s) - A2(9)]} (7.13g)
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C® =(312) B, + Qoum) (@12 - 1/2) + (2o/m) [ (3/2) Ina—In? a] + (2oum) Fa,b) +
+ yp(t) + (02m) [ Vi ¥(t) + ViE(s) + A YR + AZ(s) 1+ o [T(s) /R (9)] -
[ Vo)) = Vo 2(s) + ApY(D) ~A%(s) + 312, (7.13h)
Ce® = (3/2) B, + Qoum) (r2 /12 = 1/2) + (2o/m) [ (3/2) Ina - In? a] + (20/m)F(a,b) +
+(o2r [ V&) + VA O+ AZG) + A0 ] +o[T(6) /R ()]

* [ Vo) — VoZ(8) + AjZ (1) =A% (5) + 312 ], (1.13))

0 = (3/2) B+ Qovm) (W23 — 1/2) + (2oum) F(a,b) + (o) { V¢%(s) +

+[4f2 £,2(0+ 22) + (F 2+ £,92 22) / (£ %+ FA D21+ 2D £ 8 £, 2 £42 2] A((5) ),
(7.13)
with
R'(s) + il'(s) = s/(s—=M?).

We consider now the case of calorimetric-type measurements, where collinear hard radiation
from the final particles is detected within a small cone of half opening angle & (8 «1). Then, as
discussed in sect. 6, one has to add the correction factor (6.2) to each term in the r.h.s. of eq.
(7.11), taken to first order in o

seollGy = do (i) (4o [ (In (E/A®) - (3/4)) In (ES/m) ~ (1/2) In (E/Aw) +
+(112) (974 - 113 . | (1.14)

Then after adding eq.(7.14) to eq. (7.11) the overall cotrection factor to the Born
cross-sections can be simply obtained from eq. (7.11), to first order in o, by the substitution

Be (1n A+ 3/4) — 2e/m) [ In (4/82) (In A+ 3/4) + (32 = n%/3) ]. . (1.15)

From the known results on the exponentiation of soft and collinear divergences; one then
obtains the final result,
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do _ (ete™ —»ete )= >: do, (i) [ CD, .+ COpy] (7.16)

infra

where

BS"BC

C(i)i = . A ,

infra *

COp = COL+ (3/4) Bg-Be) + Qoum) (3/2 - n213)

with

Bs = (4o/m) In(2/3).

So far large-angle hard bremsstrahlung effects have not been considered. As long as the
electron-positron pair is detected back-to-back with good collinearity, the accuracy of the formulae
given above is of order (a/r) (A,8). Hard photon effects have to be taken into account otherwise
(see next section).

To conclude this section, the complete analysis presented above, which includes the exact
contributions of one-loop diagrams and the whole series of double and simple logarithms in
exponentiated from, allows one to use the process of Bhabha scatterin g as high precision monitor
of luminosity at LEP/SLC anergies.The accuracy achieved so far is of order ¢¢? In 2 (s/m2)~1%. A
complete calculation of radiative corrections up two loops would further reduce the theoretical
uncertainty to much a higher level.

8. - HARD BREMSSTRAHLUNG CORRECTIONS

In the previous sections we have considered radiative corrections to various ete- processes
due to virtual and soft-photon effects or the emission of hard bremsstrahlung collinear to the final
charged paticles. As we have stressed earlier, the level of accuracy of our analytical formulae is of
order (a/m)A, (o/m)d with A and 3 are the energy and angular resolutions. This is celrtamly
sufficient as long as the final (e*e”, ptu-, ...) pair is detected to a good collinearity and, if it is the
case, the electromagnetic shower cones are small. The results given above include the largest
contributions from double and single logarithms to first and higher orders in o, the latter being
often larger than simple o(o/x) terms.

When however the above criteria are not satisfied, namely the kinematical domain allowed in
the experiment is a full three body phase space, then an additional term has to be added to the
previous formulae, corresponding to hard photon bremsstrahlung. This effects is normally
included in a way which is suitable for a Monte Carlo simulation of events. This also allows to
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account for all features of experimental detection.
It has to be stressed however that the numerical treatments usually available®*4) are based on

first order cross sections only, and should not be used as a full description of e.m. radiative
effects, due to the relevance of higher-order terms. Furthermore numerical integration of the o(o)
cross section in the infrared and collinear regions requires a careful analysis and is computer time

consuming, while simple analytic expressions can be used alternatively. Therefore the numerical

study of hard photon effects has to be:appropriately performed in the large angle regions, and if it

is the case, the corresponding term added to those discussed in the previous sections.
The hard bremsstrahlung contribution can be obtained on the basis of the general resultt*5) on

the factorization properties of the cross sections in gange theories. For example, in the process

eTe —ptuy, one obtains(0),

or

where

doB o3 lq. lk
= X 8.1
dQy dydk  2n%  2E-k+kcosy
doB o’
= X, (8.2)
dQ, dq,°dq.© d¢, 2n2s
.._nnez t2 1{'2 u2 u 2
X=———[AE)(—+—)+B () (—+—) ]
252 k.2 k? k 2 k2
1
+ e | A (s") (24 t2) + B () (uZ+u?)]
dsgk k_
m,2 t2 12 u?  u?
——[ A () ( + )+B () (—+—) 1+

252 kl 2 kv+2 k',__z kv+2
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1
G —
4sk, k'

[A () 2+t +B (s) (u?+u?)]

+ - [ + - - 11 C(s,8) (2 +12) +
k_k'y k, k', k_k'_

(s-s)M,T, |
+D (s,8) (u*u?) ] + €uvpo P*. PY_aP, q°_F (s,5) (u2 - u?),
2%_k, K_K,

(8.13)

where € is the antisymmetric tensor with €123 =1,

s=(p++p_)2, t=(p+—q+)2, u=(p,~-q_)?%
s'= (g4 + )2, t'=(p.~q.)% u'=(p.-gqy)?
ki = pi . k, k'i= qi . k,
and
25(s-M2,) (C%,~C?,) 5% (C?y~C?,)?
AGs) =1+ + ,
| Z(s)? | Z(s)P?
25(s-M2,) (C+C%y)  s2[(Cy+C2,)2+4C2, 2 N
B(s) =1+ +
| Z(s)|? | Z(s)?
s(s-M2%) s'(s~M2)
C(ss) =1+ [ + ] (CZ"V"CZA)

| Z(s)I? 1 ZsHP
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ss'[( s — M2)(s'- M2 )+ M2, 2] (C%,—-C2,)?

-+ ,
| Z(s)12 | ZUsHI?
s(s-M?) $'(s-M2,)
D(s,;s) =1+ + ] (C2V+C2A)
| Zs)? | (s

ss'[ s ~ M2,))(s'= M2+ M2, I2,1 [(C?+ C2,)2+ 4C2y, C2, ]

+ y
| Z(s)2 | Z(sHP
Cy Ca s g 2(s' —s) Cy Cp (C2y+C2p)
F(ss)= [ - 1+
ss' | Z(s)i | Z(s))2 | )P | ZsN2

(8.4)

In eq. (8.4) the notations C,= —(25in20,,)"}, Cy, =-C,(4sin?0y,~1) and Z(s)=s-M2+ iM, T,
have been used.

In the bremsstrahlung expression the terms corresponding to initial-state radiation (1st, 2nd
term), to final-state radiation (3rd, 4th term) and to their interference are clearly separated. The
expression is a generalization of the soft bremsstrahlung expression (3.4).

An analytic, but rather cumbersome analysis of hard photon effects has been alternatively
performed in ref. (46).

More recently, new techniques have been developed@’ 48) (o calculate the multidifferential
bremsstrahlung cross sections'in gauge theories in terms of helicity-amplitudes, with the explicit
introduction of polarization vectors for the radiated gauge particles.

This method has been then used®?) to obtain an event generator which can take into account all
possible experimental constraints. We dont't give the details here, which can be found in the
appropriate bibliography.

9, - NEUTRINO COUNTING

A precision measurement of the Z total decay width is crucial for determining the number of
neutrino generations. Indeed, for each vv pair we have, from eq.(2.8), I'(Z — vv) ~ .18 GeV



with I'(Z — all) ~3 GeV. Therefore the detection of an additional neutrino, beyond the three
standard generations, requires the measurement of I’; with an accuracy of better than 2%. The
suggestion to determine the number of neutrino generations using the reaction eg — YZ - yvV has
been also widely discussed©0:31), The electron-positron colliding beam facility is to be operated at
a center-of-mass energy slight above the Z mass, and a photon is observed with the appropriate
energy with no additional particles detected.

The reaction €€ — yvV proceeds through Z production and W exchange as well. The
differential cross section is given by

do ) (1-x) [(1-(x/2)%+ x2 y2/4]
—— G‘ZF as » .
dx dy 6n2 x (1-y?)

{24 Ny (g2 +gpD)/ 4+ (g, + gA1 - s(1-x)/M?2,] ] @.1)
[1 - s(1-x¥M%,J2+ T2, /M2, o

where x is the photon energy in units of the beam energy (x=k/E),y is the cosine of the photon
angle with respect to the incident beam direction, Ny, is the number of low mass neutrinos and, as
usual, go=~1, gy=-1+4sin20,,.

Initially it has been proposed®) to carry out the experiment at a c.m. energy of about 15 GeV
above the Z mass , with an effective cross section of about 2.5 x 1072 nb. A potentially serious
source.of background is beam-beam bremsstrahlung. Indeed the total cross section for e€ — eeyis
many orders of magnitude larger than for €& ~ v¥y. Due to the strong peaking in the forward
direction however, appropriate cuts in the photon angles can reduce sensibly the effective cross
section.of the background, down to a level which is comparable with the expected signal.

More recently the possibility has been discussed(52-54) 1o carry out the experiment at c.m.
energies around the Z. Indeed present detectors allow a reasonable accuracy in the measurement of
low.energy photons, and one could therefore exploit the high statistics which can reached be on
the resonance. o :

The expected background - radiative Bhabha scatterin g - represents however the ‘main
problem, and has to be calculated quite reliably, In fact, a recent study(3) suggesting a reasonable
control of the situation to an accuracy level of (4-5) standard deviations, has been questioned in
subsequent papers(12:54), which show that the background is comparable or even larger than the
expected signal so that very accurate subtractions have to be performed in actual experiments. In
particular it is essential that the minimum photon emission angle 8, be reasonably large Opin >
20°) in order thet the signal could dominate the background, therefore allowing the neutrino
counting experiment to be feasable. For a detailed discussion of this problem we- address the
reader to refs. (12,54).



10. - HIGHER ORDER WEAK EFFECTS

So far we have considered purely e.m. corrections to the Born amplitudes for the various
process. The only higher order weak effects taken into account are those which can be reabsorbed
into a redefinition of the basic parameters (M, , I, si'mxzew) and the renormalization of the fine
structure constant. Other purely weak effects, which are peculiar of the standard model, are
contained in the full one-loop amplitude through the exchange of the heavy bosons of the theory.
An additional dependence on unknown parameters, such as the Higgs boson mass my,, the top
quark mass my, efc., is then introduced into the various quantities which could provide a genuine
test of the theory.

A complete discussion of the various effects is beyond the aim of the present paper and can be
found in the literature©3-3657), We only present here a brief survey of the main results concerning
the role played by the corrections to the forward-backward and left-right asymmetries. At the
resonance (s -~ M?*Z) the lowest order expression for €€ — pfl is (see eq. 2.15")

v a2

Aym 3 ———— ~3(1-45in20,)2 (10.1)
FB (v2 + a2)? W |

which is very small and quite sensitive to higher order effects. Indeed, using eqs.(2.3 - 2.5) to
express sinzﬂw in terms of M,, the accurately known quantities o and Gg and the radiative
correction Ar, one obtains©®>)

sin20,, = (1/2) { 1 - [1-4p2 / (M2, (1-An)}"2} (10.2)
Then, it follows, for MZ=94 GeV

Apg(s= M2,) =0.13 : Ar=0 (sin2, = 0.195) (10.3)

and "
Agp(s= M~,) =0.055 , Ar=0.07 (sin29w =(.216) (10.39)

This shows the relevance of the effects of the standard model prediction Ar=0.07 on the
forward-backward asymmetry. On the other hand it clearly reinforces the importance of an
accurate understanding of purely e.m. effects.

Furthermore, the left over weak corrections appearing in the full one-loop amplitude affect of
an additional ~10% the result (10.3"). In fact, as shown in ref. ( 56 ), one obtains for M_=94
GeV, 10GeV < my < 1000 GeV and 30 GeV < m; <90 GeV
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00619 < Agg (=M?) <0052 S (10.4)

- The reason for such a sizeable effect can be traced to the fact that the zeroth order expression
for App is suppressed by the very small factor v2~(1 — 4 sin2 BW)Z (eq.. 10.1), whilst the radiative
corrections contain contributions of O(ct sinz'E)W /) is not inhibited by v2, ,

- A similar but smaller effect is found for the left-right asymmetry. At s ~ M’.Zz the lowest order
expression is (eq. 2.16") »

Alr = 2. (va/ (Z+aD) Py = 2 (1-45in?0,,)2P, (10.5)
~which, with the help of eq.(10.2) and for Po=1, leads to

A R(=M2)) = 0.42 : Ar=0
(10.6)
ALRG6=M2,) =027 : Ar = 0.07

in analogy to eqs(10.3-3")

- The effect of the leftover one-loop weak corrections on Ap R is less important than in the case
of Agg, due to the only linear dependence on v of the zeroth-order term. Indeed, for the same
range of values assumed above for myy and m,, one finds

0.26 <Aj p(s=M2,) <0.28 (10.7)

From the above discussion it follows that an accurate test of the weak corrections and of the
related dependence on m,;, the number of families, etc., or the detection of possible effects of
new physics beyond the standard model require a precision of S 1% and consequently an even
better control of pure e.m. effects.

“11. - DISCUSSION AND NUMERICAL RESULTS

In the preceding sessions we have presented a detailed study of hi gher-order electromagnetic
—effects in the reaction e€ —'Z, 'y — ff, in the framework of the standard electro-weak model, for
- c.m. energies around the Z mass, and unpolarized electon positron beams. Infrared factors have
been considered to all orders, together with complete first order corrections.

Collinear hard-photon corrections have also been discussed, and have to be explicitly
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included for the case of calorimetric-type experiments. The only higher-order weak effects taken
into account are those which can be reabsorbed into a redefinition of the basic parameters (M, I',,
sin? GW) and the renormalization of the fine structure constant.

These results are given by simple analytical expression in terms of the basic parameters and
the experimental resolutions, and are of immediate phenomenological application. As already
emphasized earlier, the description of e.m. radiative effects by first order corrections only, as
often done in numerical analyses for experimental applications, is quite inadequate and unreliable,
due to the relevance of higher-order effects.

In order to explicitly show the importance of the radiative effects we have presented, we
show, in figs. (9-12), as an example, some numerical results for the differential and cross
sections, and the forward-backward asymmetry.

We consider six leptons and six quarks. The hadronic vacuum polarization is usually
evaluated using a dispersion integral over the low energy cross section o(e€—had) and the QCD
predictions at higher energies. A convenient parametrization, is given(®®>) by

8Ryp(s) = Re T(s) = Re [y (93 GeV)?+ (20/9) (wm) In [(s/(93GeV)H  (11.1)

with
Re I, (93 GeV)2 = (6 + 0.04 +0.05) x 102

where the first error reflects uncertaintiy from the dispersive integral in evaluating the light-quark
contributions, and the second error is the uncertainty due to the top-quark mass (20 GeV <m; <
60 GeV).

Then in figs. (9) we show the differential cross section (d6/dQ) for the reaction ee— pjiat
various energies, with A=10"1 and no use of collinear-photon corrections. We have assumed for
51 mplici‘ty in egs. (2.5) sin2 O = 1/4 Ar = 0 which gives M, ~ 86 GeV r z ~ 2.2 and ['(Z—ee)

In fxgs (10) for the same reaction we plot the cross section integrated on the scattermg angle
@, for a calorimetric-type experiment with an angular resolution 8 ~ 1°and A=10"1 (fig. 10a),
A=1072 (fig. 10b). The electroweak parameters are sin? Oy =023, M, =~ 92 GeVandI'=2.9
GeV. The dashed curves show the Born cross sections and the dot-dashed ones the first order
corrections. The comparison with the full curves corresponding to the all-orders correction,
shows the relevance of the effect of higher-orders.

In fig. (11) the pjt forward-backward asymmetry is also shown, for the same choice of the
parameters and for ‘\/s~MZ. Notice the shift of the zero, which strongly depends on the value of
A. From these results, and from the discussion on the smallness of the weak effects in sect. 10, it
clearly follows that a precise determination of the standard model weak parameters, and even of
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the value of I'; is quite sensitive to the energy resolution of the experiments.

The energy dependence of the pp forward-backward asymmetry is plotted in fig. (12). In
absence of photon detection (A— 1), namely includin g radiative corrections with bremsstrahlun g
up to the maximum energy of the electrons, the asymmetry behaves as shown by the solid line in
fig. (12).

Similar results are obtained for the integrated forward-backward asymmetry for qq
production. One of the most common methods which have been envisaged to measure quark
asymmetries is to look for leading particle effects in the angular distributions of inclusive
produced hadrons. The effect of radiative corrections in this case does not chan ge appreciably the
naive expectations(39),

So far we have disregarded, in all our considerations, the energy spread of the colliding beam
machine. Although, in principle, this problem does not deserve a particular care because the
spread is known and can be taken into account quite precisely, we will briefly discuss it here for
the case of formation of a very narrow resonance. This problem was considered(8.38) i
conjunction with the analysis of the J/¥, and although the physical content of the result is rather
transparent, it is still treated incorrectly in the literature(8),

For a finite machine resolution G(W'-W), assumed having a Gaussian form, i.e.

1 - (W'=-W)2 /2 g2
e (11.2)
\V2r o

G(W-W)=

with ¢ the machine dispersion, such that (AW)eyym = 2.3548 o, the experimentally observed
cross section is given by

O(W) =] G(W'-W) o(W') dW" (11.3)

with o(W") the resonant cross section, radiatively corrected.
For a narrow resonance R decaying into hadrons, for example, one has from sect. 5, in the
limit (Aw»D), ‘ ‘

12 T(R—ee) I'(R—shad) r Be
o(W') = sin® 8 (W) [ ) ]
w2 I'2(R—all) W' sin 8 (W)

" (1= Be 8 ctg 8p) (1+ CERES) (11.4)
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Then, inserting (11.2) and (11.4) in eq. (11.3) one obtains® for the observed cross section at
the peak

r_T, r Be r r
et )7 exp () { ercf (-

SM) = 6
V2roMII M 2o

)+

~
)

20
(11.5)
+(1/2) B, E{(T%/802) } (1+ CLRES)

For resonances whose total width is smaller than the machine resolution, a simple expansion
of eq. (11.5) in powers of (l"/2\/2 o) leads® 1o

6m2 T, T Be 12 r 22y
= —= " vy (b ——) [ 1e—— +Be [In —— 13

_' V2rn o M2T 8062 2no 2
. (1+ C;RES) (11.6)

where ¥ = 0.5772 is Euler's constant. Therefore the main radiative factor is (T/M)@@y as
physically clear, and not V2 ()’/M)Be, as often reported in the literature(58). On the other hand,
taking the opposite limit (2V2 o«1) for a resonance whose width is large compared with the
energy resolution, e.g. resonances like the p, one finds the well known resuit

6n2 ', T,
(M) ~ (nT) (/M)Pe — M0 (14 CRES) aLm
M2T

To conclude, we summarize here the main points of the paper. Precision tests of the standard
model demand a very careful treatment of e.m. radiative corrections, well beyond the one loop
level. In addition to complete O(a) formulae for variuos processes of interest at LEP/SLC
energies, we have presented a detailed treatment of higher order effects, which sums up the full
series of double leading logarithms associated to multiple soft and collinear emission, as well as
some classes of single logarithms. A full account of e.m. effects below the (1%) level would
require complete calculation to two-loops accuracy. Attempts along this direction have been
recently under taken(59),

We would like to thank M. Consoli, G. Pancheri and Y.N. Srivastava for many illuminating

discussions.
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FIG. 1 - Born diagrams with y and Z, in the s-channel.
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FIG. 2 - Born diagrams for the Bhabha scattering.

FIG. 3 - Bremsstrahlung diagrams.



FIG. 4 - The vertex correction diagrams.

Y eV o B

—
)

N"'{D'W FIG. 5 - The vacuum polarization diagrams.

\
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FIG. 7 - The v, Z, box diagrams.
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FIG. 8 - Virtual graphs for Bhabha scattering in the s and t channels.
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FIG. 10 - a) Cross section integrated on the scattering angle 9,
for A=10"1 and 8 ~ 1°. The electroweak parameters are M=92 GeV,
I'=2.9 GeV and sin2()W=*0‘.23. Dashed curve: Born cross section;
dot-dashed curve: first order correction; full curve: all orders
correction. b) Same as a) for A=10"2, '
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FIG. 11 - Integrated p forward-backward asymmetry for Vs~M.
The notation is the same of Fig. 10.
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FIG. 12 - The integrated forward-backward asymmetry Ay, as a
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section (dashed line) and the cross section including radiative
corrections with bremsstrhalung up to the maximum energy (solid
line) and up to 0.2E (dotted line).
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